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In dynamic task environments, human operators must update their memory for what is true of the
current situation. This updating depends on forgetting old information, and this forgetting in turn
places constraints on how an item is encoded in the first place — the cognitive system must prepare to
forget. Functional decay theory accurately predicts how long this preparation takes — concentrated use
of an item for about 5 sec requires an additional 1 sec for initial encoding. This quantitative prediction
illustrates the potential of functional decay theory for evaluating cognitive workload.

INTRODUCTION
A common problem in many task environments is that

they change — what is true of the world now may not be
true in a moment. A key challenge facing the human
operator in such environments is that of forgetting old states
of the world in order to prevent them from interfering with
memory for the current state of the world.

An everyday example is the “Where did I park my
car?” problem, in which one has trouble remembering, at the
end of the day, where one parked that morning. This
phenomenon is generally attributed to proactive
interference, in which old memory traces from past parking
episodes interfere with memory for today’s location. On this
view, it would be helpful if all previous parking episodes
would decay or fade away and leave a memory trace for
today’s location to stand alone. The memory-updating
problem has been studied empirically in dynamic task
environments as well. For example, in the keeping track
paradigm (e.g., Venturino, 1997; Yntema, 1963) multiple
environmental attributes change periodically and the
operator are required to remember the current value of each.

We have examined the memory-updating problem
using a serial attention paradigm, which simplifies the
keeping-track paradigm to a single attribute with two values.
In the serial attention paradigm, the operator serially attends
to one value at a time, where the value is a task to perform.
The task environment updates the current task periodically,
but gives no clue to the current task between updates,
requiring the operator to maintain the current task in
memory.

A novel finding from the serial attention paradigm is
that operators let themselves forget the current task,
gradually, from one update to the next (Altmann & Gray,
1999b). The behavioral evidence for this forgetting is a
small but steady performance decline over trials between
updates, measured both in terms of response time (RT) and
error. Our theoretical explanation for this effect is functional
decay theory, which proposes that forgetting the current task
is functional because it reduces interference — if the current
task has already decayed by the time the next task comes

along, it will cause less interference once the next task is
current.

In this paper, we examine a key prediction of functional
decay theory concerning how cognition prepares to forget the
current task. The prediction is that in order to forget an item
gradually, cognition must first encode it in memory with
sufficient strength that it will not get any stronger through
subsequent use — that the only direction its activation can
take is down. The theory also predicts that this initial strength
in memory is the product of a controlled and effortful process
— that one must deliberately “pay attention” to an item to
make it active in memory. With a formal model, we are able to
make quantitative predictions about the duration of this
deliberate encoding process. The implication is that in highly
dynamic environments, a substantial fraction of an operator’s
time must be spent committing items to memory when they
are not available from the environment.

THE SERIAL ATTENTION PARADIGM
Our serial attention paradigm (adapted from Gopher,

Greenshpan, & Armony, 1996) involves giving participants
two simple tasks and periodically issuing an instruction to
switch from one task to the other. For example, for a stimulus
like “222222”, the correct response is either “>” or “<”
depending on whether the task is to count the characters (“>”
means more than 5) or to rate the value of the repeated
character (“<” means less than 5). Stimuli like those above are
presented one after the other in runs of 7 to 13 (run length is
chosen randomly). Each such stimulus is called a choice trial,
because it requires a forced-choice response. A run of choice
trials is preceded by an instruction trial giving the new task
(e.g., “groupsize”, meaning that the task is to count characters)
Responses to all trials are self-paced and there is no calibrated
inter-trial interval. All stimuli appear at the same location in
the center of the screen. A typical session involves 3840
choice trials and 384 instruction trials, creating a large
potential for interference in memory for the current task.

Data from this paradigm appear in Figure 1. The abscissa
shows trials P0 through P7, where “P” means Position within
the run. P0 is the instruction trial, P1 is the first choice trial of
the run, and so on. The ordinate shows average RT for each
position. The novel within-performance decline described



earlier is evident in the small but significant upward slope
from P2 to P7, a trend also reflected in error rates. Both
trends have been replicated repeatedly (Altmann & Gray,
1999b). For present purposes, the most important aspect of
the data, which we address below, is that P0 and P1 take
substantially longer than P2 to P7.

FUNCTIONAL DECAY THEORY
The premise of functional decay theory (Altmann &

Gray, 1999a; Altmann & Gray, 1999b) is that the most
recent instruction must be the most active in memory, if it is
to be reliably retrieved on a given choice trial. This logic is
illustrated in Figure 2, which shows the time course of
activation of an instruction trace. Activation, as we use the
term here, refers to the availability of an item in memory —
the more active the item, the more quickly and accurately it
is retrieved from memory by the cognitive system. In a
speeded task, we assume that cognition takes the first

element it can get, so the most active element effectively
“masks” all less active elements.

Our formal model for computing activation, and the
function plotted in Figure 2, is ln( / )2n T , where n is the
total number of retrievals of the item and T is the length of the
item’s life. This equation is a core mathematical component of
the ACT-R cognitive theory (Anderson & Lebiere, 1998).

Figure 2 shows three phases to the time course of an
instruction’s activation. During the encoding phase, cognition
subjects the instruction to a period of massed use, causing n to
increase rapidly in a short amount of time. During the use
phase, the instruction is no longer visible and must be
retrieved from memory on each choice trial to tell cognition
what choice to make. Finally, during the disuse phase the
(now) old instruction is no longer retrieved because a new one
masks it.

The “functionality” of functional decay theory lies in the
activation difference δ, the activation difference between an
instruction and its predecessor. Assuming that each instruction
is encoded to the same initial level of activation, decay from
that point on (i.e., decreasing activation) means that δ will
always be positive and that the newest instruction will always
be the most active. Thus, the theory says that encoding and
decay are critical to maintaining awareness of the current task
when the task changes continually.

The critical initial test of the theory is that it explains the
performance decline from P2 to P7 in Figure 1. As the current
instruction decays, it becomes more difficult to retrieve from
memory. This difficulty is realized both in terms of RT, as
shown in Figure 1, and in terms of error (Altmann & Gray,
1999b). This performance decline is a novel effect in the
memory and attention literature, and the explanation offered
by functional decay theory is unique — to our knowledge no
other existing theories of mental attention speak to this
phenomenon.

PREDICTIONS AND DATA
Our focus here is on the encoding-time predictions of

functional decay theory. The question we would like to answer
concerns how long the encoding phase must last to fit the
constraints of the model. That is, some amount of encoding —
some concentrated “paying attention” — is necessary to make
the instruction “stick” in memory. How much encoding is
enough?

Some simple assumptions generate remarkably accurate
predictions about duration of encoding time. The assumptions
concern the amount of decay needed during use. Implicit in
the base-level activation equation is that decay through use is
limited. This is evident in Figure 2, in that the slope of the
activation curve levels off (measured across the squares,
which represent retrievals) as the use phase nears its end.
Were the use phase to continue longer than shown in Figure 2,
all else being equal, the activation curve would begin to head
upwards again. Instead, however, the disuse phase begins, and
the instruction begins to decay more quickly because it is no
longer being retrieved.
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Figure 2: Activation of an instruction trace over time.
Activation increases to a peak during the encoding phase,
decays gradually from this peak during the use phase,
then decays more rapidly when a new instruction
supersedes it. Decay through use (by amount δ) ensures
that the newest instruction is always the most active.

Figure 1: Serial attention response times. P0 is the
instruction trial, and P1 to P7 are choice trials.
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The critical assumption is that the rate of decay from
one choice trial to the next reaches zero at about the end of
the use phase as shown in Figure 2. The rationale for this
optimal minimum assumption is cognitive economy. The
underlying tradeoff is that the amount of decay during use
depends on the amount of time invested in encoding. The
more time invested in encoding, the higher the initial level
of activation, and the longer the instruction trace decays (in
terms of successive choice trials) before reaching an
activation minimum. Once the minimum is reached,
activation will begin to increase, and will continue to
increase until the instruction falls into disuse. If decay levels
off at the end of the use phase, this optimizes δ per unit of
encoding. The optimal minimum assumption lets us predict
the duration of the encoding process.

The duration of the encoding phase is equal to the
number of encoding cycles multiplied by time per cycle. An
encoding cycle is functionally equivalent to a memory
retrieval in terms of its effect on activation — both
increment n in the base-level activation equation. The
difference is that encoding cycles occur more rapidly
because there is no other process that requires attention.
That is, on the instruction trial, the cognitive system can
devote all its cycles to the encoding process, whereas on
choice trials other processes must be performed as well —
retrieval of the current instruction and selection of the
correct response, for example. A quantitative bound of 100
msec per encoding cycle is implied by ACT-R theory
(Altmann & Gray, 1999c). With this bound in hand, we
need only estimate the number of encoding cycles in order
to obtain a quantitative prediction for the duration of the
encoding process.

The base-level activation equation provides the basis
for estimating the number of encoding cycles. The original
equation, ln( / )2n T , can be simplified by denominating
time in terms of number of retrievals such that one retrieval
occurs per unit time. Thus, we can substitute n for T. We
can now break n into its contributing terms, n = E + R,
where E is the number of encoding cycles and R is the
number of retrievals on choice trials. We assume one
retrieval per choice trial, so R = 10, the average run length.
This leaves E to be estimated.

To estimate E we apply the optimal minimum
assumption; namely, the slope of the activation curve is flat
at the end of the use phase. We would like to express this
slope solely in terms of E, the number of encoding cycles. In
terms of E and R, the base activation equation is
ln( ( ) / )2 R E R+ . Differentiating with respect to R and
setting the resulting function to zero produces E = R. That
is, for activation to reach a minimum at the Rth retrieval
(i.e., at the Rth choice trial), the encoding process must be R
cycles long. This is a simplifying assumption, because the
marginal effect on δ tends to zero as E tends to infinity
(Altmann & Gray, 1999c), but E = R is a reasonable
approximation for small E.

The predicted duration of the encoding process is thus
roughly 1 sec, based on the estimate of 10 encoding cycles
combined with the bound of 100 msec per encoding cycle. It
still remains, however, to map the encoding process to
empirical measures of RT. The obvious measure is duration of
the instruction trial itself — the time during which the
instruction text is perceptually available as input to the
encoding process. However, there is reason to suspect that
encoding “spills over” into P1, the first choice trial after the
instruction trial. Since the Sperling result, theories of visual
attention have generally predicted some persistence of a
veridical trace of a stimulus after offset of the physical
stimulus itself (e.g., Coltheart, 1999). Thus on P1, at least
initially, a veridical trace of the instruction continues to be
available as input to the encoding process. An efficient
adaptation for the cognitive system is to apply the encoding
process to this input as long as the input persists, because this
improves performance accuracy without costing the system in
terms of overall RT (Altmann & Gray, 1999a).

We would therefore expect the predicted 1 sec of
encoding time to be distributed over P0 and P1. Figure 1
shows RT data for these two trials. RT on P0 is 850 msec,
representing a substantial fraction of the predicted 1 sec. To
estimate how much encoding spills over from P0 to P1, we
take P2 RT as an estimate of pure choice RT and subtract this
time from P1 RT. This calculation yields an estimate of 124
msec available for encoding on P1 over and above the
minimum time needed for ordinary processing on a choice
trial. The total empirical estimate of encoding time is 974
msec, which is strikingly close to the 1 sec predicted by
theory. This prediction has borne out in multiple data sets to
be reported in a future paper.

Moreover, the 974 msec estimate is strikingly distant
from the prediction of the obvious alternative model. In the
absence of an encoding process, the cognitive system would
only need to identify the current stimulus as an instruction to
make the correct response (pressing the space bar). As a point
of comparison, choice trials involve several stages in addition
to stimulus identification, including memory retrieval (of the
current instruction) and response selection (of “>” or “<”).
Thus, instruction trials (on this encoding-free model) should
be faster than choice trials. Instead, they are twice as slow,
suggesting that some other, effortful process is at work.

DISCUSSION
Our question concerned how operators maintain

awareness of the current state of the world when the world
changes often. We proposed that forgetting helps by
preventing stale information from interfering with fresh
information. However, forgetting is difficult when the world
changes faster than memory can decay. Cognition responds to
this limitation by starting to forget an item as soon as it is
encoded. This eager forgetting requires the system to make the
item so active initially that it has no place to go but down. In
short, cognition must prepare itself to forget.



A qualitative prediction of our analysis is that human
operators in dynamic task environments need time for
encoding and decay — without time to pay adequate
attention to an update, and without enough time to let an
item fade, situation awareness could degrade
catastrophically.

A rough quantitative prediction is that if an attribute is
updated every five seconds  (a choice trial takes roughly 500
msec, and there are 10 per run on average), the cognitive
system must have a second to encode each new value. These
quantities must be heavily qualified, of course. To obtain
precise predictions one would need to define “concentrated
use” operationally, for example, and would need to account
for the effects of any environmental cues indicating the task
at time of need. Clearly, a more precise mapping of our
analysis to a complex task environment is an important goal
for future research. However, even if these quantities are off
by a factor of two, they suggest that “paying attention” can
be expensive.

In conclusion, functional decay theory formally
represents key constraints on memory and attention in the
human cognitive architecture. When applied to dynamic
task environments, the theory makes quantitative predictions
for human performance, in particular that encoding and
decay are critical processes in the maintenance of situation
awareness.
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