CHI 2006 Proceedings « Activity: Design Implications

April 22-27, 2006 « Montréal, Québec, Canada

Support for Activity-Based Computing in a Personal
Computing Operating System

Jakob E. Bardram, Jonathan Bunde-Pedersen, and Mads Soegaard
Centre for Pervasive Healthcare, University of Aarhus
Aabogade 34, 8200 Aarhus N, Denmark
{bardram,jbp,madss} @daimi.au.dk

ABSTRACT

Research has shown that computers are notoriously bad at
supporting the management of parallel activities and inter-
ruptions, and that mobility increases the severity and scope
of these problems. This paper presents activity-based compu-
ting (ABC) which supplements the prevalent data- and appli-
cation-oriented computing paradigm with technologies for
handling multiple, parallel and mobile work activities. We
present the design and implementation of ABC support em-
bedded in the Windows XP operating system. This includes
replacing the Windows Taskbar with an Activity Bar, sup-
port for handling Windows applications, a zoomable user
interface, and support for moving activities across different
computers. We report an evaluation of this Windows XP
ABC system which is based on a multi-method approach,
where perceived ease-of-use and usefulness was evaluated
together with rich interview material. This evaluation showed
that users found the ABC XP extension easy to use and likely
to be useful in their own work.

Author Keywords
Activity-Based Computing, ABC, Ubiquitous Computing,
Task Management, User Evaluation

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—graphical user interfaces, windowing systems

INTRODUCTION

In 1983 Bannon et al. argued that “current human-computer
interfaces provide little support for the kinds of problems
users encounter when attempting to accomplish several dif-
ferent tasks in a single session” [3, p. 54]. Today, 20 years
later, these words seem valid still. Contemporary studies
have shown that there is a significant mental and manual
overhead associated with the handling of parallel work and
interruptions [12, 20, 23, 15, 1]. Studies of non-office work,
like clinical work in hospitals, similarly show how desktop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHI 2006, April 22-27, 2006, Montréal, Quebec, Canada.

Copyright 2006 ACM 1-59593-178-3/06/0004. . . $5.00.

211

computers do a poor job in supporting mobile users’ parallel
work activities, distributed in time and space [5, 6].

Generally speaking, contemporary computer technology is
designed according to an application- and document-centered
model. This model enables users to work with specific, tar-
geted applications that support the manipulation of particu-
lar kinds of information and performing specific tasks, like
writing a letter or making a budget. This model is deeply em-
bedded in the hardware, operating systems and user interface
software, as well as the development frameworks available
today. It has proven well-suited for office work at a desktop,
but the personal and task-oriented approach provides little
support for the aggregation of resources and tools required
in carrying out higher-level activities. It is left to the user
to aggregate such resources and tools in meaningful bundles
according to the activity at hand, and manual reconfigura-
tion of this aggregation is often required when multi-tasking
between parallel activities.

In our research, we have seen how these problems are highly
exacerbated when moving out of the office and into a mo-
bile and collaborative working environment like a hospital.
Mobile and nomadic work amplify the reconfiguration over-
head when users move from one work context to another,
potentially using different computers and different types of
devices. Thus, mobility introduces yet another obstacle for
suspending and resuming activities, since a user’s activities
are ‘tied’ to his or her personal computer.

To meet these challenges, we are pursuing the concept of
activity-based computing (ABC). In activity-based comput-
ing, the basic computational unit is no longer the file (e.g. a
document) or the application (e.g. MS Word) but the activity
of a user. The end-user is directly supported by computa-
tional activities which can be initiated, suspended, stored,
and resumed on any computing device in the infrastructure
at any point in time, handed over to other persons, or shared
among several persons. Furthermore, the execution of activ-
ities is adapted to the usage context of the users, i.e. making
activities context-aware. This paper reports our approach to
activity-based computing with special focus on the user ex-
perience. It presents the design, implementation, and eval-
uation of a user interface software technology for activity-
based computing. The implementation is done as an exten-
sion of Windows XP, and illustrates how the principles of
activity-based computing can be incorporated into an exist-
ing operating system (OS).

CHI 2006 Proceedings « Activity: Design Implications

RELATED WORK

The original Rooms system [2] was the first virtual desktop
management system which allowed users to organize appli-
cation windows in different ‘rooms’ associated with differ-
ent tasks. A more recent version of this principle has been
presented in the GroupBar system by Microsoft [25]. In ad-
dition to virtual desktop management systems, a number of
research projects have proposed solutions for task manage-
ment. These include support for moving groups of windows
to the desktop periphery in the Scalable Fabric system [23],
extending the user’s desktop with additional screen space [7]
or peripheral displays [19], employing 3D in the TaskGallery
window management [24], using time as the main organiz-
ing principle in task management [22], or to allow for hier-
archical window organization and elastic stretch and resize
of windows in the Elastic Windows system [17].

Compared to this work on new user interface metaphors for
task management, our work is distinct in at least three ways:
Firstly, activities in ABC are persistent and stateful which
means that state is preserved across service restart or com-
puter shut-down. This is a fundamental difference, because
it illustrates that activity-based computing is not designed
to support grouping of application windows in convenient
ways, but to support long lived human activities which un-
fold and evolve over time. Secondly, activities are distributed
across networked computers and thereby support users to
move their work activities with them while roaming between
devices. The Gaia architecture for Smart Spaces [16] also
supports applications to move across different Windows XP
computers, but there is no support for task or activity man-
agement. Finally, we have explored design for activity-cen-
tered window management that do not replace the entire PC
desktop with a new metaphor, but rather adhere to the same
conceptual and physical window management as the under-
lying OS. In line with the conceptual idea of activity-based
computing, the ABC extension to Windows XP ‘merely’
adds another level of user interface mechanisms on the activ-
ity level in terms of the activity bar, the Ctrl+Tab switching,
and the activity sharing support. Hence, activity-based com-
puting, and its supporting technology, seeks to extend — and
not replace — the prevalent application and document view.

Other systems have been designed to provide more direct
support for managing of multiple concurrent activities as-
sociated with large amounts of digital material. In fask-
centered communication systems, recording the history of
the task, and the virtual workspace associated with it, is
done by creating contexts out of message threads. Email
communication threads are stored and reused in TaskMas-
ter [8] and activity threads comprised of all accessed data
objects are stored and maintained in the Activity Explorer
prototype [26, 21]. These systems accurately reflect history
of a project (or task) and the various data objects used in it;
contacts, email, documents, etc. A common feature of such
systems is however, that they are tied to the application mak-
ing the history and do not support arbitrary use of the com-
puter. The Activity Explorer, for example, supports 6 pre-
defined types of objects: Message, chat, file, folder, screen
shots, and to-do items. Hence, users need to “live” [21,

212

April 22-27, 2006 « Montréal, Québec, Canada

p. 381] in the application and important information (state)
and work tasks that do not go through the application are
not supported. Our approach differs while we seek to enable
activity-based computing support on the operating system
level and not on the application level.

In inference-based activity systems, the user’s interaction with
the computer is monitored and recorded in order to make
inference about the activity of the user. The UMEA sys-
tem [18] records information about users’ activities when
interacting with the computer via monitoring the computer
file system, input devices, and running applications. This en-
ables semi-automatic maintenance of the content of project-
related pools of documents, URLs, etc. A similar approach
is used by the TaskTracer [14] which tries to infer so-called
‘task profiles’. The goal of these systems is to help users
access records of past activities and quickly restore the his-
torical task context. Our approach to activity-based comput-
ing does not support activity inference by monitoring user-
interaction. For our purpose the benefit of having semi-
automatic maintenance of activity content does not merit the
cost of monitoring and inferring. We find that the small over-
head of creating, naming an activity, and attaching services
to it, does not warrant the use of inference techniques. In-
stead we are using a context-aware infrastructure to help rec-
ognize relevant activities based on the current usage context
of the user [9].

ACTIVITY-BASED COMPUTING

Our approach to activity-based computing is rooted in a year-
long engagement in the study of, and design for, hospital
work with focus on the challenges of handling parallel activ-
ities, interruptions, mobility, sharing, collaboration, coordi-
nation, and easy access to large amount of physical and dig-
ital information [10, 5, 6]. In the analysis of the use of con-
temporary computer technology in hospital work we have
seen a range of critical short-comings which pose fundamen-
tal challenges to the design of future computer technology.

Firstly, computers are application- and data-centered and
provide little support for aggregating sets of related appli-
cations or services as well as negligible support for inter-
ruptions in work. Often users need to manually reconfigure
their applications to match new or recurrent tasks. Secondly,
computers are designed for stationary use at a desktop. This
also includes so-called ‘mobile devices’, like laptops, which
are difficult to use without sitting down at a desk. Thirdly,
applications run isolated on homogeneous devices. Hence, it
is very difficult to move a set of applications or services from
one computer to another, and even more difficult to move it
between different kinds of devices. Fourthly, the ‘Personal
Computer’ with its operating system is made for single-user
tasks. However, a core aspect of everyday activities — es-
pecially in a hospital — is their collaborative nature. A fun-
damental challenge is therefore to investigate how support
for collaboration can be made part of the computing infras-
tructure. Finally, computers are inherently insensitive to the
working context of its users. Hence, there is no way in which
a computer can take contextual information into considera-
tion in the interaction between human and computer.

CHI 2006 Proceedings « Activity: Design Implications

Activity Service Data
(— ~ abc.chi.2006.pdf
PDF | ;
‘ Viewer | abc.ubicomp.pdf
/ abc.puc.pdf
ABC CHI N
:l: Paper ‘ Latex | abc.chi.2006. tex
\ Editor) abc.puc. tex
e
Internet | http://www.chi2006.o0rg/
| Browser '\ nttp://www.chi2006.0rg/call.php

Figure 1. The ‘ABC CHI Paper’ activity used as an ex-
ample throughout the paper.

However, many studies have shown that these challenges
also exist in other kinds of work, including so-called ‘infor-
mation work’ taking place in an office environment. Hence,
even though our initial research was rooted in a hospital
environment, we are currently working on a more general
level and is proposing activity-based computing (ABC) as
an approach to computing, which focuses on computational
support for mobile, collaborative, and distributed activities
which are adapted to their usage context. We are arguing that
support for whole activities, rather than individual tasks, is
important in pervasive environments. Figure 1 is a concep-
tual illustration of an activity which is a work-related aggre-
gation of services and data. We have defined activity-based
computing around the following essential principles:

Activity-Centered — A ‘Computational Activity’ collects in
a coherent set a range of services and data needed to sup-
port a user carrying out some kind of (work) activity. This
principle addresses the challenge of application-centered
computing.

Activity Suspend and Resume — A user participates in sev-
eral activities and he or she can alternate between these by
suspending one activity and resuming another. Resuming
an activity will bring forth all the services and data which
are part of the user’s activity. This principle addresses the
lack of support for interruptions.

Activity Roaming — An activity is stored in an infrastruc-
ture (e.g. a server) and can be distributed across a net-
work. Hence, an activity can be suspended on one work-
station and resumed on another in a different place. This
principle addresses the challenge of mobility.

Activity Adaptation — An activity adapts to the resources
available on the device (i.e. computer) on which it is re-
sumed. Such resources are e.g. the network bandwidth,
CPU, or display on a given devices. This principle ad-
dresses the challenge of isolated and homogeneous de-
vices.

Activity Sharing — An activity is shared among collaborat-
ing users. It has a list of participants who can access and
manipulate the activity. Consequently, all participants of
an activity can resume it and continue the work of another
user. Furthermore, if two or more users resume the same
activity at the same time on different devices, they will be

213

April 22-27, 2006 « Montréal, Québec, Canada

notified and if their devices support it, they will engage in
an on-line, real-time desktop conference. This principle
addresses the challenge of collaboration.

Context-awareness — An activity is context-aware, i.e. it is
able to adapt and adjust itself according to its usage con-
text. Context-awareness can be used for adapting the user
interface according to the user’s current work situation —
or it can be used in a more technical sense, where the
execution of an activity, and its discovery of services, is
adjusted to the resources available in its proximity. This
principle addresses the challenge of context insensitivity.

The focus of this paper is to show how activity-based com-
puting has been incorporated in the Windows XP operating
system. Hence, the paper will focus specifically on the single
user aspects, i.e. support for handling activities, activity sus-
pend/resume, activity roaming, and activity adaptation. Col-
laborative activity sharing and context awareness has been
discussed elsewhere [5, 9].

ABC FOR WINDOWS XP

This section presents the user interface and implementation
of the activity-based computing extension to the Windows
XP operating system. This ABC user interface is part of the
client layer in an overall ABC architecture, where the under-
lying infrastructure layer is responsible for activity distribu-
tion and concurrency control in activity-based collaboration.
This paper, however, exclusively focuses on the client layer
and its implementation as part of Windows XP.

The ABC user interface for Windows XP is shown is fig-
ure 2. In Windows XP, each service is mapped to an applica-
tion window. Thus, an activity can be made up of a range of
windows, including child windows to an application, where
the main window is not part of the activity. In figure 2 the ac-
tivity labeled ‘ABC CHI Paper’ is resumed and contains win-
dows from different applications like Adobe Reader, Fire-
fox, and an open mail in a child window from Thunderbird.
Let us consider the different parts of the ABC user interface
for XP in more details, including some of the implementa-
tion details.

Activity Bar

The main user interface component is the Activity Bar illus-
trated in figure 2. This bar replaces the Windows XP Taskbar
since activities — and not applications — are the main focus in
ABC. In order to facilitate an intuitive understanding of how
the bar works, the activity bar is deliberately designed to re-
semble the Windows Taskbar. The ‘Activities’ button is used
to list the current user’s activities as shown in figure 4. The
action buttons are used to: (i) Create a new activity; (ii) sus-
pend the current activity; (iii) invite other participants; (iv)
save the activity locally; (v) zoom out the activity; (vi) show
the ABC control panel; and (vii) to show the radar view. Fre-
quently used activities are shown in the middle part of the
bar, and the status icons on the left reveal the collaborative
status for the current user: (i) Other online participants; (ii)
tele-pointers on/off; (iii) voice-link on/off; (iv) and server
online status.

CHI 2006 Proceedings * Activity: Design Implications

List all
activities for
the user

Action buttons
\

Activities X e WA w

TR ™

Activity Bar ——

B

Resumed activity Suspended activity

ABC CHI Paper

April 22-27, 2006 « Montréal, Québec, Canada

Status buttons

e = .®, 2

CompUTE

Administration

2 CHI 2006 - Microsoft Internet Explorer // ABC // AH

Y = M B - F[H] @
g B o % ﬂ \77‘ I i Q L) £| File Edit View Favorites Tools Help
@Hep - YR ~ /
0 o — B _ @Back - ‘ﬂ @ h /)Search \;\L(
his Lser A Suspended Resum nad o
AcouryBar = » = Address | €] http://chiz006.0rg/
. — ®508 [iy . Montréal, |
% l User interface Managemen| .. April 22
E i Computing - Design, Impi
o CHI2006
g fi monlr!al. Intera
ESE ¥ 1y meddetetse: chi screenshots 1/ ABC 1/ 4B

Figure 2. An overall view of the ABC user interface for Windows XP, including the Activity Bar, the current user’s list
of activities, and different application windows that are part of the resumed activity labeled ‘ABC CHI Paper’.

Application is part
of activity

Application is NOT
part of activity

€ EEX
7

Figure 3. The ‘activity icon’ for pinning and unpinning
an application to an activity.

Application windows are added and removed as services in
an activity by using the ‘activity icon’ in the windows title
bar as illustrated in figure 3.

Activity Suspend and Resume

In the ABC user interface, activities can be suspended and
resumed in several ways. The typical way is to suspend
the current activity and resume another by selecting a new
activity in the activity bar or in the activity list illustrated
in figure 4. The red cross action button in the activity bar
suspends the current activity without resuming another one.
This is useful in getting rid of an activity when creating a
new one. For easy activity alternation, we have extended
Windows XP with a ‘Ctrl+Tab’ switcher analogue to the
Windows ‘Alt+Tab’ switcher. By pressing ‘Ctrl+Tab’ a user
can quickly switch between his activities. The Windows
‘Alt+Tab’ switcher is still working and is used to switch be-
tween application windows within an activity.

Technically, all applications can be kept running when the
activity is suspended. This is done for two reasons: (i) to en-
able concurrent activities by having services in a suspended
activity to run in the background while working on another

214

ABC CHI Paper

LaTex source for CHI Paper, CHI
2006 Homepage, Email
correspondance

Resumed
activity

Thumbnail pictures

.] é:""pva“plf of activity as last
“ - suspended
. Suspended
activities

Administration

et

= Email, Calendar, etc

Figure 4. The list of activities for a user displayed when
pressing the ‘Activities’ button.

activity; and (ii) to allow for much faster switching between
activities on a local machine, saving the time it takes appli-
cations to start up every time an activity is resumed locally.
However, applications which belong to suspended activities
are removed from the Windows ‘Alt+Tab’ switcher. Hence,
the user is not confused by applications not belonging to the
currently resumed activity. When activities are resumed and
suspended, activity state information is synchronized with
the underlying ABC infrastructure which is responsible for
activity roaming and sharing.

Activity Ul Adaptation

The ABC user interface for Windows XP is also a zoomable
window manager which enables the user to zoom in and out
on activities as illustrated in figure 5. This zoom function-
ality is used to adapt the user interface to different display
sizes and thus supports the principle of activity roaming in

CHI 2006 Proceedings « Activity: Design Implications

the underlying ABC architecture. When an activity is re-
sumed on various Windows XP devices with different screen
resolutions, the ABC window manager for XP can zoom the
activity to fit the current screen. In figure 5 the different
application windows used in the ‘ABC CHI Paper’ activity
is distributed in space and the activity is zoomed out. The
shortcut ‘Ctrl+1’ is used to toggle between zoom in/out and
enables the user to quickly get an overview of an activity
and the zoom in on details by clicking on the window. Fur-
thermore, in order to navigate within an activity, there is a
radar view as illustrated in figure 6. This radar resides trans-
parently on top of the application windows and a red square
indicates the current viewport. By dragging the red square
in the radar view, the current viewport on the Windows XP
desktop is adjusted.

ABC CHI Paper | CompUTE

Figure 5. The activity ‘ABC CHI Paper’ zoomed out.
The numbers rendered on top of applications are used to
by a voice interface, allowing the user to zoom in on e.g.
service no. 1.

The zoom functionality is primarily designed to enable the
ABC user interface to support activity adaptation to differ-
ent devices. Zooming however, also proved useful in single-
device activity handling as it helps users manage activities
with many windows in a spatial 2D metaphor that conserve
the arrangement of windows . In contrast to other zoomable
user interfaces, we maintain the window size and position,
and do not rearrange windows (like Exposé in Mac OS) or
introduce new layout metaphors using e.g. 3D [24].

Activity Roaming

Activity roaming is done via the underlying ABC infras-
tructure which distributes, manages, and stores activities and
their state information. A local activity cache is used if the
client is not online (the online status is revealed by the small
icon on the right-hand side of the activity bar in figure 2).
When an activity is resumed, the description and the state
of the activity is fetched from this distributed infrastructure.
On each device, the ABC XP extension runs a small reg-
istry which maps services to local applications. For example,
the service named internet_browser may be mapped
to Mozilla Firefox on one device and to MS Internet Ex-

215

April 22-27, 2006 « Montréal, Québec, Canada

&

Figure 6. The radar view of an activity.

plorer on another. When an activity is resumed on a device,
the applications corresponding to the services in the activity
are started and their state is restored, including references to
relevant data. Similarly, when the user suspends an activ-
ity, state information from each application is collected and
stored in the activity description, which is then handed over
to the ABC infrastructure.

Clearly, activity roaming relies on corresponding distribu-
tion mechanisms for the data involved in an activity. It is
beyond the scope of this paper to discuss this in great detail,
but solutions to data distribution exist. Network file systems,
mobile file systems, peer-to-peer file systems, or WebDAV
may be used to distribute files, and in a hospital environment,
most systems rely on a client-server architecture which han-
dles distribution of the data layer. Furthermore, the ABC
infrastructure contains mechanisms for attaching data to an
activity, which may be exploited by an application.

Implementation

The software architecture of the Windows XP extension for
activity-based computing is illustrated in figure 7. The ‘Ac-
tivity Controller’ is the main component. It provides handles
for resuming and suspending an activity, manages connec-
tions to the activity infrastructure and to other clients, and
has two direct hooks into the OS. Basically it is the point
of contact between the infrastructure and the client, as well
as between the client and any user-interfaces which may be
built on top of it. Hooks are handles used by the client
layer to interface with binary components of the OS. The
‘desktop hook’ interfaces with the windowing system and
grabs the thumbnail pictures of an activity just before sus-
pension (see figure 4). The ‘keyhook’ listens for the ABC
key-combinations, which are ‘Ctrl+Tab’ for activity switch-
ing and ‘Ctrl+1’ for zooming. Other external components
can listen for arbitrary key combinations using this hook.

The ‘Service Registry’ has access to the tables which map
installed applications to service descriptions in the activity.
This allows for adaptation of an activity to locally available
applications and for users to define which applications they
prefer for which services. The “Window Monitor’ is respon-
sible for managing running applications in the OS. It pub-

CHI 2006 Proceedings « Activity: Design Implications

Client layer !
State Activity Collaboration
Manager [| Controller Controller

txteditor - Notepad T : :
browser > IExplorer

T U
| [
ServiceRegistry II : Mouselnput
| 1
I 1 [I
) . |
ServiceFactory WindowMonitor : ‘ HotKeyInput ‘ : | SoundIinput |
| T
! T
|

1
| [
! ! ! 1
oS ‘ desktophook : mousehook. [

[
7 |
p' } keyhook [k soundlhook

Figure 7. The software architecture of the Windows XP
extension for activity-based computing.

lishes events whenever an application window is opened or
closed. This is done by polling the OS at intervals for all
visible windows. Events are then sent to the registry, which
registers changes to the window. The monitor also installs
the ‘Activity Icon’ in the title bar of the windows (see fig-
ure 3). This icon is used for pinning (adding) and unpinning
(removing) applications to activities. Whenever an applica-
tion is added to an activity (by pressing the activity icon),
the registry asks the ‘Service Factory’ for a service which is
capable of wrapping the specific type of window. This ser-
vice is then added to the current activity through the activity
controller. Once a service has been added to an activity the
state of it is continuously monitored. This happens in the
‘State Manager’, which tracks changes in the state of all lo-
cal services. If the activity is shared then a change in its
state is immediately sent to all participants via the ‘Collabo-
ration Controller’. In this manner, when sharing an activity,
the state of all services in the activity is synchronized on all
participating devices — giving each participant in the activity
an identical view of all applications. The ‘soundhook’ and
‘mousehook’ allows the collaboration controller to establish
voice links and tele-pointers to collaborating peers.

State Management

Activity suspending/resuming and activity roaming rely on
the ability to access state information for running applica-
tions. We call such applications stateful [5]. In the present
Windows XP implementation, we differentiate between three
types of stateful applications: (i) legacy applications with no
programming API, (ii) legacy application with an API, and
(iii) applications with full access to the source code.

In the first type of applications, only the application’s name,
window size and position, and executable is stored as state
information — this is the information that we can extract from
the OS. This means that when such an application is moved
from one device to another, the application window is re-
stored but not the content. For the second type of appli-
cations, special-purpose ABC application wrappers are cre-
ated. MS Internet Explorer, for example, provides a COM
interface which is used to get access to the currently dis-
played URL and the scroll location on the page. Hence, ap-
plication window and content can be restored when an activ-

216

April 22-27, 2006 « Montréal, Québec, Canada

[StatefulField (current_url)]
public URL CurrentURL;

[StatefulField (current_position)]
public int CurrentPosition;

Figure 8. State annotations in a browser application.
Just by annotating the URL and the page position, the
browser becomes stateful and can participate in activity
roaming.

ity roam. We have created application wrappers for MS In-
ternet Explorer, MS Powerpoint, MS Word, the Eclipse IDE,
and Notepad. These wrappers are quite simple and require
little amount of code.

The StatefulApplication interface in the ABC pro-
gramming model is used to develop stateful applications. To
help implement state management in the application, fields
that represent ‘state’ information can be annotated as state-
ful. Figure 8 shows an example of state annotations for an
internet browser which ensures that the URL and the scroll
position is saved as state information for this service. State-
ful applications and their annotated fields are managed au-
tomatically by the programming model and adds little extra
work to application programming. Our argument is that re-
quiring the programmer to denote stateful fields in his or her
program is a small overhead and is negligible compared to
other requirements which an operating systems imposes on

applications and application-programmers’ .

EVALUATION

Earlier versions of the activity-based computing platform
have been evaluated extensively by clinical personnel from
different hospitals [4], which has provided good evidence
that the principles and suggested technologies are useful in a
hospital setting. The goal of the work presented in this paper
is, however, to investigate whether support for activity-based
computing can be part of a contemporary OS, like XP. This
raise the following usability questions:

o Usefulness — Our primary concern was to establish whether
the whole idea of activity-based computing as embedded
in the Windows XP operating system (OS) is useful, i.e.
can ABC be part of a contemporary OS? Can activities
exist in an OS or does it clash with the desktop metaphor?
Is ABC useful in other, non-clinical, domains?

e Ease-of-Use — Our secondary concern was to establish if
the ABC user interface for XP was easy to use. Our goal
was that experienced Windows XP users would be able to
use the ABC extended version with no prior training.

To answer these questions, we wanted experienced XP users
to use the platform because they can give much more ac-
curate test results that precisely address the stated research
questions. Our previous evaluations have shown that clini-
cians are far from experienced computer users and many of

'The current programming model is based on the .net platform and
the example in figure 8 is C#.

CHI 2006 Proceedings « Activity: Design Implications

them had serious difficulties understanding and using basic
functionality in XP. Furthermore, to assess if activity-based
computing is useful outside a hospital, we need users and
scenarios from a non-hospital setting.

Usefulness was more specifically evaluated by investigating
how users were able to use the activity concept to aggre-
gate services and data when handling different tasks, large
amounts of digital material, parallel work, interruptions, mi-
grating work across different devices when moving around,
and adapting the user interface of an activity to the available
screen real-estate.

Methods

We have refrained from measuring task completion time. It
is trivial to see that users of an ABC platform like the one
presented in this paper would out-perform standard Win-
dows XP users if asked to perform tasks that require han-
dling parallel tasks, accessing lots of digital material, cop-
ing with frequent interruptions, and moving across hetero-
geneous devices.

The goal was to provide objective measurements on the use-

fulness and usability of our design while, at the same time,

investigating the underlying detailed user reaction to the ABC
user interface in a more qualitative fashion. For this purpose

we have devised and used a multi-method evaluation setup

where we (i) ask users to perform a range of tasks while

thinking aloud, (ii) do analysis by scenario [11], (iii) investi-

gate perceived usefulness and usability based on a question-

naire [13], and (iv) make a semi-structured interview.

Experimental Setup

To recruit experienced Windows XP users, we asked 16 grad-
uate computer science students to participate in a semi-con-
trolled evaluation. They were tested separately, each test
lasting just over 1 hour. All participants were skilled pro-
grammers. Mean age was 27 years.

The test was set up to simulate well-known tasks for the par-
ticipants, in this case a programming assignment for a com-
pany. The experiment was run in 3 rooms by 2 experimenters
and a ‘scenario judge’, responsible for the analysis by sce-
nario. Room 1 was the participant’s ‘office’, room 2 was
the office of his colleague (played by experimenter no. 2),
and room 3 was the ‘board room’ of the fictional company
at which the participant worked. Experimenter no. 1 and the
scenario judge followed the participant around as he changed
locations. The participant had a desktop PC, a laptop, and a
telephone in his office. The board room had a computer with
a wall-sized display. The 3 computers all had varying screen
resolutions and displays, the ABC XP extension, the Eclipse
IDE, MS Word, MS PowerPoint, Internet Explorer, plus five
custom-built medical applications.

Tasks

Six overall scenarios were the backbone of the test: (i) Code;
prepare a presentation; perform private activities; be ready
for support calls. (ii) Take care of personal matters. (iii) An-
swer a support call from a client wanting support for medical

217

April 22-27, 2006 « Montréal, Québec, Canada

applications. (iv) Consult a colleague in a nearby location to
get help for the code. (v) Take care of personal matters. (vi)
Present your work to the Board Members.

Experimenter no. 1 conducted the test according to a script
which both guided the participants through the overall sce-
narios and their subtasks, and at the same time introduced
interruptions and asked the participants to start working on
parallel tasks. Examples of interruptions are different kinds
of phone calls introducing new tasks and people entering the
office. Examples of parallel tasks are asking the user to do
some brainstorming in MS Word.

Procedure

After signing the informed consent form, the participant was
given a quick introduction to the ABC user interface and the
think-aloud method. He was then given a description of the
tasks he was to perform. While performing these tasks, the
scenario judge observed the participant and decided, based
on a breakdown factor and on a 5-point scale, how much of
the ABC Framework’s potential the participant used for each
scenario. This yielded an ‘analysis by scenario’ score [11].

A questionnaire was administered to the participants after
the experiment. It consisted of 39 questions covering per-
ceived ease of use and perceived usefulness. The latter were
further sub-divided into the factors listed above (see also ta-
ble 1). Each factor was covered by a number of redundant
questions, the order of which was randomized, and framed in
both positive and negative ways. The questionnaire is an ex-
tension of the ‘perceived usefulness/ease-of-use’ question-
naire [13]. Participants were asked to make self-predictions
about their likely future use of the ABC Framework. This,
we believe, will increase the ecological validity since the
user to a lesser degree is evaluating the ABC Framework
with regard to specific laboratory tasks but evaluating its
potential role in their own work. As argued by Davis and
others, these kinds of self-predictions “[...] are among the
most accurate predictors available for an individual’s future
behavior” [13, p. 331]. Participants were asked to make
self-predictions based on questions like: “Using ABC in
my daily work would enable me to handle more informa-
tion than today.” Answers were given on a seven-point scale
with ‘likely’ and ‘unlikely’ as end-point adjectives.

After the questionnaire, a semi-structured qualitative inter-
view was conducted to get evaluation feedback in the partici-
pants’ own words. It featured questions such as ‘In your own
words, what is the best and the worst thing about ABC?” and
was designed to address everything from the participant’s
sentiments about the test to any suggestions for improve-
ment they might have. The whole test was video-taped, in-
cluding the follow-up interviews, and subsequently analyzed
and partly transcribed.

Results

The results from the questionnaire are shown in table 1. Low
scores indicate ‘likeliness’, e.g. a score on 1 is ‘extremely
likely’, a score on 2 is ‘quite likely’, a score on 3 is ‘slightly
likely’, and a score on 4 is ‘neither likely or unlikely’. Scores

CHI 2006 Proceedings « Activity: Design Implications

Avg. Std. dev.
Usability 2.09 0.89
Usefulness 3.07 0.96

Activity aggregation 2.67 1.07
Large amount of data 3.36 1.37

Parallel work 2.97 1.15
Interruptions 3.16 1.27
Roaming 2.31 1.07
Het. Devices 3.11 1.73
Zoom feature 4.07 1.70

Table 1. Results from the questionnaire.

Scenario Avg. Std. dev.
Code 4.33 1.35
Personal tasks 4.33 1.29
Support call 4.27 1.49
Colleague 4.87 0.52
Personal tasks 4.87 0.35
Presentation 4.53 0.52

(@) N, I SNOS I SR I+

Table 2. Results from the analysis by scenario.

above 4 indicate ‘unlikely’. Table 1 shows that on average
the participants found it quite likely that ABC for Windows
XP would be easy to use (2.13, std. dev. of 1.05). The ease-
of-use questions included questions on learnability, under-
standability, and flexibility. Furthermore, the participants
found that on average it would be slightly likely that ABC
would be useful to them (3.06, std. dev. of 0.92). Look-
ing more specifically into the underlying factors, the mecha-
nisms for activity aggregation and activity roaming were per-
ceived quite likely to be useful. In general, it is interesting to
note that on average none of the evaluated factors in table 1
were perceived unlikely to be useful (i.e. all scores are 4 or
below). The standard deviation for all factors is around 1,
which indicates that the answers were rather consistent.

The results from the analysis by scenario by the scenario
judge is shown in table 2. In this measurement, high figures
(5) indicate that the experimenter judged the participant to
make extensive use of the features of ABC. Table 2 shows
that on average participants had a high score in the use of
ABC and its features. These figures indicate that participants
quickly learned how to use and utilize the features of ABC,
supported by the results from the ease-of-use questionnaire.
Note, however, that the figures in table 2 also reveal that
users learn as they use ABC — the score for the same scenario
(‘Personal tasks’) is higher the second time.

DISCUSSION

Going back to the original work by Bannon et al. [3] we feel
that the current ABC extension to Windows XP has come a
long way in creating computational support for activity man-
agement. As our evaluation shows, users found it likely that
ABC would help manage parallel tasks and interruptions,
“reduce mental load when switching tasks” and help users
“suspend and resume activities” [3, p. 54].

Our approach has been to embed activity support into the

218

April 22-27, 2006 « Montréal, Québec, Canada

operating system because we intent to extend, rather than re-
place, the way users use files and applications today. Based
on their studies of task switching and interruptions in Win-
dows XP, Czerwinski et al. [12] reaches a similar conclusion:
“It is clear that more can be done within the operating sys-
tem and software applications to help users multitask and
recover from task interruptions, hence potentially increasing
productivity.” [12, p. 181]. The need for activity support on
the operating system level was also pointed out by one of the
users during the follow-up interview:

[think this is smart — to associate things to activities.
I've often thought about having ‘association tags’ on
files, thereby being able to associate them to different
things instead of them just being a file. [...] It’s appeal-
ing to think of this as a greater framework for using
your computer where files just have disappeared. [...]
1 think all of this is nicely done, and I'm certain that if
you guys don’t do it, then others will do it, because it is
completely obvious to think this way...

This user finds the idea of having activities as an organiz-
ing concepts around files and applications ‘smart’ and this
way of organizing the operating system for ‘completely ob-
vious’. Another user similarly argued that the simplicity of
the approach was a benefit, i.e. that the Windows XP ABC
mechanisms introduce a minimum of additional ‘things’ to
the operating system.

It is extremely simple — that’s also a good thing. It
doesn’t try to be advanced in any way. It can do a few
things and it does it very nicely — that’s the best thing
about it.

Going back to table 1 the support for ‘activity roaming’ was
perceived useful, which were also backed up by the inter-
views:

The best thing is the ability to move your ‘state’ from
one computer to another. The whole idea of making
it persistent... It’s extremely nice to be able to close
your computer and then it comes back up in the same
state. That’s the reason why I newer turn off my Linux
machine — it just runs for weeks as does all of the ap-
plications on it.

The original motivation behind activity roaming was to loosen
the tight one-to-one binding between a user and a (personal)
computer. Hence, by supporting activity roaming users would
be free to use different computers and to move around more
easily. This hypothesis was also confirmed in our experi-
ment, as illustrated by the following quote:

[1]t is a sensible way to be independent of precisely this
particular computer. That you have the opportunity to,
well ... close the book and then open it again another
place and you get the same back.

The interviews also contained questions regarding areas for
improvement to the current system and its user-interface.
Users had some more general comments on the user-interface

CHI 2006 Proceedings « Activity: Design Implications

and suggestions for improvement. They found that the zoom
function was necessary in the adaptation on different display
sizes, but they found that it could be greatly improved and
work as smooth as the Exposé function in Mac OS X. Cur-
rently, the ABC zoom functionality is simply too slow to be
useful. One user also had suggestions for creating automatic
adaptation to the size of the screen. Furthermore, there were
comments on providing better feedback to the user on how
a service and a piece of data (e.g. a file) were related to an
activity. We regard these issues as important, but they are
more related to further development of the user-interface for
Windows XP, rather than more fundamental research issues.

Users raised, however, also more fundamental issues. First
of all, the apparent lack of support for having the same ser-
vice (window) in more than one activity. As argued by Ban-
non et al. [3] you need “multiple perspectives on the work
environment” and need to support ‘multiple windows’ as
done in the Rooms system [2]. The current implementation
of the ABC extension to Windows XP actually supports this
technically — the same window can be part of more than one
activities and its state may be different in the different activ-
ities, as also pointed out in the Rooms paper to be important.
The users just cannot do it because there is no user-interface
handles for doing it; we simply have not been able to come
up with a good design for doing this in a simple manner.

The other more basic issue raised by some users were con-
cerned with the life cycle of an activity, i.e. when does an ac-
tivity emerge, when do you create one in the user-interface,
how does it end, and how is it related to other activities. As
argued by one of the users:

The worst thing? Well [...] if you have to put every-
thing into activities, then you need to constantly con-
sider ‘where does this one belong’. In many situations
something just appears quickly and then you start up
some application and do some things in it. And if you
don’t get it categorized into some activity, then it may
disappear? Or you may forget which activity it went
into. Then you may need to search for it.

This user addresses the basic notion of how an activity emerges,

or more specifically how it often may overlap or intertwine
with another activity. In a previous version of the ABC user
interface, application windows which were opened were au-
tomatically attached to the currently resumed activity. In our
own use of the system we however discovered that this was
inconvenient — often your windows and files are opened ‘in-
side’ an activity, but they do not have anything to do with this
activity. They may, for example, result from an interruption.
As the user interface works now, the user is able to launch
new applications and files and then suspend the currently
resumed activity. This will remove application windows re-
lated to the activity, and the user is left with only those new
windows, which have been opened due to the interruption.
These windows may then form the basis for a new activity,
or may just be used without any activity support.

219

April 22-27, 2006 « Montréal, Québec, Canada

CONCLUSION

In this paper we have presented an approach for embedding
support for activity-based computing in the Windows XP op-
erating system, with special emphasis on the single user ex-
perience. The core principles for activity-based computing
was presented, which pivots around the support for aggre-
gating services and data in coherent sets called ‘activities’,
support for activity suspend and resume, support for activity
roaming between different computers, and the support for
activity adaptation to different display sizes.

We presented the design and implementation of the ABC
extension to XP. The core user-interface components are the
Activity Bar, which replaces the Windows Taskbar, the Ac-
tivity Icon which integrates activity-support to native Win-
dows application windows, the Activity List showing a user’s
activities, and the Activity Zoom which support spatial 2D
layout of the windows within a service.

Finally, the ABC extension to XP was evaluated using a
multi-method evaluation setup. This evaluation revealed that
users found the user interface easy to use and that activity-
based computing support would be useful for them in their
work. Due to the multi-method approach, we were also able
to establish more precisely what part of the user interface
that needed to be improved. These results are being used in
our current enhancement of the system, which also targets
the support for roaming files together with activities. Hence,
files belonging to an activity would move between comput-
ers as the user roams.

Acknowledgments

The ABC project is funded by the Danish Research Coun-
cil under the NABIIT program. Henrik B. Christensen has
been much involved in the early work on ABC and Martin
Mogensen has helped with the implementation.

REFERENCES
1. P. D. Adamczyk and B. P. Bailey. If not now, when?:
the effects of interruption at different moments within
task execution. In CHI *04: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 271-278. ACM Press, 2004.

2. J. Austin Henderson and S. Card. Rooms: the use of
multiple virtual workspaces to reduce space contention
in a window-based graphical user interface. ACM
Transactions on Graphics (TOG), 5(3):211-243, 1986.

3. L. Bannon, A. Cypher, S. Greenspan, and M. L. Monty.
Evaluation and analysis of users’ activity organization.
In CHI '83: Proceedings of the SIGCHI conference on
Human Factors in Computing Systems, pages 54-57.
ACM Press, 1983.

4. J. E. Bardram. Activity-Based Computing — Principles,
Implementation, and Evaluation. Manuscript submitted
to the ‘ACM Transactions on Computer-Human
Interaction (ToCHI)’. Submission date: April 2004.

5. J. E. Bardram. Activity-Based Computing: Support for
Mobility and Collaboration in Ubiquitous Computing.

CHI 2006 Proceedings « Activity: Design Implications

10.

11.

12.

13.

14.

15.

16.

Personal and Ubiquitous Computing, pages 312-322,
July 2005.

. J. E. Bardram and C. Bossen. Mobility Work — The

Spatial Dimension of Collaboration at a Hospital.
Computer Supported Cooperative Work.,
14(2):131-160, 2005.

. P. Baudisch, N. Good, and P. Stewart. Focus plus

context screens: combining display technology with
visualization techniques. In UIST "01: Proceedings of
the 14th annual ACM symposium on User interface
software and technology, pages 31-40. ACM Press,
2001.

. V. Bellotti, N. Ducheneaut, M. Howard, and 1. Smith.

Taking email to task: the design and evaluation of a
task management centered email tool. In CHI ’03:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 345-352. ACM
Press, 2003.

. H. B. Christensen. Using Logic Programming to Detect

Activities in Pervasive Healthcare. In International
Conference on Logic Programming, ICLP 2002.
Springer Verlag, 2002.

H. B. Christensen and J. E. Bardram. Supporting
Human Activities — Exploring Activity-Centered
Computing. In Proceedings of Ubicomp 2002, pages
107-116. Springer Verlag, 2002.

G. Convertino, D. C. Neale, L. Hobby, J. M. Carroll,
and M. B. Rosson. A laboratory method for studying
activity awareness. In NordiCHI ’04: Proceedings of
the third Nordic conference on Human-computer
interaction, pages 313-322. ACM Press, 2004.

M. Czerwinski, E. Horvitz, and S. Wilhite. A diary
study of task switching and interruptions. In CHI "04:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 175-182. ACM
Press, 2004.

Davis. Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS
Quarterly, 13(3):318-340, 1989.

A. N. Dragunov, T. G. Dietterich, K. Johnsrude,

M. McLaughlin, L. Li, and J. L. Herlocker. Tasktracer:
a desktop environment to support multi-tasking
knowledge workers. In IUI ’05: Proceedings of the
10th international conference on Intelligent user
interfaces, pages 75-82. ACM Press, 2005.

V. M. Gonzalez and G. Mark. ”constant, constant,
multi-tasking craziness”: managing multiple working
spheres. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 113-120. ACM Press, 2004.

C. Hess, M. Romén, and R. Campbell. Building
Applications for Ubiquitous Computing Environments.
In International Conference on Pervasive Computing
(Pervasive 2002), pages 16-29. Springer-Verlag, 2002.

220

17

19.

20.

21.

22.

23.

24.

25.

26.

April 22-27, 2006 « Montréal, Québec, Canada

. E. Kandogan and B. Shneiderman. Elastic windows:
evaluation of multi-window operations. In CHI ’97:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 250-257. ACM
Press, 1997.

. V. Kaptelinin. Umea: translating interaction histories
into project contexts. In CHI ’03: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 353-360. ACM Press, 2003.

B. Maclntyre, E. D. Mynatt, S. Vodia, K. M. Hansen,
J. Tullio, and G. M. Corso. Support for Multitasking
and Background Awareness Using Interactive
Peripheral Displays. In Proceeding of ACM User
Interface Software and Technology 2001 (UISTOI),
pages 11-14, Orlando, Florida, USA, Nov. 2001.

G. Mark, V. M. Gonzalez, and J. Harris. No task left
behind?: examining the nature of fragmented work. In
CHI ’05: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 321-330.
ACM Press, 2005.

M. J. Muller, W. Geyer, B. Brownholtz, E. Wilcox, and
D. R. Millen. One-hundred days in an activity-centric
collaboration environment based on shared objects. In
CHI *04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 375-382.
ACM Press, 2004.

J. Rekimoto. Time-machine computing: a time-centric
approach for the information environment. In UIST
’99: Proceedings of the 12th annual ACM symposium
on User interface software and technology, pages
45-54. ACM Press, 1999.

G. Robertson, E. Horvitz, M. Czerwinski, P. Baudisch,
D. R. Hutchings, B. Meyers, D. Robbins, and G. Smith.
Scalable fabric: flexible task management. In AVI "04:
Proceedings of the working conference on Advanced
visual interfaces, pages 85-89. ACM Press, 2004.

G. Robertson, M. van Dantzich, D. Robbins,

M. Czerwinski, K. Hinckley, K. Risden, D. Thiel, and
V. Gorokhovsky. The task gallery: a 3d window
manager. In CHI ’00: Proceedings of the SIGCHI
conference on Human factors in computing systems,

pages 494-501. ACM Press, 2000.

G. Smith, P. Baudisch, G. G. Robertson,

M. Czerwinski, B. Meyers, D. Robbins, and

D. Andrews. Groupbar: The taskbar evolved. In
Proceedings of OZCHI 2003, 2003.

J. Vogel, W. Geyer, L.-T. Cheng, and M. J. Muller.
Consistency control for synchronous and asynchronous
collaboration based on shared objects and activities.
Computer Supported Cooperative Work,
13(5-6):573-602, 2004.

