
C H I -I- GI 1 9 8 7

A Multiple, Virtual-Workspace Interface

to Support User Task Switch ing

Stuart K. Card and Austin Henderson, Jr.

Intelligent Systems Laboratory
Xerox Palo Alto Research Center

Palo Alto,.California 94304

Abstract

An interface is presented that is designed to help users switch
among tasks on which they are concurrently working Nine
desirable properties for such an interface are derived It is argued
that a key constraint to building interfaces that support task
switching is that low user-overhead switching among tasks requires
a large amount o f display space, whereas actual display space is
limited A virtual workspace design is presented that greatly speeds
the inevitable task-switching induced window faulting. The
resulting interface is presented as a study in theory-based
human-interface desigrL It is shown how in this case theory is
important in inspiring a design, but design entailments outside the
theory raise new issues that must be faced to make the design
viable. These design experiences, in turn, help inspire new theory.

Ce papier decrit un interface confu pour aider les utilisateurs dt
choisir parmi des taches auxquelles ils trauaillent en paralldle.
Neuf part!cularitds souhaitables pour u n tel interface sont ddduites.
Une contrainte majeure concernaut la productivite des utilsateurs
est que changer de tache sans beaucoup d~ffort par l'iutilisateru
ndcessite une grande surface d ~cran, alors que la surface disponible
est limitde. Lbn presente ici une conception d~space virtuel de
travail qui accdldre notablement les fautes de fen~tres
inevitablement causdes par le changement de tache. L bn montre
comment les consdquences de la conception de base souldvent
dhutres probldmes qufl faut rdsoudre pour rendre viable la
conception finale.

Introduction

Most user interfaces are designed to help the user perform
particular task to completion. But users actually switch back and
forth among several concurrent tasks [1]. Without special
interface support, task switching can lead to major difficulties. In
traditional command-oriented systems, the user is usually able to
see information from only one of the tasks at a time. As a

This work was supported in part by NASA AMES Grant NAG 2-269.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1987 ACM-0-89791-213-6 /87 /0004/0053 $00.75

consequence, the state of tasks not on the screen is hard to
remember and the user may be forced to extreme adaptations
such as writing information from one task on paper, then typing
it into to another task. O n the other hand, window-oriented
systems allow the user to see information from several tasks, but
severe conflicts among tasks for the use of screen space may lead

to high overheads as users must move, reshape, or scroll windows
or shrink and expand icons.

In this paper we analyze the problem posed by task
switching and propose a user interface. The interface appears to
satisfy a number of properties desired for supporting task
switching.

Interface Properties to Support Task-Switchiug

Bannon et al [2] identified a number of reasons why users
switch from one task to another: (1) digressing to do tasks that
users are reminded of while performing another task ("While I 'm
At It tasks"), (2) timesharing among concurrent demands, (3)
tasks with long waits, (4) subtasks, and (5) "snags" such as
running out of file space. To these reasons, we might add others
such as (6) interruptions from outside ("please write your section
by 5 pm"), (7) shifting to another current project (because it's
scheduled now or because some relevant mail came in), and (8)
shifting to a specialized environment (say, to draw a figure).
There are probably many more. The point is that interruptions
and other sorts of task switching are an important aspect of user
activity. Indeed, studies have shown that the average time a
manager works on a single desk top is only about 15 min [12].
Task switching occurs for activities measured over minutes (such
as those described in Bannon et al), where task switching time
and resumption are especially important, and it occurs for
activity measured over days, where the memorial aspects of
remembering the activities, their pieces, and their state are
especially important.

Bannon et al suggested six issues that an interface to support
task switching should engage: (1) reducing mental load when
switching tasks, (2) suspending and resuming activities, (3)
maintaining records of activities, (4) functional grouping of
activities, (5) multiple perspectives on the work environment, (6)
interdependencies among items in different workspaces. Before
proposing an interface which, we believe, satisfies most of these
properties, we first proceed to suggest a refinement of Bannon et
al's list.

Task Switching Properties

There are essentially two problems associated with task
switching per se: the amount of time it takes and the mental

53

CHI + GI 1987
complexity of remembering how to invoke the other task and of
trying to get into mental context. Task switching can be
time-consuming because the user must first put away the current
task, then get out the tools for the second task. On a computer
system this could involve saving files, looking through directories

to find the names of other files, loading a program, and pausing
while the user tries to remember a file name or a program name
or consults a notebook. So whatever else it is, we would wish an
interface to have the property:

A1. Fast task switching.

And since many task switches are short subtasks or digressions,
we would want also wish the companion property:

A2. Fast task resumptioth

But the most important property we would wish relates to
the second problem of task switching: the mental complexity of
remembering where the user was in a resumed task. Not only
may the user consume time recalling his previous mental state,
file names, programs used, etc, he might actually never be able to
resume the same path. One thinks of lost ideas for algorithms,
lost verses to poems, projects pursued differently because the;
pursuer was interrupted and forgot the details of what he was
doing. So our third property is:

A3. Easy to re-acquire mental task contexL

Information Access Properties

Let us examine further the problem of mental complexity.
Almost any knowledge- intensive task is complex and requires
too much memory for a person to do efficiently in his head.
Human Working memory is severely limited. The general
solution is to use the environment as an auxiliary to the head--to
use notes, markers, diagrams, or the arrangements of piles of
notes as a form of external memory linked to and augmenting the
internal memory inside the user's head. The question is how to
use the environment, in particular how to use the computer
display, to support user multiple task activity?

Like any memory, an external memory ccan be characterized
by capacity and access time. Consider first capacity. Imagine a
user doing some particular task such as writing a paper using a
window-oriented interface (to be more concrete, we will assume
the lnterlisp-D user environment). To do this Task, he uses on
his electronic "desk-top" several specialized window- oriented
objects we may call Tools: a text-editor, a file-browser, a prompt
window, a clock (See Fig. 1). Some Tools may occur in more
than one instantiation: one text-editor window containing the
main text, another text-editor window containing the references,
a third text-editor window containing a table from the paper. We
call each of these an Engaged Tool to refer to the combination o f
Tool and contained data that makes it unique.

Each of these Engaged Tools consumes space on the display
screen of our system. If each Task has several Engaged Tools,

• and if the user is to switch back and forth among multiple tasks,
• then there will be a substantial number of Engaged Tools to
which the user needs access. More particularly, there will be a
l~ge amount of information contained within these
Engaged-Tools to which the user needs access to do his task. So
we have as another required property:

BL Access to a largeamount of information.

.

Fig. 1. Overlapped window display. Since the workspace is
necessarily small, it is easily overloded and becomes a
cluttered desk, causing the user to do unnecessary work.

The companion property is

B2. Fast access to information.

The essence of the problem is that in attempting to satisfy
task switching properties A1, A2, and A3 by using an external
memory, property B1, large information access, and property B2,
fast access contend with each other. The screen is far too small to
hold all the Engaged Tools for all the Tasks at the same time (and
even if it could, the user would still have some difficulty
searching for what he wanted). But if there is not enough space
for each Engaged Tool, then each time the user needs a tool that
is not present (or is covered by some other Tool in an overlapped
window, or is available only by expanding an icon), there will be
a time-consuming "Tool fault" while that Tool is readied for use
(by starting it from a command or a menu or by expanding an
icon or by making it be the top window or by resizing or moving
other windows). Thus the user can gain access to more
information at the cost of overhead activities that increase access
time. To emphasize the problem of overhead, we add among our
list of desired properties:

B3. Low Overhead

Phases and Transitions

The essential insight for the design to be presented in this
paper is that the grim tradeoff between the amount of
information available and access time can be broken by taking
advantage of the dynamic characteristics o f user activity and
information access. Even though users switch among tasks, they
are actually engaged in only a single task at a time. Studies of
memory access by computer programs [6] show that programs
pass through a series of "phases", with "transitions" between the
phases. In each phase the program accesses repeatedly some
cluster of(not necessarily distinct.) memory locations. In the next
phase, it accesses another cluster of locations. In one study [10],
programs spent 98% of their time within phases and 2% in
transitions,, yet 40-50% of the page faults occurred during the
transitions. Preliminary results shows this clustering of activity
also occurs in user interaction whether measured by
inter-reference interval [4] or bounded locality interval [9]. Fig.

54

CHI -t- GI 1987

~oolm

H i s t l

T l g t !

i

m
m
m

T~udt 1

(b)

Fig. 2. Representation of user activity. (a) As represented by Bannon et al [1]. (b) In terms of phases and transitions.

2a shows Bannon et ars representation of user activity [1]. Fig.
12b shows this same activity represented in phase and transition
form. These considerations suggest we can break the tradeoff
between size and access time if we set up independent
workspaces around each Task and allow fast transitions among
them.

Interactions Among Tasks

One more issue remains in our analysis. Tasks are not
necessarily independent of each other. Two Tasks may wish to
share the same Engaged Tool (e.g., the same prompt window or
the same to-do list). Therefore we need the property,

C1. Engaged Tools sharable among several Tasks~

Furthermore, Tools such as an alarm clock or the system prompt
and typin windows may be useful to have in most Rooms. We
thus need,

C2. Collections of Engaged-Tools sharable among
task~

And finally, the same Engaged Tool may play a different role in
different Tasks and there may be a different amount of space for
it. Shared Tools need to be adaptable to their various Task
environments. So we need,

C3. Task-specific presentations of shared
Engaged- Tools.

This then is the set of properties we wish an interface that
supports task-switching. We now turn our attention to describing
a design to meet these goals.

The Rooms Design

From our analysis, we expect user activity to be divided into
phases. We expect further that a large number of window faults
will occur between major phases. We therefore arrange things so
that phase changes can be accomplished in single rapid action by
the user, drastically reducing the cost of major phase transitions.

Multiple Virtual Workspaces
To make these rapid transitions possible, we provide the

user with a number of screen-sized workspaces called Rooms.

Fig. 3 shows two typical Rooms. In each Room, there are a
number of small icon-like objects called Doors. When a Door is
selected with the mouse, the user has the illusion of transiting to a
new Room, containing other windows. Fig. 4 shows the basic
functional structure of Rooms. Each Room is related to a
different major Task, such as reading the mail or working on a
particular project. In the Room are a number of Engaged Tools
related to the task.

The basic notion of the Rooms scheme is therefore simple.
But before this basic notion can be successful, a number ofi~;ues
entailed by the basic notion arise, each of which must receive a
solution. The design solution to these issues, which may have
little relation to the main problem Rooms is designed to solve,
further develop the design. These design solutions may
precipitate other design issues. The design is viable when no
fatal issues remain unresolved. The list of design issues and their
design response are summarized in Table 1. They can be
grouped under the headings: Task interactions, navigation, and
tailorabilty.

Task Interactions

Tasks can interact by sharing Engaged Tools. Tile first three
interactions have the same solution and are best treated together:

1SSUE 1. Multiple instances of Engaged Tools~ It is obvious
that some Engaged Tools, such as the executive window
where the user can type commands, need to be able to
appear in more than one place. But a window, by
definition, only has a single location.

1SSUE 2. Workspace-dependent Engaged Tool locations~
Tools need to be in different locations in different Rooms.
Otherwise the arrangements of Tools in one Room imposes
severe constraints on the locations of Tools in another
Room.

1SSUE 3. Worskpace-dependent Engaged Tool presentation.
It may be desirable to have shared a text-editor window
large in one Room, but small in another. Or it may be
convenient to have the text-editor window squarish in one
Room, but tall and thin in another so as to fit into a
differently-arranged space. Or we may want a window to
have drop shadows to emphasize it in one Room, but not in
another.

55

C H I -I- GI 1 9 8 7

Fig. 3. Two examples of Rooms (a) A Room used for reading mail. (b)A Room used for programming. Note that both
Rooms use a common control panel implemented as an included Room. Those Tools that are different in the control
panel actually belong to the particular Room. In this way a single control panel is adapted for different Rooms.

In each of these cases there is a desire to have versions of the
same window appearing in more than one Room and with a
location, shape, and presentation that is particular to the Room.
This forces us to the abstraction of a Placement (Fig. 5). A
Placement is a reference to a window together with location and
presentation information:

Placement = ReferenceToWindow
+ LocationlnRoom + PresentationAttributes

A Placement divides the concept of a window, separating
the tools aspect of it (the fact that it delivers certain functionality)
from its appearance on the screen. Using the concept of a
Placement, we can have the same window appear in different
Rooms (each would have a different Placement but would refer
to the same Window), we can have the locations and shape of the
window be different in the different Rooms, and we can even
have presentational aspects, such as whether the window has
drop shadows, be different in different rooms.

The next set of issue moves from interaction between tasks
at the level of individual Tools to interaction at the level o f
collections of Tools.

ISSUE 4. Collections of Engaged Toolz Some groups of
Tools need to be defined as a collection whose location and
positional attributes remain constant across workspaces.
Changes to any of the Engaged Tools in the collection need
to be propagated across all the workspaces containing them.
An example would be a control panel with an executive

window, a prompt window, a dock, and a system memory
indicator.

The design solution here is Room inclusion. Room
inclusion allows a Room to itself be included in another Room,
meaning that all of the Placements of the included Room will be
displayed just as if they had been in the Room. The the band of
windows and icons common to both parts of Fig. 3 is a control
panel, implemented as an included Room.

A final final set of task interaction issues involve the user's
desire to carry Tools with him as he moves between Rooms.

ISSUE 5. Carrying Engaged Tools to other workspacez The
user may wish to bring Tools with him as he moves to
another workspace. For example, he may wish to bring
program code from one "workspace over to a workspace
where he is writing a paper.

ISSUE 6. Keeping Engaged Tools along. In some
applications, windows need to be automatically associated
with the user, regardless of the workspace. A user might
automatically want the same control panel in all his
workspaces. Or he might want to put a Tool somewhere to
keep it with him wherever he goes (e.g. a bar graph showing
available disk space).

< ACTIVITY CONCEPT >

OVERVIEW

< SYSTEM CONCEPT >

WORK

<ACTIVITY CONCEPT> <SYSTEM CONCEPT> TASKS ROOMS

• TASKS ROOMS

ET'S I ~ " " I ~ wINDOwS

Fig. ,4. Basic structure of Rooms. The labels to the left
describe the design in task terms, the labels to the right in
systems terms. Each major Task is associated with a Room.
Engaged Tools (ET's) within each Room are seen by the
user as types 0fwindows.

SUBTASI hlCLUSIONS

USAGES ACEMENTS

ET'S WINDOWS

Fig. 5. Placements. In order to represent Task interactions
as various sorts of Engaged Tools shared among Tasks
(windows shared among Rooms), we introduce a level of
abstraction called a Placement.

56

Our solution to the issue of carrying Engaged Tools is to
give the user Baggage into which he packs Tools before entering
a Door. He does this by using a mode key before selecting the
door, puting him into a mode in which he can point to the
windows he wants in his Baggage. The Baggage goes through the
Door with him creating new Presentations of the windows on the
other side of the Door. (The old Presentations of the windows
remain). The user ean also have a constant piece of Baggage
called a Pocket. A Pocket is a Room dynamically included in all
Rooms. Whichever windows are placed in the user's Pocket (a
clock, say) will automaticaUy occur (at the same location and with
the same presentation attributes) in all Rooms.

Navigation Issues

The fragmentation of the user's workspace into a number of
workspaces also creates navigational problems.

1SSUE 7. Backward workspace transitions Users frequently
want to go back to the Room they came from, but Doors are
one-way. There may be no Door back and the user may not
even remember the Room name.

Our design solution is to invent Back Doors. Whenever a
user enters a Room, a new Door is created (in reverse video) back
to the Room from which he came. It is destroyed after one use.
This mechanism provides good support for interrupting and
resuming Tasks.

The user still faces a serious problem of navigation,
however.

ISSUE 8. User Orientatiot~ As the number of Rooms
increases, the user finds it difficult to find which Rooms
exist and how to reach them. The suite of Rooms becomes
an electronic maze.

Our system has two design solutions. One is a pop-up menu
with the names of all the Rooms. This allows the user to get to all
Rooms. The other solution is to use an Overview (Fig. 6). The
main feature of the Overview is a set of Room Pictographs

Fig. 6. Overview. The Overview contains pictograms of the
Rooms arranged alphabetically. It also contains a message
window for communicating with the user and buttons for
saving and restoring the set of Rooms. For the user, t h e

• CONTROL window is included in every Room except the
HELP Room. Windows contained in a Room because they
are part of an included Room are rendered in grey.
EXPANDing the window in the HELP Room provides the
user with a one-page illustrated system manual.

CHI + GI
arranged in alphabetical order. From the Overview the user is
reminded of the overall layout of a Room and the Tools it
contains.

Still more help is often needed, however, to enable the user
to locate particular windows or to remind him what particular
Window Pictographs mean or which Rooms are directly:
connected with which other Rooms.

ISSUE 9. Window Pictograph identification. The user needs
more help in identifying or searching for particular
windows.

ISSUE 10. Workspace connectivity. The user needs more
help in tracing which Rooms are connected to which
Rooms.

The solution to the first of these is to allow Window
Pictographs to be instantly expanded one at a time, allowing the
user to browse through different windows in the entire set of
Rooms. The solution to the second is to have a command for
drawing lines between Rooms that shows the connectivity.

Together these mechanisms solve rather thoroughly the user
orientation and navigation problems. With the multiple cues of
shape, size, arrangement, labels, and sequential expansions, it is
possible for the user to explore easily the entire set of windows
active in any of the Rooms.

User Tailorability lssues

Finally, the user's workspaces change dynamically. It must
be possible for the user to add, delete, move, and reshape
Tools/windows in particular Rooms quickly. The following two
issues speak to this point.

ISSUE 11. Room redecoration. It must be possible to create
new Rooms quickly and populate them with Tools.

ISSUE 12. Unanticipated modificationx We believe it is
prudent to provide for a system's natural evolution by
supplying escape hatches that enable more sophisticated
and daring users to extend the system or modify it to their
own purpose.

In the Rooms system, several mechanisms are provided to
help the user tailor his own Rooms. In thc first place, simply
creating, moving, deleting, and shaping windows in the usual way
causes these things to exist in Rooms. Thus the Rooms simply
preserve the natural interactions of the user. In the sccond place,
special background menu entries are provided to allow the user
to create new doors and other conveniences of construction. At
the Overview level, it is possible to copy, move, reshape or delete
window pictographs within a Room between Rooms and have
the changes reflected in the Rooms theniselves. And fmally, we
have defined a simple layout language for creating unique
backgrounds for Rooms. By using an editor on this layout
language, users can run arbitrary procedures on entrance and exit
to a Room and can compute specialized backgrounds for Rooms.
As experiments made by programming the system this way show
promise, we create new abstractions and move them into the
basic Rooms architecture.

Finally there is the issue of how to store a user's set of
Rooms.

ISSUE 13. Saving~Restoring workspacex The user needs to
be able to save his set of workspaces, restore them, and
exchange Rooms with other users.

1987

57

CHI + GI 1987
Our design solution uses buttons for ~aving, restoring, and

appending new Rooms in the Overview. Users can also save
portions of their Room suites under different names.

Discussion

Let us now consider our basic set of desired properties in
relation to the design of the Rooms system. These are
summarized in Table 1.

• A. Fast Task Switching

PROPERTY DESIGN SOLUTION

AI. Fast task switching - -> Doors

All the tools needed for another task can be set up by a single
button.

A2. Fast task resumption - -7 Back Doors

All the tools for an interrupted task can be resumed by a single
task button.

A3. Easy to re-acquire mental task contexL
--7 Rooms

The Room is a workspace whose window placement and content
(except where affected by task interaction) is exactly as~the user
left it before working on another task.

B. Information Access

BI. Access to a large amount of information

- -7 Room suites

The total number of windows, hence the total amount of
information available in the user's entire suite of Rooms, is much
larger than the user would have been able to handle on a single
screen.

B2. Fast access to information
- ->Rooms,Doors

The screen is kept clean of information not related to the task at
hand, so more relevant information fits on the screen. The
average access time to the knowledge elements is less, because
there is less Tool/window faulting. It requires less time to move
to another Room and access the information there than to
retrieve that information from scratch.

B3. Low overhead - -7 Rooms, Doors

Because there tend to be fewer windows per Room, there is less
information faulting hence less overhead in moving and
reshaping windows. Because information faulting is done en
mass when switching tasks, the overhead is also less.

C. Graceful task interactions

C1. Engaged Tools sharable among several Tasks

- -> Placements

Placements allow the same window to be in more than one
workspace. Actions done on a shared window in one Room are
reflected in another Room.

C2. Collections of Engaged-Tools sharable among tasks

- -) R o o m inclusion,Pockets

TABLE 1.
Desirable properties for interface and

design solutions in Rooms.

A. FAST TASK SWITCHING

AL Fast task switching

A2. Fast task resumption

• A3. Easy to re-acquire mental task context

B. INFORMATION ACCESS

BI. Access to large amount of information

B2. Fast access to information

B3. Low overhead

C. GRACEFUL TASK INTERACTIONS,
• CI. Engaged Tools

sharable among several Tasks

C2. Collectionsof Engaged-Tools

sharable among Tasks

C3. Task-specific presentations

of shared Engaged Tools

- -> Doors
- -7 Back Doors

- -7 Rooms

- -7 Room Suites

- -> Room, Doors
- -> Room, Doors

--> Placements

- ->Room inclusion, Pockets

- -> Placements

Room inclusion and Pockets allow the user to build control
panels of Tools that remain with him in all his Tasks.

C3. Task-specific presentations of shared Engaged Tools - -)
Placements

The presentational aspect of Placements allows there to be
windows that are shared, but which are placed, shaped, and
presented independently in each Room. This prevents some
undesirable interactions among Rooms.

Experience with Rooms

Early versions of Rooms have been in use since the end of
January, 1986. A number of informal observations can be
reported from early experience. First there is a strong
psychological sense of relief that comes when the user's tasks are
separated into the different Rooms. Each Room seems to have
much more space with fewer windows or pixels in use on the
screen. Second, users use much more total space. They have,
perhaps, three times as many windows open, spread out over one
to three dozen Rooms. These would occupy the area of one to
two five-foot desks, in terms of raw area of screen space. Third,
there seem to be three major classes of Rooms that user's make:
(1) functional rooms (e.g., a mail Room), (2) project rooms (e.g.,
the Room for writing this paper), and (3) management Rooms
(e.g., an "Atrium" for entering the system, storage Rooms,
Rooms with special Tools for system initialization). Finally,
because there is extra space, users make space-intensive tools
(Rooms full of open mail folders, for example, or special
"buttons" for doing frequent tasks). In other words they use
more space to get faster working rate.

Similarities to Other Systems

Rooms continues the development of ideas begun in earlier
systems. Smalltalk [8] had windows called Project Views as early
as 1976. Project Views formed a tree of workspaces. Cedar
[11][13] contained a fixed overview of 16 screens written by John
Maxwell (no published reports). Chan [5] designed a system
called Room (about which we learned only after the first public
demonstration of our system, Rooms) that also, like the Smalltalk

58

and Cedar systems, implements multiple workspaces. Therooms
in Chan's system are defined at the system level (shared by all
users) and apparently do not contain windows (although they do
contain activity icons and doors). Multiple rooms ean be
displayed at one time as bands on the screen. Sharing and
interaction of tools is not addressed. Several systems have also
been built in which the user is given a large virtual workspace,
e.g. Dataland[3] and the Cedar Whiteboard [7]. In such single
workspace systems, switching tasks can involve search. In all
these systems no attempt was made to gain an analytical
understanding of the task switching and screen space problems.
Thus, some of the ideas in Rooms have appeared previously, but
Rooms extends them and also addresses multiple occurrences of
windows across workspaces and various interactions. (For a
more extensive review, see [91).

The Relationship between Analysis and Design

From our experience with the Rooms design, we have an
increased appreciation of the relationship between science and
design. The Rooms system began with the observation that
window systems require the user to spend too much time on
overhead window-manipulation tasks, especially where
task-switching was involved. This lead us to more formal analysis
where we determined (1) desirable properties the interface
should have to allow graceful task switching and (2) that a
key-constraint was thrashing caused by the small screen space
limitation, analogous to thrashing in virtual memory operating
systems. The analysis suggested a design in which Tasks are
embedded in virtual ~vorkspaces with their Engaged-Tools
.already laid out. This would permit the massive window faulting
that was inevitable on switching tasks to occur very rapidly at the
signal of a single keystroke by the user. But in order for this
analysis to result in a successful system, a number of entailments
of the basic design had to be successfully faced. Many of these
were only marginally related to the original problem, but failure
to handle any one satisfactorily could be fatal or seriously
degrade the design.

Thus we can see that scientific studies of human-computer
interaction may not necessarily translate automatically into
successful designs. On the other hand we can see how they might
serve as tools for thought, ways of structuring the problem and its
key constraints in the designer's head that inspires a design not
otherwise reachable from experimental programmings or:
intuitive design alone. Complementing this derivation of design
from theory are new perspectives on theory from experience with
implementing and using designs. Experience with design can
also inspire a theory not otherwise reachable from other
theoretical or empirical studies alone.

References

CHI + GI

[1] Bannon, L., Cypher, A., Greenspan, S., and Monty, M. L..
Proceedings of the ACM Human Factors in Software
Conference, CHI '83 (1983), 54-57.

[2] Bannon, L., Cypher, A., Greenspan, S., and Monty, M..
Evaluation and analysis of users' activity organization.
Transcript of talk delivered at CHI '83, San Franciso,
December, 1983.

[3] Bolt, R. A. The Human Interface. Belmont, California:
Lifetime Learning Publications, 1984.

[4] Card, S. K., Pavel, M., and Farrell, J. Window-based
computer dialogues. In B. Shackel (Ed.), Human-Computer
Interaction--Interaction "84 (London, Aug. 1984), 239-243.
Amsterdam: Elsevier Science Publishers, B. V., 1985.

[5] Chan, P. P.. Learning Considerations in User Interface
Design: The Room Model (Report CS-84-16). Waterloo,
Ontario, Canada: University of Waterloo Computer
Science Department, 1984.

[6] Denning, P. J. Working sets past and present. 1EEE
Transactions of Software Engineering, SE-6 (1980), 66-84.

[7] Donahue, J. and Widom, J. Whiteboards: A Graphical
Database Tool (Report CSL-84-4). Xerox Palo Alto
Research Center, Palo Alto, California, June, 1985.

[8] Goldberg, A. SmaUtalk-80. New York: Addison-Wesley,
1983.

[9] Henderson, A. and Card, S. Rooms: The use of multiple
virtual workspaces to reduce space contention in a
window-based graphical user interface. ACM Transactions
on Graphics, in press.

[10] Kahn, K. C.. Program Behavior and Load Dependent
System Performance. Ph.D. dissertation, Dept. of
Computer Science, Purdue University, W. Lafayette,
Indianna, August, 1976.

[11] McGregor, S. The viewer window package. In J. H.
Homing (Ed.). The Cedar System: An Anthology of
Documentation (Report CSL-83-14). Palo alto, California:
Xerox Palo Alto Research Center, 1983.

[12] Mintzberg, H.. The Nature of Managerial Work. New
York: Harper and Row, 1973.

[13] Teitelman, W.. Ten years of window system - A
retrospective view. In Hopgood, F. R. A., Duce, D. A.,
Fielding, E. V. C., Robinson, K., Williams, A. S. (Eds.).
Methodology of Window Management. Berlin: Springer-
Verlag, 1986.

1987

59

