
Using Mental Load for Managing Interruptions  
in Physiologically Attentive User Interfaces  

Daniel Chen and Roel Vertegaal 
Human Media Lab 

Queen’s University, Kingston, Ontario 
{chend,roel}@cs.queensu.ca 

 
ABSTRACT 
Today’s user is surrounded by mobile appliances that 
continuously disrupt activities through instant message, 
email and phone call notifications. In this paper, we present 
a system that regulates notifications by such devices 
dynamically on the basis of direct measures of the user’s 
mental load. We discuss a prototype Physiologically 
Attentive User Interface (PAUI) that measures mental load 
using Heart Rate Variability (HRV) signals, and motor 
activity using electroencephalogram (EEG) analysis. The 
PAUI uses this information to distinguish between 4 
attentional states of the user: at rest, moving, thinking and 
busy. We discuss an example PAUI application in the 
automated regulation of notifications in a mobile cell phone 
appliance. 
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INTRODUCTION 
Today’s computer users typically employ multiple mobile 
computing devices, such as PDAs and cell phones, to 
provide them with wireless communications throughout 
their everyday environment.  Although we are now using 
multiple appliances, each appliance’s design is still based 
on the premise of it being the user’s only device. 
Consequently, when initiating communications with the 
user appliances act in isolation. This leads to multiple and 
simultaneous interruptions that are insensitive to the user’s 
workload or context. Mobile devices may interrupt 
meetings and conversations, and email notifications may 
disrupt workflow and focused activity. We believe that a 
system that regulates communications activities among 
devices will reduce such demands on the user’s mental 
load. 

The Attentive User Interface (AUI) paradigm [16] tries to 
address this problem by allowing devices to actively 
allocate attentive resources of users and systems in a way 
that optimizes user focus. AUI interaction techniques allow 

the interface to adapt dynamically with the user’s 
attentional state by measuring user attention for devices and 
tasks. Before notifying the user, AUIs reason about the 
importance of their message relative to the user’s current 
activity [4]. In order to determine user activity, today’s 
AUIs rely on two methods. Firstly, they measure overt 
characteristics of user attention, for example, through eye 
tracking devices [1]. This allows AUIs to determine what 
device the user is currently engaged with [14]. Secondly, 
AUIs construct Bayesian models of user behavior by 
collecting data throughout interactions with applications 
[3]. Unfortunately, neither approach provides adequate 
information about the actual engagement of a user. While 
eye tracking devices or eye contact sensors may tell which 
device the user looks at, they can not distinguish whether 
the user is simply looking at the device, or actually engaged 
in focused activity with it.  

In this paper, we explore techniques that allow AUIs to 
gather direct information on the mental engagement of the 
user through physiological measures. We discuss a 
prototype Physiologically Attentive User Interface, or 
PAUI, a novel attentive user interface that regulates user 
mental load dynamically by automatically distinguishing 
attentional states. We discuss an example PAUI application 
in the automated regulation of cell phone notifications on 
the basis of classification of attentional state using motor 
activity and heart beat irregularity measures. 

PREVIOUS WORK 
Early work applying physiological signals to user interfaces 
relied typically on the use of uni-modal measures. McCraty 
et al. [6] showed that specific emotions could be 
distinguished based upon the power spectrum of the 
electrocardiogram (ECG) measured from the heart.  
According to McCraty, in cases of stress, there is a 
tendency for increased heart-rate variability (HRV) in the 
lower frequency ranges (< 0.1 Hz) of the ECG. Emotional 
states such as appreciation exhibit high power in the 
medium frequency ranges (~ 0.1 Hz). Rowe et al. 
demonstrated that stress measures provided by ECG low 
frequency components correlate well
users during complex visual tasks [11
NASA TLX subjective workload 
Researchers have also long exp
electroencephalograms (EEG) for inp
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activity measures [2]. In HI-Cam [5], EEG motor activity 
measures were used to control the brightness of wearable 
computer displays. Although EEG provides a valuable 
measure, its uni-modal application suffers from noise.  
When combined with other physiological signals, such as 
ECG, skin conductance, blood pressure, muscle tension and 
respiration, recognition rates can be improved. By 
combining analysis of galvanic skin response and 
electromyogram (EMG) signals, Picard and Healy were 
able to robustly classify user emotional states such as anger 
and grief [8]. However, there has been little use of real-time 
physiological measures towards interfaces that dynamically 
manage the user’s mental load. Prinzel et al. used EEG 
motor signals to determine alternation between automatic 
and manual modes of a task [9].   We have built upon this 
work, combining ECG and EEG activity measures to 
predict the user’s interruptability in a mobile setting.  

PHYSIOLOGICAL MODELING OF ATTENTION:  HEART 
AND MIND 
Both the heart and the brain provide signals that allow 
probabilistic modeling of user load and activity [12, 13]. In 
order to estimate user engagement, we explored measures 
of the heart’s electrocardiogram (ECG) and the brain’s 
electroencephalogram (EEG) signals. The heart’s electrical 
potential produces an electromagnetic field 5000 times 
stronger than the brain. The heart emits the highest 
electrical activity in all the body’s organs, providing robust 
physiological data about the user’s load levels that might be 
more difficult to detect via EEG alone.  While ECG 
provides information on mental load, EEG allows a robust 
identification of motor-related activity. Combining these 
two sources allowed us to create more accurate models of 
the user’s attentional state. 

ECG-based Models of Attention Using HRV Stress 
Analysis 
The ECG signal is regulated by both the sympathetic (SNS) 
and parasympathetic nervous system (PNS). Biochemical 
messages sent from the brain use both the SNS and PNS to 
regulate the heart and other organs in different situations.  
The SNS acts to increase the heart rate when high stress 
levels are experienced, eliciting what is known as the 
“flight or fight” response in situations of anger, frustration, 
or agitation. Typically, however, the PNS counters the 
effect of the SNS by decreasing the heart rate.  It is the PNS 
that regulates our heart in  normal situations, where we are 
not under high stress. Our system analyzes the ECG signal 
in the following way. Heart rate is typically defined in beats 
per minute, calculated by the time interval between the 
highest peaks of the heart wave. The heart rate variability 
(HRV) is calculated using the standard deviation of the 

 

  Low Motor Activity 
(EEG) 

High Motor Activity 
(EEG) 

Low 
LF 

Power 
(ECG) 

User State 1 
 

-Low mental activity 
-At rest 
 
Candidate Activities 
Pausing, Relaxation. 

User State 2 
 

-Low mental activity 
-Sustained movement 
 
Candidate Activities 
Moving. 
 

High 
LF 

Power 
(ECG) 

User State 3 
 

-High mental load 
-At rest  
 
Candidate Activities 
Driving, Reading, 
Thinking 

User State 4 
 

- High mental load 
- Sustained movement 
 
Candidate Activities 
Meeting, Lecturing, 
Writing 

Table 1. Classifying activities according to attentional state. 

heart rate data. User state is then determined using spectral 
analysis of the HRV signal. Mental load estimates are 
obtained through low-pass filtering of HRV spectral 
components, measuring low frequency (LF) power in the 
region below 0.1Hz. 

EEG Based Model of Attention using Frequency 
Spectrum Analysis 
Our system uses EEG to further disambiguate user state. 
EEG, although smaller in electrical potential than the ECG, 
provides valuable information on motor-related attention. 
Motor activity is detected through spectral analysis of the 
EEG signal. Prior studies have shown that the use of a 
single electrode is sufficient to gather motor-related 
information from the EEG signal [5].  Our system measures 
the EEG’s event-related desynchronization in the Mu-
power range [10], with a frequency range from 8 to 30 Hz. 
Just before and during the onset of a motor-related activity, 
a decrease in power can be observed in this signal. We 
deployed this measure to distinguish between two states of 
motor activity by the user, at rest and performing a motor-
related task.   

PAUI CLASSIFIER:  CLASSIFYING STATES AND 
DEGREES OF ATTENTION  
PAUIs may distinguish between various degrees of 
attentional states by combining multiple physiological 
signals. The LF spectral components of ECG provide 
indicators for mental activity, but do not necessarily 
indicate action. By combining HRV information with EEG 
motor activity signals, PAUIs determine whether the user is 
actively partaking in a task, or more passively engaged. 
Although we do not focus on this in the present paper, we 
may further disambiguate the user’s activity using 
information from sensors in the user’s environment [3].  

Table 1 shows the ECG and EEG based classifiers used for 
modeling the user’s attentional state. We distinguish four 
user states that aid in predicting the availability of users for 
interruption. Under this scheme, the lowest degree of  
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Figure 1. EEG sensors (left) provide information on the user's 
motor activity, while ECG sensors (center) provide 
information on the user’s mental load. 

attention is exhibited in state 1, where the user is not 
actively engaged in a task. In a work context, this state 
typically may be interpreted as having the lowest possible 
cost of interruption. This observation, however, cannot be 
generalized to other contexts, where a state of relaxation 
may in fact represent a high cost of interruption. Our next 
user state is typical for users in transit, for example, when 
moving to an appointment. This state typically provides a 
low cost of interruption for speech-related interruptions 
such as cell phone calls, but a higher cost of interruption for 
activities that require the motor system to be engaged in the 
response, as is the case for instant messaging and email. 
The third user state is indicative of mental occupation while 
at rest, such as when reading, driving or thinking. Users in 
this state may wish to be notified of communications, but 
not through auditory means, as this would potentially 
interfere with mental engagement. Finally, user state 4 
indicates active involvement in an activity that places 
severe constraints on available mental resources, and thus a 
high cost of interruption. In this state, we may wish to 
either defer notification, or communicate a busy state.  

APPLICATION:  THE PAUI CELL PHONE 
We augmented a standard Nokia cell phone with 
capabilities for detecting user state as per the above 
classification.  We based our prototype on the existing 
Attentive Cellphone design [17]. The Attentive Cellphone 
used an eye contact sensor and speech analysis to detect 
whether its user is in a face-to-face conversation. It used 
this information to inform callers whether the user was 
busy, through an automated instant messaging status 
indicator associated with each contact. Rather than having 
the system decide whether or not to allow the call through, 
this allowed callers themselves to decide the cost of 
interrupting the user with their message. Instead, our PAUI 
phone regulates the notification level automatically 
depending on user preferences set for each attentional state 
(see Figure 2a). The phone has three optional notification 
levels for each communication medium: ring, vibrate, or 
silent mode.  

        
Figure 2 a) The PAUI preference panel allows users to set 
notifications per user state and per medium. Fig. 2 b) User 
responding to a PAUI phone interruption. 

Preferences may be different for each communication 
medium, allowing users to differentiate the cost of 
interruption for email, IM and phone calls. The following is 
an overview of a typical user preference. 

State 4. Set phone call notification to silent mode. Set 
IM status to busy. Set email and IM notification 
to silent mode. 

State 3.  Set all notifications to vibrate. Set IM state to 
available. 

State 2.  Set phone call notification to ring. Set IM status 
to busy. Set email and IM notification to vibrate. 

State 1.  Set phone call notification to ring. Set IM status 
to available. Set email and IM notification to 
vibrate. 

Additionally, the phone supports the use of different ring 
tones for different communication media, and the 
identification of caller groups through ring tones.  

Hardware Setup 
The PAUI set up consists of three sets of components. 
Firstly, a wearable Procomp+ system by Thought 
Technology [15] is used to acquire continuous real-time 
physiological data. The ProComp+ samples EEG and ECG 
data at 256 samples/sec, sufficient for robust power 
analysis. The second component is the PAUI filtering 
software, which runs on a wearable computing platform 
running at 800 MHz. After initial calibration of thresholds, 
the filtering software determines user state via a  
straightforward binary classification. The third component 
consists of any standard Bluetooth cellphone. The wearable 
system is notified of incoming calls on the cellphone 
through a virtual com port connection over Bluetooth.  AT 
modem commands are then issued,
to produce the appropriate notif
particular ring, or by activating the
unit. User preferences for notificati
the wearable system through a stan
2a).   

b a
b 
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Usage Scenarios 
In our first scenario, the PAUI phone automatically 
regulates all notifications. However, there are situations in 
which a user may want case-by-case control over 
interruptions. We are currently exploring the use of our 
PAUI architecture for detecting transitions between user 
states, deploying these to remotely operate the PAUI phone. 
Transitions upon notification from a higher attentional state 
to a lower attentional state and back have been successfully 
deployed to suppress individual notifications.  

The following scenarios illustrate the process. User David 
is busy writing a particularly complicated section of an 
essay. The PAUI phone detects the high mental load and 
motor activity and classifies it as a state 4. In our first 
scenario, the phone automatically suppresses all 
notifications for incoming calls. In our second scenario, the 
system notifies the user of each incoming phone call with a 
ring, interpreting a subsequent shift in attentional state as a 
response to the notification. User David hears the ring, and 
is briefly distracted upon notification (see Fig 2b). This is 
detected by the system as a shift to a lower attentional state. 
David then continues work without picking up the phone. 
Upon detection of the transition back to state 4, the PAUI 
automatically silences the notification, causing the 
interruption to be withdrawn.  

Evaluations 
Initial evaluations of the above approaches to interruption 
management are encouraging. During a 6-person trial, our 
first prototype identified the appropriate notification level 
in 83% of cases. Results regarding the direct control of 
notifications through attentional shift detection are, 
however, still preliminary.  

CONCLUSIONS 
In this paper, we presented Physiologically Attentive User 
Interfaces, or PAUI, which allow user interfaces to regulate 
notifications by devices through measures of the user’s 
mental load. We discussed a prototype that measures 
mental load using Heart Rate Variability (HRV) signals, 
and motor activity using electroencephalogram (EEG) 
analysis. The PAUI architecture uses this information to 
distinguish between 4 attentional states of the user: at rest, 
moving, thinking and busy. We applied this in the 
automated regulation of notifications in a mobile cell phone 
appliance.  
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