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ABSTRACT 

Network centric warfare (NCW) is a concept of operations that seeks to increase combat power by linking 
battlespace entities to effectively leverage information superiority. A network centric force must be 
supported by sophisticated automated systems, so human-computer interactions are an important aspect of 
overall performance. The Department of Defense (DoD) has recognized that a lack of understanding of 
human decision making relevant to NCW is a significant barrier limiting NCW’s potential benefits. To this 
end, this report identifies ten human supervisory control challenges that could significantly impact operator 
performance in NCW: Information overload, appropriate levels of automation, adaptive automation, 
distributed decision-making through team coordination, complexity measures, decision biases, attention 
allocation, supervisory monitoring of operators, trust and reliability, and accountability. Network-centric 
operations will bring increases in the number of information sources, volume of information, operational 
tempo and elevated levels of uncertainty, all which will place higher cognitive demands on operators. Thus 
it is critical that NCW research focus not only on technological innovations, but also the strengths and 
limitations of human-automation interaction in a complex system. 

 

XX.1 INTRODUCTION 

Network Centric Operations (NCO), also known as Network Centric Warfare (NCW), is a concept of 
operations envisioned to increase combat power by effectively linking or networking knowledgeable 
entities in a battlespace. Mission success is achieved by leveraging information superiority through a 
network, rather than through the traditional method of sheer numerical superiority through platforms and 
weapons. Key components of NCO include information sharing and collaboration which will promote 
shared situational awareness and overall mission success (DoD, 2001). To realize NCO, significant 
improvements will need to be made in areas of communications, sensor design, and intelligent automation. 
However, while technological advances are important for the successful integration of network centric 
operations, equally if not more critical is the need to understand how, when, where, and why the technology 
supports human decision makers and front line soldiers. Command and control domains are complex socio-
technical domains in that technology is the means to an end (goal or mission) defined by human intentions.  
Advanced NCO technologies that are not designed with the express purpose of supporting military 
personnel in dynamic and uncertain situations with rapidly shifting goals are likely to fail. 
 

The move from platform-centric warfare to NCW represents a shift in the role of humans both in 
mission planning and actual operation. As has already been evidenced in the development of fly-by-wire, 
highly automated aircraft and missile systems (such as Tomahawk and Patriot), military operators are less 
in direct manual control of systems, but more involved in the higher levels of planning and decision-
making. This shift in control from lower level skill-based behaviors to higher level knowledge-based 
behaviors is known as human supervisory control (HSC). HSC is the process by which a human operator 
intermittently interacts with a computer, receiving feedback from and providing commands to a controlled 
process or task environment, which is connected to that computer (Figure 1). 
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Figure XX.1: Human Supervisory Control (Sheridan, 1992) 

HSC in military operations includes mission planning and passive and active intelligence 
operations, as well as missions involving manned aircraft, and unmanned air, ground, surface, and 
subsurface vehicles. The use of automated technologies and systems is a fundamental component of 
NCO; thus in the context of human interaction, NCO is a high level human supervisory control 
problem.  The number and types of human-machine supervisory interfaces will expand accordingly in 
NCO, but there is little understanding of how functions should be allocated between humans and 
automation, what level of collaboration is needed, and how these can be supported with actual 
software and hardware. Given the influx of voluminous information sources in NCO, a particularly 
acute problem will be how to give operators enough information for well-informed decisions without 
reaching cognitive saturation. Moreover HSC problems in NCO are further complicated by the 
dynamic, uncertain, and time-pressured elements typical of command and control environments. Due 
to the increasing importance of HSC in NCO, the DoD has recognized that a lack of automation 
reliability and understanding of relevant HSC issues, as experienced both by individuals and teams, 
are among the primary barriers limiting exploitation of the full potential of NCO (DoD, 2001).  

Using historical case studies as well as previous and current research studies, ten major human 
supervisory control issues have been identified as those HSC issues that are likely to cause degraded 
performance for both the system and the operators/decision-makers in futuristic network centric operations. 
They are: 

 
• Information Overload 
• Appropriate Levels of Automation 
• Adaptive Automation 
• Distributed Decision-Making and Team Coordination 
• Mitigating Complexity  
• Decision Biases 
• Attention Allocation 
• Supervisory Monitoring of Operators 
• Trust and Reliability 
• Accountability 

 
These ten categories are not in rank order, are not mutually exclusive, and will often overlap 
theoretically as well as in actual design and testing. The importance of each category will be 
dependent on the mission context and relevant technological systems. They will now be discussed 
in turn in the following sections. 
 
XX.2 TEN HUMAN SUPERVISORY CONTROL CHALLENGES IN NETWORK-
CENTRIC OPERATIONS 
 

XX.2.1  Information Overload 

On March 28th, 1979, the worst US commercial nuclear power plant accident in history occurred 
at Three Mile Island in Middletown, Pennsylvania.  The problem began when a main feedwater 
pump failure caused the reactor to automatically shut-down. In response to this, a relief valve 
opened to reduce the pressure of the system, but stuck open. There was no indication to plant 
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controllers that this had occurred.  Due to the stuck valve, there was significant loss of reactor 
coolant water, subsequently causing the core of the reactor to overheat. There were no 
instruments that showed the level of coolant in the core, so it was thought to be acceptable based 
on the pressurizer coolant level. This lead to a series of human actions that made the problem 
worse, ending with a partial meltdown of the core. Operators were overwhelmed with alarms and 
warnings, numbering in the hundreds, over a very short period of time.  They did not possess the 
cognitive capacity to adequately deal with the amount of information given to them during the 
unfolding events. Instead, they coped by focusing their efforts on several wrong hypotheses, 
ignoring some pieces of information that were inconsistent with their incorrect mental model. 
 
According to the DoD, the Global Information Grid (GIG), the actual information technology network 

that will link command and control agents, will be the enabling building block for NCO. The GIG is the 
end-to-end set of information capabilities, associated processes and personnel for collecting, processing, 
storing, and disseminating information to those who require it, on the battlefield or otherwise (DoD, 2001). 
Metcalf’s Law states that the usefulness, or utility, of a network equals the square of the number of users 
(Shapiro & Varian, 1999). While this means forces will have access to exponential amounts of information 
over today’s forces, it also means that information intake for the average NCO operator will be higher than 
ever seen been before in the command and control environment. Even if the information complexity does 
not increase (which is unlikely), mental workload will increase accordingly. The Yerkes-Dodson Law 
(Yerkes & Dodson, 1908), adapted to workload and performance (Figure XX.1) illustrates that beyond a 
task-dependent moderate level of arousal, individuals will become cognitively overloaded and their 
performance will drop.  The problem is predicting when and how this overload will occur for a dynamic 
decision making environment, so that the amount of information any single person or group is required to 
process is manageable. 

 

With the voluminous increase in incoming information in NCW, identifying the point or plateau of 
cognitive saturation is the key to designing systems that operators can effectively manage. Predicting this 
point of saturation is difficult for NCO systems because it is dependent on task, automation level, 
operational tempo, training, experience, and a number of other factors. Modeling and simulation can aid in 
predicting where these points are likely to be which could include cognitive, psychophysiological (to be 
discussed in a subsequent section), and predictive statistical models based on experimental simulations. An 
example of a predictive statistical modeling effort based on human-in-the-loop simulations that estimate the 
cognitive saturation point is the Tactical Tomahawk case study. Cummings and Guerlain (2004) 
demonstrated that in the futuristic control of multiple Tomahawk missiles, operators’ performance and 
situation awareness (SA) was significantly degraded and overall task engagement time reached saturation 
when operators were required to control 16 missiles as opposed to 8 and 12 (Figure XX.2). These results 
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Figure XX.1: A Performance Adaptation of the Yerkes-Dodson Law 
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were consistent across both low and high operational tempos and provide a visualization of Yerkes-Dodson 
in practice. Remarkably, air traffic control studies show similar results in that when asked to monitor and 
provide high level instructions to autonomously operated vehicles, beyond 16 aircraft (as with the missiles), 
performance significantly declines. While these results are somewhat narrowly scoped and not applicable 
to all areas of NCO, they do provide evidence that even when only intervening with high-level planning 
and supervision with no manual control, humans are limited in their capacity to effectively supervise 
multiple vehicles. 

 
Development of an increased level of shared situation awareness and knowledge (SSAK) is major high 

level tenet of NCW (DoD, 2001), and is critical to realizing NCW’s promise of substantial increases in 
combat power. However, the impact of information overload on situational awareness (SA), shared or 
otherwise, on human performance using an objective measurement of SA has been elusive.  Situational 
awareness  is generally thought to have three levels: 1) perception of important environmental cues, 2) 
comprehension of the situation, and 3) projection of future events and dynamics (Endsley, 1995).  Direct 
system performance measures that use specific scenario manipulations to measure all three levels of SA are 
appropriate only in situations in which SA drives performance (Pritchett & Hansman, 2000). However, the 
correlation between SA and performance is debated (Pew, 2000).  Direct experimental techniques, such as 
the SAGAT (Situation Awareness Global Assessment Technique) (Endsley, 1988), have been used in 
command and control research, but are not without problems.  Questions remain as to whether SAGAT 
measurement techniques disrupt task performance, and if expectation of probes alters peoples’ natural 
behaviors (Pew, 2000).  Instead, subjective measures have traditionally been used in the human supervisory 
command and control domain, whereupon subjects self-rate their level of SA.  It has been shown that these 
methods are of limited utility, providing more insight to judgment processes than situation awareness 
(Jones, 2000). 

 
 

 
 
XX.2.2. Appropriate Levels of Automation 
 

The Patriot missile system has a history of friendly fire incidents that can at least be partially 
attributed to a lack of understanding of human limitations in supervisory control. On March 23rd, 
2003, a RAF Tornado GR4 was shot down in friendly airspace by a Patriot missile. Two days 
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later, a USAF F-16 fighter pilot received a warning that he was being targeted by hostile radar, 
and fired a missile in self-defense.  The “hostile radar” was in fact a Patriot missile battery 
aiming at him.  On April 2nd, 2003, just nine days later, another Patriot missile shot down a US 
Navy F/A-18 returning to base from a mission.  The Patriot missile has two modes: semi-
automatic (management by consent – an operator must approve a launch) and automatic 
(management by exception – the operator is given a period of time to veto the computer’s 
decision). However, in practice the Patriot is typically left in the automatic mode and the friendly 
fire incidents are believed to be a result of problems in the automatic mode.  

There are known “ghosting” problems with the Patriot radar in that because of operations in 
close proximity to other Patriot missile batteries, false targets will appear on a Patriot operator’s 
screen. Under the automatic mode (management by exception), operators are given approximately 
15 seconds to reject the computer’s decision, which is insufficient to solve both false targeting 
problems as well as adequately address friend or foe concerns through any other means of 
communication. After the accident investigations, the US Army admitted that there is no standard 
for Patriot training, autonomous operations procedures (automatic mode) are not clear, and that 
operators commonly lose situational awareness of air tracks. Despite all the known technical and 
operational problems for Patriot, in the words of the US Army, “Soldiers [are] 100% reliant on 
Patriot weapon system (32nd Army Air and Missile Defense Command, 2003).”  

While automating significant aspects of NCO is necessary so that information sharing can be both quick 
and comprehensive, what to automate and to what degree to automate a process/system is a central question 
in the design of NCO systems. Sheridan and Verplank (1978) outlined a scale from 1-10 where each level 
represented the machine performing progressively more tasks than the previous one, as shown in Table 
XX.1. Human interaction with automation represents a range of intermediate levels from 2-6 on this scale.  
For routine operations, higher levels of automation (LOAs) in general result in lower workload, while the 
opposite is true for low levels of automation (Kaber, Endsley, & Onal, 2000).   

 

 
 
It is possible to have a LOA too high or too low, each with its own distinct set of problems (Billings, 

1997): 
• HSC problems if LOA is too high 

o Manual or mental skill degradation. 

                    Table XX.1: Levels of Automation (Sheridan & Verplank, 1978) 
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o Loss of situational awareness due to lack of automation transparency, complexity, and 
inadequate feedback. 

o More advanced automation issues such as brittleness & literalism; in other words, the 
automated system might not be able to handle novel or unexpected events. Moreover, it 
may not operate effectively in conditions near or at the edge of the intended operating 
envelope. 

o Time and difficulty to diagnose failures and manually take over. 
• HSC problems if LOA is too low 

o Cognitive and working memory overload in routine tasks under time pressure. 
o Human decision biases and heuristics. 
o Lack of repeatability and consistency. 
o Complacency and boredom. 
o Greater human interdependency and chaos when something fails, unless safeguards are in 

place. 
 

A significant design question in the context of developing HSC decision support systems for NCO is 
determining the appropriate LOA. Parasuraman et al. (2000) proposed that most tasks could be broken 
down into four separate information processing stages (information acquisition, information analysis, 
decision selection and action implementation), and that each could be assigned a level of automation 
separate and possibly different from the others.  However, in the context of flexible human-automation 
interaction, subdividing a problem into these abstract stages may not go far enough.  As proposed by Miller 
and Parasuraman (2003), each information processing task can be further divided into simple sub-tasks 
with differential levels of automation.  For NCO, generalized cognitive tasks under these proposed 
information processing stages can be defined as: 
 

• Information acquisition 
o Monitoring resources (such as friendly forces) 
o Monitoring systems (such as surveillance networks) 
o Communications 

• Information analysis 
o Data fusion and display techniques 

• Decision selection 
o Planning 
o Re-planning 
o Rapid resource allocation 

• Action implementation 
o Individual vs. team interaction 

 
Human supervisory control interactions with automation primarily fall under the analysis and decision 

processes (Figure XX.3). Of these two stages, information analysis is the one most affected by conversion 
of the military to network-centric principles, as the number and variety of available information sources to 
a robustly networked force is expected to increase dramatically. While the topic of information overload 
will be discussed in more detail in the next section, the potential for cognitive saturation in the NCO 
information analysis phase is likely to be caused by problems with data fusion. Data fusion in this sense is 
defined as the process by which raw information from disparate sources is filtered and integrated into 
relevant groupings before being displayed to users. Data fusion LOAs can vary such that low levels of 
automation for data fusion could include trend or predictive displays for single or multiple variables of 
interest, such as for tracking of enemy forces.  Higher levels could include smart agents providing context 
dependent summaries of relevant information to users (Parasuraman et al., 2000). 
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For example, Figure XX.4 represents two different levels of automation for the same data fusion task, 

which is the allocation of missiles to appropriate missions. On the left, operators are given detailed 
information about missile capabilities as well as mission requirements and constraints and the automation 
provides low level filtering (LOA 2, Table XX.1). On the right of Figure XX.3, operators are given the 
same information at a higher, more graphical level using a configural display, but a “smart” search 
algorithm narrows the solution space to nominally assist the operators (LOA 3, Table XX.1). While the 
graphical display may seem to be more intuitive, preliminary results with military personnel highlight a 

Figure XX.4 Low vs. High Level Displays for Data Fusion 

Figure XX.3: Human Supervisory Control Information Processing (Sheridan, 2002) 
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significant problem with more advanced LOAs in general. While they generally agreed that low level 
display caused excessive workload, users felt that the high level graphical display did not provide enough 
detail sufficient to completely understand the problem (Cummings & Bruni, 2005). Designers of NCW 
systems will struggle with this same conundrum of selecting automation levels that both relieve operator 
workload yet provide enough information for operators to make informed decisions.  
 

XX.2.3 Adaptive Automation 

Research is underway to develop the Cognitive Cockpit which mitigates excessive pilot workload 
through augmented cognition (Diethe et al., 2004). The Cognitive Cockpit contains a Cognition 
Monitor that theoretically provides a real-time analysis of the cognitive–affective state of the pilot 
through unspecified psychophysiological measures as well as inferences about current attentional 
focus, ongoing cognition, and intentions. These inferences become inputs to a task manager that 
changes the levels of automation (as described in Table XX.1) for relevant tasking and workload. 
This process is termed Adaptive Dynamic Function Allocation, which increases automation levels 
in periods of high workload and vice versa. While adaptive automation is thought to benefit 
operators in periods of high workload, using a psychophysiological state as a trigger for 
adaptation is problematic due to the large amount of noise present in readings and extreme 
individual variability. While preliminary research in lab settings suggests psychophysiologic 
adaptive automation is possible, the current state of-the-art technology does not support 
operational use. 
 
 
Military operations are often characterized by long periods of inactivity followed by intense periods of 

action during which time-critical decisions must be made.  At these times performance is most critical, yet 
it will likely suffer due to the temporary information overload placed on the operator and the need for the 
operator to cognitively reorient to the new situation.  With NCO and the emergence of a robustly 
networked force, the amount of information available to military personnel at all levels is exponentially 
greater.  Therefore, the problem of information overload, particularly during brief bursts of actions, will 
become much more common. 

 
One method to alleviate such problems is the use of adaptive automation (AA). Changes in the level of 

automation (Table XX.1) can be driven by specific events in the task environment, models of operator 
performance and task load, physiological methods, or by changes in operator performance (Parasuraman et 
al., 1992). AA has been shown to improve task performance (Hilburn et al., 1997; Prinzel et al., 2003), 
situational awareness (Kaber & Endsley, 2004) and lower workload (Prinzel et al., 2003).  Two important 
questions to answer in deciding how and when to develop an adaptive automation decision support system 
are (1) when to use adaptive automation to determine under what circumstances the LOA should change, 
and (2) whether the computer or the human decides to change the LOA.  

 
Specific cues in the environment used to change the LOA may be either time or event-related. For 

example, it may be determined that in order to maintain vigilance levels in a task, automation will be turned 
off for a certain period of time once an hour, forcing the operator to execute manual control during that 
period.  Alternatively, it may be known that particular events in the environment will cause higher levels of 
workload than desired for a short time, during which the automation could increase to compensate. An 
example of this would be an operator responsible for multiple UAVs performing a bombing mission.  It is 
well known that the cruise and loiter phases of flight are low workload, but that the approach and bombing 
phases require significant increase in operator workload. As a preemptive measure, adaptive automation 
could increase the LOA during the periods of high workload. This approach is problematic because it is 
scenario specific, will likely not handle unexpected situations correctly because desired changes in LOA 
must be pre-determined, and does not take into account operator variability.  Some operators may have a 
much higher threshold for handling workload than others and thus may not require a change in LOA. 

 
AA cueing can also be accomplished through models of operator performance which can predict the 

effectiveness of humans during particular processes and behaviors.  Thus, the model’s forecasted level of 
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operator mental workload or performance on any number of specified tasks can be used to change the 
LOA. What is defined as an acceptable level of any measure predicted by the model must be carefully 
defined in advance.  As defined by Laughery and Corker (1997), there are two main categories of human 
performance models: reductionist and first principles.  Reductionist models break down expected behaviors 
into successively smaller series of tasks until a level of decomposition is reached that can provide 
reasonable estimates of human performance for these task elements.  First principles models are based on 
structures that represent basic principles and processes of human performance.  Performance models offer 
the advantage of flexibility in the sense that they can apply to a large range of situations, even unexpected 
ones, but often are costly and difficult to develop, especially if higher reliabilities are desired. 
 

Psychophysiological measures such as the electroencephalogram (EEG), event-related brain potentials 
(ERPs), eye movements and electroculography (EOG), electrodermal activity (EDA), heart rate and heart 
rate variability (HRV), breathing rate and blood pressure have all been correlated with mental workload to 
varying degrees of success.  Experimentally, these methods are advantageous because they are not task 
specific and they can continuously record data.  One significant problem is that often the devices used to 
take these measurements are obtrusive and physically uncomfortable for subjects, creating a possible 
anxiety effect.  While this is still a barrier to overcome, technologies such as the LifeShirt®, wireless EEG 
sensor headsets (Berka et al., 2004) and stereo cameras for tracking eye movements without the use of 
headgear can provide more ecological measurements of psychophysiological metrics. Other significant 
problems with psychophysiological measures include the large amount of noise present in readings, and 
extreme individual variability.  One way to lessen these effects is to use combinations of measurements 
taken in concert, as done by Wilson and Russell (2003).  They showed accuracies in excess of 85% 
classifying operator states in real-time using artificial neural networks trained on a battery of 43 
physiological features.  However, while psychophysiological measures have been used to adaptively 
allocate automation functions in research environments, because of the previously discussed limitations, 
transferring experimental AA to operational AA has not yet been demonstrated. 
 

Of all possible psychophysiological measures, analysis of brain waves has historically been the 
primary method of investigating neural indexes of cognition (Fabiani, Gratton, & Coles, 2000).  Numerous 
studies have successfully used EEG measures of workload to discriminate between differences in operator 
attention and arousal (Berka et al., 2004; Kramer, 1991; Pope, Bogart, & Bartolome, 1995).  They used 
engagement indexes based on the ratios of different EEG bands (alpha, beta, theta, etc), alpha suppression, 
or increased beta levels to detect changes in workload.  However, as Prinzel et al. (2003) notes, EEG-based 
systems are only able to measure gross overall changes in arousal, not different types or finer levels of 
cognitive load.  In contrast, the P300 component of ERPs has been associated with the availability of 
information processing resources, varying in amplitude as a function of primary task load, and its latency 
affected by stimulus evaluation time (Polich, 1991; Rugg & Coles, 1995).  The P300 has been documented 
as an effective measure of mental workload (Donchin, Kramer, & Wickens, 1986; Kramer, 1991).  Despite 
this, use of ERPs in non-laboratory settings to measure workload in real-time has proven difficult, as they 
are obtained from averaging of EEG signals over a number of trials.  Methods for addressing this 
shortcoming are under development, but Humphrey and Kramer (1994) were able to discriminate between 
different workload levels 90% of the time using only 1 to 11 seconds of ERP data (approximately 1-11 
trials). 
 

Eye movements have also been used extensively in a variety of studies.  They have been used in 
distraction studies to identify areas of attention, but measures of blink duration, frequency and pupil 
diameter have been correlated with visual and cognitive workloads.  In general, eye blink duration and 
frequency decrease as both visual and/or cognitive workload increases (Hankins & Wilson, 1998; Orden et 
al., 2001; Veltman & Gaillard, 1998). Though pupil diameter is affected by ambient light levels, stimulus 
perception, and habituation, the degree of pupillary dilation has been shown to increase with higher 
cognitive loads (Andreassi, 2000; Hess & Polt, 1964; Orden et al., 2001). Specific characteristics of eye 
movements, such as fixation duration, dwell times and saccade durations are task-dependent and thus are 
extremely difficult to tie to changes in mental workload in a generalizable way.  However, Simon et al. 
(1993) demonstrated that the more general visual behavior of scanning patterns becomes more organized 
when task difficulty increases. 
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Finally, AA may be based upon performance-based measures, whereupon some performance metric 
such as reaction time or task accuracy is used to determine mental workload.  While generally easier to 
measure and quantify than physiological measures, performance measures are generally task-specific (and 
thus not generalizable to other tasks) and often require the subjects to modify their natural task behavior to 
accommodate the experimental objectives. Moreover, performance-based measures also may only give the 
experimenter discrete samplings of operator workload at specific intervals instead of a constant 
measurement.  This could be inappropriate for some applications characterized by rapid changes in the 
environment like what will likely occur in high operational tempo settings in NCW, necessitating quick 
switches between automation modes. 

 

XX.2.4. DISTRIBUTED DECISION-MAKING AND TEAM COORDINATION 

In 1994, Operation Provide Comfort provided humanitarian aid to over one million Kurdish 
refugees in northern Iraq in the wake of the first Gulf War.  As part of this, the US sought to stop 
Iraqi attacks on the Kurds by enforcing a no-fly zone.  The no-fly zone was patrolled by USAF 
fighters (F-15s), supported by airborne warning and control (AWAC) aircraft.  On April 14, 1994, 
two US Army Black Hawk helicopters were transporting U.S., French, British, and Turkish 
commanders, as well as Kurdish para-military personnel across this zone when two US F-15 
fighters shot them down, killing all 26 on board.  The Black Hawks had previously contacted and 
received permission from the AWACs to enter the no-fly zone.   Yet despite this, AWACs confirmed 
that there should be no flights in the area when the F-15s misidentified the US helicopters as Iraqi 
Hind helicopters.  The teamwork displayed in this situation was a significant contributing factor to 
the friendly fire incident, as the F-15s never learned from AWACs that a friendly mission was 
supposed to be in the area.  It was later determined that the F-15 wingman backed up the other F-
15’s decision that the targets were Iraqi forces despite being unsure, which was yet another 
breakdown in communication.  Each team member did not share information effectively, resulting 
in the distributed decision making of the AWACs and F-15s pilots to come to incorrect and fatal 
conclusions. 

Platform-centric command and control (C2) in past military operations often avoided distributed 
decision-making and minimized team coordination in favor of a clear hierarchy for both information flow 
and decision making.  Many decisions were made by a select few at the top level of command, and pains 
were taken to decompose various factions of the military into small, specialized niches that had little direct 
contact between one another (a hierarchical waterfall approach).  This has begun to change in recent times, 
and a fully realized vision of NCW will require that both local and global teams of distributed decision 
makers, not a few people at the top of a hierarchy, make decisions under time-pressure. Therefore, 
understanding the issues unique to team-based coordination and decision-making take on new importance 
in the context of NCW.  The question is how to make effective decisions between and within distributed 
teams, particularly in the complex, data-rich, and time-compressed situations often seen in military C2 and 
NCW scenarios. 

A fundamental building block of good decision making is a high level of situation awareness (SA) 
(Endsley, 1995), and in the case of distributed decision-making a high level of team SA or shared situation 
awareness (SSA). As previously discussed, the three levels of individual SA are: 1) perception of important 
environmental cues, 2) comprehension of the situation, and 3) projection of future events and dynamics 
(Endsley, 1995).  Team SA involves individual SA for each team member, plus the SA required for 
overlapping tasks and team interactions (Endsley, 1995).  Endsley and Jones (2001) expanded upon this 
definition by outlining a layered model of how teams achieve high levels of team SA.  They detail what 
constitutes SA requirements in a team setting at each previously defined level (Table XX.2), the devices 
and mechanisms used to achieve shared SA, and SA processes that effective teams use. Team SA devices 
include spoken and non-verbal communications, visual and audio shared displays, and a shared 
environment. Given the need to support team SA in a dynamic decision-making environment under 
significant uncertainty typical of NCW settings, more research is needed in three areas: 1) What 



DRAFT COPY 

 11 

technologies can support NCW team decision making and performance, 2) What NCW team processes, 
both locally and distributed, are effective, and 3) What is the impact of different team architectures for 
NCW operations? 

Table XX.2. Team SA Requirements for Shared Information (Endsley & Jones, 2001) 

Level 1 SA - Data
System
Environment
Other team members

Level 2 SA - Comprehension
Status relevant to own goals/requirements
Status relevant to other's goals/requirements
Effect of own actions/changes on others
Effect of other's actions on self and overall goal

Level 3 SA - Projection
Actions of team members  

There has been extensive work in the computer-supported cooperative work (CSCW) community that 
examines how different types of technologies, to include both software and hardware, support effective 
team decision making. Of particular interest to NCW is the relationship between collaborative technologies 
over space and time as depicted in Figure XX.6 (adapted from (Johansen, 1988)). Developing technologies 
that promote collaboration both locally and remotely in space as well as synchronous and asynchronous in 
time is highly relevant to NCW. For example, Navy personnel are assigned to different watch sections for a 
ship’s power plant, thus share a space but communicate across different times. One collaborative 
technology they use to pass knowledge is a log book. Logs are used by watchstanders to record significant 
events, time they occurred, who was notified, what actions were taken, etc. While they have existed on 
paper for hundreds of years on ships, written logs are now giving way to electronic logs, with added benefit 
of an easier search space and automated reminders.  

However, while many technologies developed for corporate settings show promise for NCW 
applications (e.g., electronic whiteboards (Price et al., 2001), table top displays (Scott, Carpendale, & 
Habelski, 2005)), more research is needed into both the promised benefits, as well as unintended 
consequences. For example, chat, a popular and ubiquitous synchronous communication tool for remotely 
distributed military individuals and teams, can have unintended consequences in terms of degraded human 
and system performance (Cummings, 2004c and see discussion XX.2.7.) In another study focusing on the 
benefits of shared displays between co-located team members, the shared displays unexpectedly 
contributed to degraded performance due to an increase in workload (Bolstad & Endsley, 2000). Given the 
high risk and uncertainty of military time sensitive operations, more investigation into the impact of new 
collaborative technologies is warranted.  
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Figure XX.6: NCW Time and Place Collaborative Matrix 

Understanding team processes, the second area of import for distributed decision making in NCW 
settings, is yet another area that can benefit from research already underway in the CSCW community. 
However, the caveat remains that military settings carry unique constraints not experienced in business 
settings. Processing capabilities of humans are limited, especially in time critical domains, so distribution 
of information, resources and tasks among decision-makers must be done in such a way that the cognitive 
load of each person on a team is not exceeded. However, as pointed out by Hutchins in aviation and ship 
navigation (Hutchins, 1995a, 1995b), cognition is distributed across persons and artifacts in a system such 
that teams often possess shared capabilities beyond the sum of individual contributions.. 

While difficult to capture, Cooke et al., (2003) measured distributed cognition in a command and 
control setting through team knowledge and succeeded in predicting subsequent team performance. 
However, distributed cognition across large scale time sensitive operations with multiple entities, both 
human and automated, is not well understood as well as how the introduction of new technologies supports 
or detracts from team SA in NCW. Boiney (2005) echoes this sentiment and in terms of time sensitive 
targeting, highlights the need for better understanding of collaborative sensemaking, the establishment of 
trust, distributed team SA, and appropriate information sharing to include communications and awareness 
cueing. 

 
Lastly, design of team architectures to include role allocation, team geographic distributions, 

communication, and team sizes is critical to successful NCW distributed decision making and team 
coordination. Research has shown that organizations operate most efficiently when their structures and 
processes match their mission environments (Levchuk et al., 2002), but it is not always clear whether 
traditional top-down hierarchies or more lateral heterarchies provide the most efficient structure (Baker et 
al., 2004). Moreover, sensor quality and operational tempo can drive the need for distributed versus 
centralized control (Dekker, 2002), thus further complicating the team architecture problem by adding a 
technological artifacts. 

The problem of uncertainty, driven both by the lack of sensor as well as human information, will likely 
be a significant driver of NCW team decision-making success or failure. Price et al., (2001) hypothesize 
that teams organized by functional structure (a team than specializes in performing a task) perform better in 
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terms of time and task accuracy when there is a high degree of certainty in the environment. When an 
environment is characterized by uncertainty and unpredictability, Price et al, (2001) assert that instead of a 
functional structure, teams should be organized through a divisional structure that is relatively autonomous 
and independent. Unfortunately the very nature of NCW is high unpredictability and uncertainty, but since 
information sharing between teams is critical, they cannot be either independent or autonomous, thus the 
characterization of teams either as functional or divisional in NCW is problematic. 

 
Alberts and Hayes (2003) offer one solution for the optimal team architecture problem with their 

proposed ‘edge organizations’, which are characterized by widespread information sharing and peer-to-peer 
relationships, but their design offers very few details on how to actually implement them.  Levchuk et al., 
(2004) propose that the most effective team architecture will be a hybrid organization which utilizes the 
beneficial characteristics of hierarchies as well as heterarchies such that control is an emergent property 
which is a function of the environment,  scenario initial conditions, and adversary behavior.  

XX.2.5. COMPLEXITY MEASURES 

On December 20th, 1995, American Airlines flight 965 was enroute to Cali, Colombia from Miami, 
Florida.  Extremely behind schedule, as it approached Cali, the flight crew accepted a modified, 
unplanned and unfamiliar arrival route.  Trusting the flight management system (FMS) to 
automatically come up with the next correct waypoint after having only entered the first letter of 
it, the captain mistakenly chose the computer’s first choice, an incorrect waypoint 132 miles 
northeast of Cali.  This resulted in a wide turn to the east, whereas the flight crew knew that they 
were supposed to be on a straight approach.  Recognizing something was wrong, but not exactly 
what, the flight crew took manual control, turning right again towards Cali.  Unfortunately, the 
approach into Cali was surrounded by mountains and flight 965 was now sufficiently off course 
that they flew into the side of a mountain, killing all but 4 aboard the Boeing 757.  A clear 
contributor to this accident was the automation bias displayed by both the captain and first 
officer.  They continued to rely on FMS-assisted navigation even when it became confusing and 
cognitively demanding during a critical segment of flight. 

Information complexity is a growing problem in many domains, with particular applicability to NCW.  
Complexity will be impacted by both the amount and sources of information, and will be further 
exacerbated in the future as sensor technologies improve and the volume of available data continues to 
grow.  NCW operators will be required to understand resultant critical relationships and behaviors of that 
data at the same or higher level than today.  Increased complexity will usually manifest in increased 
workload and/or unpredictability of the system, to include the human, which will have a negative effect on 
human and system performance (Miller, 2000). There are also well known limitations to human 
performance (see XX.2.1) that are likely to be encountered as workload increases. Therefore, it is important 
that the interfaces NCW operators interact with help to reduce and manage this increased level of data 
complexity. 

 
Complexity, as defined by Merriam-Webster, is “the quality or state of being hard to separate, analyze, 

or solve”.  The use of the term ‘hard’ implies that complexity is relative, which was captured by Miller 
(2000) when he described the difference between actual and perceived complexity. Perceived complexity 
results from those elements of a task or situation that make it hard to deal with, or in other words, what 
makes a system seem difficult. Actual complexity implies the use of more objective criteria for complexity, 
and does not take into account humans’ perceptions of a task or situation.  

 
Perceived complexity can be divided into three general dimensions: 1) Component complexity: the 

number and diversity of components, 2) Relational complexity: the number and diversity of links between 
components, and 3) Behavioral complexity: the number and diversity of behaviors system components can 
exhibit (Miller, 2000). Often, these dimensions are not independent and changes in complexity are driven 
by interactions between them. For example, a common operator task in current military operations is 
tracking and interacting with multiple entities such as aircraft, and in the future, multiple heterogeneous 
unmanned vehicles. An increase in the number of entities to monitor increases component complexity, but 
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it is likely that the proximity of these new entities to the existing ones will also be important (an increase in 
relational complexity). It is also possible that new tracks will exhibit different behaviors than existing 
tracks (an increase in behavioral complexity), which will be particularly problematic in the future vision of 
“swarming” autonomous vehicles (Cummings, 2004b). 

 

The gap between actual and perceived complexity is represented in Figure XX.7. For human 
supervisory control tasks, there is an objective, actual complexity of the world generated by the 
environment (i.e., the number of vehicles to control, operational tempo, weather conditions), which is 
separate from the perceived, or cognitive, complexity of operators.  Operators’ perceived complexity can be 
mitigated through organizational and/or displays strategies. Organizations like the FAA and DoD will 
institute policies and procedures to mitigate environmental complexity such that operations are both safe 
and meet goals. For example, separation standards exist to mitigate complexity for air traffic controllers 
which promoted safety. However, when airspace becomes saturated, the need to maintain these 
organization-driven constraints causes situation complexity, and thus workload, to increase. 

 
In human supervisory control domains, displays are nominally designed to further reduce complexity 

by representing the environment so that a correct mental model can be formed and correct interactions can 
take place (Woods, 1991). Thus displays should reduce complexity and hence workload through 
transforming high-workload cognitive tasks such as mental computations into lower workload tasks 
through direct perception, i.e. visually (Miller, 2000). In addition, displays should promote effective 
cognitive strategies such as grouping and rule formation to further reduce perceived complexity. However, 
one drawback to new display technology is that in complex and dynamic human supervisory control 
domains such as ATC and NCW, it is not always clear whether a decision support interface actually 
alleviates or contributes to the problem of complexity. As illustrated in the Cali tragedy, the FMS, which 
was meant to reduce environmental complexity and pilot workload, actually was a significant contributor to 
the accident. While preliminary research indicates that environmental, organizational, and display 
complexity from Figure XX.7 can be measured as separate constructs and that display elements can add to 
cognitive complexity (Cummings & Tsonis, 2005; Cummings, Tsonis, & Cunha, 2005), a more principled 
approach is needed in the development of metrics for display and organizational complexity.  

 
One other potential problematic area for cognitive complexity that has emerged from recent display 

technological advances is the aesthetic seductiveness of compelling visual, aural, and haptic displays, 
otherwise termed as the “cool factor.” While displays that use advanced technologies such as 3D, 
holographic images, virtual reality, and layering invariably elicit a “that’s cool” response, emerging trends 
in research show that not only are these technologies often not helpful, they can also be harmful. For 
example, 3D displays are gaining in popularity, yet in recent command and control studies, realistic 3-D 
perspective views produced poor performance for precise relative position and distance judgments. 

Figure XX.7: The Complexity Chain for Human Supervisory Control 
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Furthermore, despite the fact that operators preferred 3-D icons, conventional 2D symbols produced 
superior performance (St. John et al., 2001).  Smallman et al., (2005) attribute this disparity between 
operators’ preference for 3D displays and their sub par performance to a concept they term “Naïve 
Realism.” Operators naïvely prefer displays that mimic realistic scenes over representations that are flawed 
and imprecise, which could lead to poor performance. 

 
Multi-modal displays have become increasingly popular in military NCW settings (e.g., (Osga et al., 

2002; Shilling et al., 2003) These types of displays will often incorporate multiple sensory inputs and 
outputs in addition to visual information including speech-to-text, spatial audio, touch displays, haptic 
feedback. While humans can successfully integrate information from multiple channels, it is not clear that 
such “cool” technologies actually help operators. In addition, virtual reality simulating face-to-face 
communications for remotely located military teams has not been shown to be effective (Wells & Hoffman, 
1998) and display layering has not yet produced any measurable benefit (Bolia, Nelson, & Vidulich, 2004). 
While these types of displays and “cool” software applications like animation (see Tversky, et. al, (2002) 
for a review) superficially seem as if they aid operators in complex decision-making tasks, significantly 
more attention is needed to the role these technologies play in adding to cognitive complexity as well as the 
overall cost-benefit analysis for network centric operations. 

 

XX.2.6. DECISION BIASES  

On July 3rd, 1998, 290 passengers and crew took off from Bandar Abbas airport in Iran on Iran 
Air Flight 655, bound for Dubai in the United Arab Emirates.  Tragically, it never made it as the 
Aegis class cruiser USS Vincennes shot down the flight over the Strait of Hormuz, killing all on 
board.  While many factors contributed to this accident, such as the tense atmosphere in the Gulf 
at that time due to the Iran-Iraq war, the root cause can be attributed to the complexity associated 
with USS Vincennes’ advanced tracking radar. It was designed in the 1980s for open water battles 
with the Soviet Navy, and as such, was capable of tracking hundreds of missiles and airplanes 
simultaneously.  Efforts that might have mitigated the high level of complexity of this system were 
not undertaken in favor of improving the detection capabilities of the system.  Two pieces of 
wrongly interpreted data resulting from the complexity of the human-machine interface caused the 
ship’s commander to make the erroneous decision to fire on flight 655. First, flight 655 was 
reported as decreasing in altitude when it was in fact doing the opposite, representing that it was 
not in an attack profile.  Second, the flight’s Identification Friend or Foe (IFF) signal, designed to 
differentiate between civilian and military aircraft, was misidentified as being Mode II (military) 
instead of Mode III (civilian). 

 
A defining characteristic of NCW is the expected increased information-sharing tempo over platform-

centric forces of the past, which will require rapid decision-making with imperfect information.  Humans in 
general, and especially under time pressure, do not make decisions according to rational decision theories.  
Rather they act in a naturalistic decision-making (NDM) setting in which experience, intuition, and 
heuristics play a dominant role (Klein, 1989). Humans generally employ heuristics in order to reduce 
cognitive load (Tversky & Kahneman, 1974; Wickens & Hollands, 2000), which will likely be the case in 
NCW settings. However, while heuristics can be useful, powerful tools, they can also introduce bias in 
decision making, especially when coupled with large amounts of information time pressures. The 
Vincennes accident illustrates how the three general classes of heuristics, representative, anchoring, and 
availability, could be problematic in NCW. 

 
In the representative heuristic, probabilities are evaluated by the degree to which A resembles B. This 

heuristic can provide the illusion of validity because decision makers are generally insensitive to prior 
probabilities. In the case of the Vincennes, the operators ignored the likely prior probability that the plane 
was a commercial airliner which traveled on a fairly regular schedule and instead believed the much less 
likely event that the plane was a military fighter. Misconception of chance is a classic sign of the 
representative heuristic (Tversky et al., 1974).  
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The anchoring heuristic, an initial guess or hypothesis that is not adjusted appropriately given new 
information, was also evident in the Vincennes incident. The initial hypothesis was made that the radar 
contact was an enemy fighter and despite evidence that the plane was climbing and not descending (which 
would not be the case if the aircraft was attacking) in addition to published commercial airline schedules, 
all additional incoming information was discounted. Time pressure exacerbated this anchoring of the initial 
hypothesis, which will likely be a significant problem in NCW. 
 

Lastly, the availability heuristic in which probabilities of events are judged based on recency and 
retrievability was also evident in the Vincennes accident. One year prior, the USS Stark had been hit by 
two Exocet missiles in the Persian Gulf, fired from a relatively low, fast flying Iraqi Mirage. In addition, on 
the morning of the shoot down, the Vincennes had engaged with Iranian gunboats so tensions both locally 
and globally were high.  Given human memory limitations and the known propensity for humans to resort 
to often flawed applications of heuristics, a significant challenge in the design of NCW decision support 
systems will be how to give operators timely, probabilistic, and unbiased information. 
 

While humans can be effective in naturalistic decision making scenarios in which they leverage 
experience to solve real world ill-structured problems under stress (Zsambok, Beach, & Klein, 1992), as 
previously discussed, they are prone to fallible heuristics and various decision biases that are heavily 
influenced by experience, framing of cues, and presentation of information. For example, confirmation bias 
takes place when people seek out information to confirm a prior belief and discount information that does 
not support this belief (Lord, Ross, & Lepper, 1979).  Another decision bias, assimilation bias, occurs when 
a person who is presented with new information that contradicts a preexisting mental model, assimilates the 
new information to fit into that mental model (Carroll & Rosson, 1987). Of particular concern in the design 
of intelligent decision support systems that will support NCW processes is the human tendency toward 
automation bias, which occurs when a human decision maker disregards or does not search for 
contradictory information in light of a computer-generated solution which is accepted as correct (Mosier & 
Skitka, 1996; Parasuraman & Riley, 1997). Operators are likely to turn over decision processes to 
automation as much as possible due to a cognitive conservation phenomenon (Fiske & Taylor, 1991), and 
teams of people, as well as individuals, are susceptible to automation bias (Skitka & Mosier, 2000).  
Human errors that result from automation bias can be further decomposed into errors of commission and 
omission. Automation bias errors of omission occur when humans fail to notice problems because the 
automation does not alert them, while errors of commission occur when humans erroneously follow 
automated directives or recommendations (Mosier et al., 1996).  
 

Many studies have demonstrated clear evidence of automation bias in laboratory settings. Layton, 
Smith, and McCoy (1994) examined commercial pilot interaction with automation in an enroute flight 
planning tool, and found that pilots, when given a computer-generated plan, exhibited significant 
automation over-reliance causing them to accept flight plans that were significantly sub-optimal. Skitka, 
Mosier, and Burdick (1999) found that when automated monitoring aids operated reliably, they led to 
improved human performance and fewer errors as opposed to not having an aid. However, when the 
automation failed to detect and notify operators of an event, or incorrectly recommended action despite the 
availability of reliable confirmatory evidence, human error rates increased significantly. More directly 
related to NCW processes, Cummings (2004) found evidence of automation bias when an intelligent 
decision aid recommended a single course of action for retargeting missiles to emergent targets.  

 
Time pressure was a component of all of these laboratory studies, and there is unfortunately ample 

anecdotal evidence in the “real world” of automation bias under time pressure where the consequences 
were deadly.  The Cali accident mentioned in section XX.2.5 was caused in part due to overtrust and 
automation bias in the FMS recommendations. In terms of NCW settings, the Patriot case study discussed 
in section XX.2.1 was also due to automation bias. Given the laboratory evidence that given an unreliable 
system, humans are still likely to approve computer-generated recommendations, it is not surprising that 
under the added stress of combat, Patriot operators did not veto the computer’s solution. 

 
As these cases demonstrate, heuristics and decision biases are a very real concern in the development of 

intelligent systems that provide decision support for humans, especially those in time critical domains. 
Designers of intelligent systems should be aware of the potential negative effects on decision making in 
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terms of inappropriate heuristics and biases as the human is further removed from the decision control loop. 
Intelligent decision aids are intended to reduce human error and workload but designers must be mindful 
that higher levels of automation combined with unreliable systems can actually cause new errors in system 
operation if not designed with human cognitive limitations and biases in mind. Design of an intelligent 
system that provides decision support must consider the human not just as a peripheral device, but also as 
an integrated system component that in the end, will ultimately determine the success or the failure of the 
system itself. 

XX.2.7.  ATTENTION ALLOCATION 

Instant messaging was a primary means of communication between Navy ships during Operation 
Iraqi Freedom in 2003. While instant messaging, otherwise known as chat, has many advantages 
for rapid response in critical time-pressure command and control situations, operational 
commanders have found it difficult to handle large amounts of information generated through 
chat, and then synthesize relevant knowledge from this information (Caterinicchia, 2003).  Chat 
enables faster responses in time critical command and control situations, but as described by the 
military, managing and synthesizing the large amount of information transmitted can sometimes 
be a “nightmare”.  The addition of instant messaging in the command and control loop requires a 
division of attention from the primary task, which may not always be appropriate.  If the power of 
an intelligent automated and adaptive agent was harnessed so that the computer could determine 
more optimal scheduling patterns for the presentation of instant messages, it is possible that 
information would not be a detrimental interruption and overall human performance improved 
(Cummings, 2004c). 
 
An important task in supervisory control is often one of how to allocate attention between a set of 

dynamic tasks.  In deciding on an optimal allocation strategy, the operator acts to balance time constraints 
with relative importance of the required tasks. Due to the expected increases in the number of available 
information sources in NCW, volume of information and operational tempo, greater attentional demands 
will be placed on operators. This is a fundamental and critical HSC problem in NCW.  There are two 
general areas where attention allocation issues are likely to occur in NCW: Preview times/stopping rule 
generation and primary task interruption. 

XX.2.7.2.1. Preview Times and Stopping Rules 

In NCW, the problem of attention allocation issues and preview times occurs when an operator expects 
sensor information at established time intervals to accomplish some task, and must act on this information , 
whether complete or not, before a deadline. For example, an air defense warfare coordinator (AWC) on a 
Navy ship could be responsible for several tasks: Identifying unknown air tracks as friendly, enemy or 
commercial air, monitoring these identified tracks, providing warnings to enemy aircraft within a certain 
radius, and providing launch orders for additional defensive aircraft against encroaching enemies.  Each of 
these tasks could involve numerous sub-tasks such as air traffic communications, visual confirmations, etc.  
Obviously some tasks are more important than others; shooting down threatening enemy aircraft is higher 
priority than tracking a commercial air flight. Enemy and commercial air flight launches or a sudden re-
classification of a track could represent unpredictable increases to task load.  Additionally, the AWC 
receives information updates only at discrete intervals as the radar sweeps by an area of interest, or 
scheduled transmissions from equipment are received. Thus the AWC operator expects information to 
arrive in a certain time interval that could reduce uncertainty, but is sometimes faced with time-critical 
decisions that may or may not be able to wait for this information. 

 
A central issue with the concept of preview times is how to maintain task priority when additional 

information is expected in the future, and how emergent situations influence an operator’s ability to 
assimilate this preview information. Tulga and Sheridan (1980) investigated some aspects of this in a 
generic multi-task supervisory control paradigm.  They found that at high workloads, the time subjects 
planned ahead was inversely proportional to the inter-arrival rate of new tasks.  Using a similar paradigm, 
Moray et al. (1991) found that even if subjects were given an optimal scheduling rule, they were unable to 
implement it under enough time pressure, resorting instead to significantly non-optimal heuristic rules.  In 
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both experiments however, it was not possible to gain new information about specific tasks that would 
influence planning, nor were there unexpected events that significantly changed the nature of the task.  In 
recent work examining intelligent agent predictions for future periods of high workload in order to aid 
operators controlling multiple UAVs, results revealed that subjects fixated on attempts to globally optimize 
an uncertain future schedule to the detriment of solving certain, local problems (Mitchell, Cummings, & 
Sheridan, 2005).  It is clear from these initial efforts that more research is required to understand the effects 
of preview times, especially with information updates and unanticipated occurrences. 

 
A related issue to preview times is that of stopping rule generation.  Stopping rules are the criteria that 

individuals use to “satisfice” in uncertain situations, i.e. choosing the current best plan that is good enough.  
The general problem is as follows: Say that an operator has initial information, such as locations of friendly 
and enemy forces, and incoming information of various reliabilities and different times of arrivals, such as 
updates on enemy movements from voice communications and satellite images. The longer operators wait 
to make a decision on what to do with their forces, the more information they can gather (though not 
necessarily better due to its probabilistic nature), but they have a time limit in which to act.  An individual’s 
stopping rule would determine when the decision was made.  Another interesting issue would be to observe 
how and if initial decisions were changed as more information was received and final time deadlines 
approached.  A better understanding of the relationship between stopping rules and preview times in NCW 
is needed because by its very nature, NCW hinges upon successful information sharing.  However, due to 
the stream of data from multiple sources and the need for rapid decisions, operators will have to weigh the 
benefits of gathering more information that will reduce uncertainty against the cost of a possibly delayed 
decision. 

XX.2.7.2.2. Primary Task Interruption 

Instead of a situation where an NCW operator has multiple dynamic tasks that vary in priority, 
consider a common scenario where the operator has a well-defined primary task along with secondary tasks 
such as flying a UAV while also managing the weapons systems.  In time-pressure scenarios, interruptions 
of a primary task caused by secondary tasks can increase mental processing time and induce errors in the 
primary task (Cellier & Eyrolle, 1992). For supervisory control tasks such as command and control or 
monitoring of displays, operators spend time monitoring unfolding events which may or may not be 
changing rapidly, and they also will periodically engage in interactive control tasks such as changing the 
course of UAVs or launching a missile. When task engagement occurs, operators must both concentrate 
attention on the primary task, but also be prepared for alerts for external events. This need to concentrate on 
a task, yet maintain a level of attention for alerts, causes operators to have a conflict in mental information 
processing. Concentration on a task requires “task-driven processing” which is likely to cause decreased 
sensitivity or attention to external events.  Interrupt-driven processing, needed for monitoring alerts, occurs 
when people are sensitized and expecting distraction. 

 
While interrupt and task driven processing can be present in a person, attention must be shared 

between the two and switching can incur cognitive costs that can potentially result in errors (Miyata & 
Norman, 1986). The conflict between focusing on tasks and switching attention to interruptions is a 
fundamental problem for operators attempting to supervise a complex system which requires dedicated 
attention but also requires operators to respond to secondary tasks, such as communications or alerts from 
non-critical sub-systems.  In addition, Gopher et al. (1996) demonstrated that not only is there a measurable 
cost in response time and decision accuracy when switching attention between tasks, but costs are also 
incurred by the mere reconsideration of switching tasks. Moreover, often what appears to be an innocuous 
peripheral, secondary display feature such as scrolling of text in a chat window can have negative 
consequences because the distraction requires cognitive effort in considering whether or not it needs 
attention (Maglio & Campbell, 2000; Somervell et al., 2001). 

McFarlane (1999) proposed that of the four ways of coordinating user-interruption which are 1) 
immediate, 2) negotiated, 3) mediated, and 4) scheduled, people perform better when they negotiate the onset of 
interruptions. However, one consequence is that they may not be prepared to effectively handle unplanned 
interruptions. Additionally, when forced to handle interruptions immediately, operators will execute relevant 
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tasks promptly but performance can decline with an increase in mistakes. Altmann and Trafton (2002) have 
proposed that the interruption lag, the time between the interruption alert and the interruption event, is an 
intervention window that can be used reduce task resumption time. However, the use of cues during the 
interruption lag has not been shown to decrease recovery time, and in one study, appeared to increase 
recovery time (Altmann & Trafton, 2004; Miller, 2002).  
 

While these studies addressed mitigation of detrimental interruption effects through process, few have 
investigated uses of technology to this end.  McFarlane (2002) proposed an intelligent aiding system to  
both prioritize incoming interruptions as well as aid operators in task recovery through voice 
communication with the computer such as “What was I last working on?” St John et al., (2005) designed a 
display table that logs changes during the interruption to help users recover from interruptions in a dynamic 
monitoring task, which appeared to be superior to raw video playback of an interrupted task. These studies 
have only uncovered the tip of the iceberg for interruption mitigation design strategies. Because of the high 
likelihood and potential cost of induced errors due to interruptions and switching costs in NCW supervisory 
control systems, much work remains to be done in this area. 

 

XX.2.8. SUPERVISORY MONITORING OF OPERATORS 

October 29, 1998, two Boeing 737s were on standard air routes from Darwin to Adelaide and 
Ayers Rock to Sydney, respectively, at the same flight level of 37,000 feet.  They were scheduled to 
conflict with each other, so protocol dictated that a 2,000 feet vertical separation standard be 
applied.  This was noted by both the air traffic controller and a supervisor assigned to that 
particular sector 90 minutes before the conflict actually occurred, and marked for later action.  In 
the next 90 minutes, traffic levels steadily increased and a third air traffic controller began to 
assist the other two already working in the conflict sector.  The third controller assumed the 
coordinator position and attempted to deal with any items that seemingly required attention as he 
attempted to gain some idea of the traffic disposition.  Despite the addition of a third coordinating 
ATC controller and the previous identification of the conflict, the pending conflict was 
subsequently overlooked.  Instead, a violation of the minimum vertical separation distance 
occurred as one of the aircraft in question alerted ATC of the conflict at the last minute.  This was 
an instance where the supervisor failed to detect a major failure of his supervisee, despite 
indications that one might occur. 

A common operating structure in the military is one where a single supervisor oversees several human 
subordinates for the purpose of managing performance and relaying commands to the appropriate team 
members. Under information age C2 structures, the need for this second function will be reduced (even 
eliminated in some cases), but performance monitoring will still be required. Frequently, these operators 
will be engaged in HSC tasks, so it will be the job of a supervisor to observe and diagnose HSC issues in 
one or more teams. 

HSC problems can sometimes be subtle in nature, and thus tend to be more difficult to detect than 
during many other types of operations. Most HSC tasks are primarily cognitive in nature, so the supervisor 
cannot easily infer accurate performance from physical actions of operators.  Rather than being able to 
directly observe task completion by a human, the supervisor can only evaluate how an operator is 
interacting with automation that completes that same task, and once it is done, evaluate the results of that 
effort. Physical actions taken by operators are limited to activities like typing, button pushing, and body 
movements to position themselves for better screen viewing.  Furthermore, the effects of operators’ actions 
can occur in remote locations from both the supervisor and subordinates. This physical separation means 
that all people involved with the process must form mental abstractions to envision a complete picture of 
the situation. Complicating this is that interaction is usually done through artifacts with inherent limitations, 
such as voice communication, data links, and 2-dimensional screens.  While this is clearly a problem with 
individual operators (it is one of the primary considerations when designing automation of this type), it is 
an even larger one for supervisors, who must try to synthesize information from multiple operators at once.  
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Furthermore, isolating a single cause for poor performance of an entire team can be difficult, especially in 
time-pressured environments characteristic of NCW environments. Lastly, decreases in performance may 
be the result of automation degradation and have nothing to do with the human. Supervisors may have 
difficulty separating the two. 

The main problem is then how to support supervisors of HSC tasks so that they are better able to 
understand what their subordinates are doing.  Many of the issues previously discussed in this chapter 
factor into this discussion.  In order to quickly observe and diagnose HSC problems, supervisors must have 
a high level of SA, both for individuals and teams.  Even more so than their subordinates, it is critical that 
HSC supervisors have a clear picture of the team’s overall situation. The building block to achieving this 
superior level of SA is access to and absorption of all relevant data. Therefore, information overload will be 
a particularly acute problem, as a supervisor could be responsible for any or all of the information available 
to their numerous subordinates. Additionally, due to the greater range of information types received by 
HSC supervisors as compared to a single operator, the number of possible relationships and behaviors of 
this data is higher. This means that the complexity of the situation for the supervisor is raised along all 
three dimensions simultaneously. 

Another problematic issue with supervisory monitoring is how to rectify HSC problems once they are 
detected.  There are several options, which may be applied singly or in concert to varying degrees: 

1) Provide a warning to the human whose performance is low. 

It may be the case that operators do not realize that their performance has dropped below 
acceptable levels, and merely need to be reminded of it and/or motivated to get back on track.  An 
operator’s attention may be inappropriately allocated, so a warning provided by the supervisor 
(who is monitoring their performance) could cue them to correct it. Of course, if an operator is 
already cognitively overloaded then the warning could have no effect, or even a negative one due 
to the additional distraction it would provide. 

2) Redistribute the task load between existing team members. 

Workload could be unevenly distributed within a team, or various team members could be more 
skilled at certain tasks than others at certain times, so dynamically shifting tasks would allow other 
team members to pick up the slack. If all team members are equally busy or if others lack the 
expertise needed to perform tasks, this redistribution will not work.  Additionally, the complexity 
of dynamically allocating tasks between team members puts a significant cognitive load on the 
supervisor. 

3) Change the number of team members or teams on the underperforming task. 

Potential and existing team members or teams could be humans, computers, or a combination of 
both.  It is also important to remember that poor performance can result from under as well as 
overload.  In this case, the supervisor would observe an unacceptable level of performance from a 
subordinate and initiate a process to either relieve that operator of the most problematic aspects of 
their tasks or add to their workload, as required. This change could be manifested in one of two 
ways: 1) A changing of the level of automation experienced by that operator (driven by a 
supervisor), or 2) Adjusting the individual workload by the addition or subtraction of a human or 
computer team member. Changing the number of team members requires planning, as the new 
team members must have access to the correct equipment, programming and training to be 
effective. As before, there must be an efficient way to reassign jobs between team members. In 
addition, while changing the number of team members may help in the longer term to reduce 
overall workload and/or improve performance, there will be a transition period with associated 
costs for team and individual SA as well as individual and team performance. 
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4) Modify the mission objectives or timeline to accommodate lowered overall performance. 

This is a straightforward solution, but not one that will always be available in military situations.  
Many missions have time-sensitive deadlines that cannot be altered. Similarly, lower level mission 
objectives may be part of a larger operation, and therefore are not flexible. 

Finally, the question of whether the supervisor should be a human or a computer should be discussed.  
Using a computer offers advantages and disadvantages in this regard.  A computer would eliminate 
information capacity issues and the need for refined HCI designs.  However, it would operate on defined 
rules and would be relatively inflexible in the face of unknown situations.  The computer would also lack 
the capability of a human to predict future performance based on subjective judgments from visual 
observations and face-to-face interactions. 

XX.2.9. Trust and Reliability 

A recent survey of Air Force and Air National Guard pilot attitudes regarding the role of 
UAVs as wingmen for manned aircraft revealed an inherent distrust in highly autonomous 
systems. Pilots generally thought UAVs were unsuited for a variety of missions to include 
close air support, search and rescue, and most strike missions. The pilots asserted that only 
humans are capable of operating in the “free flowing environment” of an offensive combat 
mission, which requires experience and knowledge to accurately assess the situation and 
determine a course of action. In addition, pilots did not think that a group of UAVs should be 
allowed to self-organize. Pilots generally thought UAVs could not make informed decisions 
about both their individual states and how their capabilities served the current mission. 
Furthermore, most pilots did not want UAVs operating anywhere near friendly forces on the 
ground and some did not think UAVs should operate in the same airspace with tactical 
manned aircraft. Fighter pilots in particular were hesitant to accept a role for UAVs in 
offensive combat operations, believing that a UAV could never replace a human wingman. 
An A-10 pilot described his relationship with his wingmen as one of trust and loyalty in that 
they trained, worked, and fought together, and that a UAV could never replace a human 
wingman (Cummings & Morales, 2005) 

 

Anecdotal reports from soldiers in Afghanistan using unmanned ground vehicles reveal that soldiers 
are underutilizing the robots because they inherently distrust the robots, and this inherent distrust in 
autonomous systems is reflected in the above case study. Distrusting automation when it is perfectly 
capable has been shown to lead to disuse or misinterpretation of results in order to fit an operator’s mental 
model, even if the subsequent workload caused by the distrust is very demanding and/or time consuming 
(de Vries, Midden, & Bouwhuis, 2003; Lee & Moray, 1994; Muir, 1987; Parasuraman et al., 1997). In 
process control, operators’ trust in automation has been shown to be primarily based on their perception of 
the automation’s competence (Muir & Moray, 1996), which is likely the case for the soldiers in 
Afghanistan.   

In contrast, other studies have found that pilots tend to trust automation even when it was failing 
(Conejo & Wickens, 1997; Gempler & Wickens, 1998). As evidenced by the Patriot case study in section 
XX.2.2 and the discussion on automation bias in section XX.2.6, in time-pressured scenarios with high 
stakes and uncertainty, operators can trust automated systems too much, to the detriment of the overall 
mission.  Thus designers of NCW systems are faced with a conundrum – how to design a system that is 
trusted and utilized to its fullest extent, yet not overly trusted such that humans become complacent.  

Trust is dynamic in that it changes with exposure to and time between system failures. For example, 
after an initial system failure, there is a sharp decrease in trust, but it rebounds with consistently correct 
automation. Subsequently if the automation fails again, trust decreases but it is regained more quickly (Lee 
& Moray, 1992; Moray, Inagaki, & Itoh, 2000; Muir et al., 1996).  Relevant to NCW, recent research in 



DRAFT COPY 

 22 

trust and automation reliability in UAV military reconnaissance missions demonstrated that while reliable 
automation aids operators, unreliable automation can significantly degrade performance (Dixon, Wickens, 
& Chang, 2004). Specifically, automation that caused a high rate of false alarms for system failures was far 
more disruptive than automation that failed to alert operators of a failure (otherwise known as a miss). As a 
result, Dixon et al., (2004) recommended that any automated decision support system that operates below 
70% would generate unacceptable costs.   

Calibrating an operator’s trust a level corresponding to automated system’s trustworthiness or 
reliability is the solution to the problem of too little or too much trust (Moray et al., 2000; Muir, 1987). 
However, how to do this is still not well understood in the field of human supervisory control. Automation 
feedback in terms of self-evaluation and interaction with automated decision aids have been suggested as 
potential strategies for appropriate trust calibration (Lee et al., 1994; Muir, 1987). Displaying the 
automation’s confidence may facilitate better calibration of trust, however, displaying uncertainty and 
confidence information about an automated recommendation or solution is not a straightforward matter. As 
discussed previously in section XX.2.6., humans are not intuitive statisticians and tend to introduce biases 
in probabilistic reasoning (Tversky et al., 1974). Thus presenting probabilistic confidence information to 
operators so they can make unbiased decisions is not a trivial design problem. 

McGuirl and Sarter  demonstrated that a categorical trend display of a computer’s confidence in its 
recommendations was superior to a probabilistic static representation for in-flight icing interventions.  
Uncertainty in information has also been successfully conveyed through degraded images using blended 
color icons, and expectedly,  the addition of numeric probabilities provided no additional advantage (Finger 
& Bisantz, 2002). Once an operator’s trust has been properly calibrated, Xu et al.,  have  demonstrated that 
even with imperfect automation, human operators can still properly execute their tasking. Given the 
significant uncertainty that will exist within the actual NCW environment as well as the uncertainty 
introduced by imperfect automation, more research is needed in trust calibration techniques, especially as 
they apply to time-pressured decisions. 
 
 

XX.2.10. Accountability 

Figure XX.8 (courtesy of Dr. John Pye of Exponent) illustrates the potentially tragic, albeit 
unintended, consequences of autonomous system design. The purpose of the UGV (unmanned 
ground vehicle) in the center of a picture is to enter a hostile area and potentially kill enemy 
soldiers using its twin double-barreled shotguns. In the scenario in Figure XX.8, the UGV 
entered a village thought to be inhabited by insurgents, only to be greeted by curious 
children, obviously fascinated by the seemingly innocent toy. Fortunately the guns were not 
loaded that day and there were no algorithms in place for automatic firing, but research is 
currently underway in industry and academia to develop unmanned systems that can 
independently prosecute targets without human approval. 
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In addition the myriad of technical issues that surround the NCW human supervisory control problem, 
there are also social and ethical considerations, especially for weapon systems that impact humans in such a 
dramatic fashion. What might seem to be the most effective design from a technical viewpoint may not be 
the most responsible. In one of the few references in the technical literature on humans and automation that 
considers the relationship between automation and moral responsibility, Sheridan (1996) is wary of 
individuals “blissfully trusting the technology and abandoning responsibility for one’s own actions.”    

 
While many technical design issues can be resolved through modeling and testing, degradation of 

accountability and abandonment of responsibility when using automated systems is a much more difficult 
question to address. Automated tools are designed to improve decision effectiveness and reduce human 
error, but they can cause operators to relinquish a sense of responsibility and subsequently accountability 
because of a perception that the automation is in charge. Sheridan (1983) maintains that even in the 
information processing role, “individuals using the system may feel that the machine is in complete control, 
disclaiming personal accountability for any error or performance degradation.” 

 
In theory, increased accountability motivates people to employ more self-critical and cognitively 

complex decision making strategies (Tetlock & Boettger, 1989). In one of the few studies attempting to 
examine the effects of automation on accountability, Skitka, Mosier, and Burdick (2000)  performed an 
experiment in which subjects were required to justify strategies and outcomes in computerized flight 
simulation trials. The results showed that not only did increased accountability lead to fewer instances of 
automation bias through decreased errors of omission and commission, but also improved overall task 
performance.   

 
How then could systems be designed to promote accountability, especially in the context of NCW? One 

tangible system architecture consideration for accountability is the number of people required to interact 
with a given decision support system. Research indicates that responsibility for tasks is diffused when 
people work in collective groups as opposed to working alone, and this concept is known as “social 
loafing” (see Karau and Williams, 1993 for a review). This is of particular concern in a distributed system 
like NCW since task responsibility will often be delegated to many. While research indicates that people 

Figure XX.8: Unintended Consequences of Automation 
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experience degraded task responsibility through collective action, the potential loss of a sense of moral 
responsibility and agency for operators interacting collectively through human-computer interfaces is not as 
clearly understood.  It is likely that the computer interface becomes another entity in the collective group so 
that responsibility, and hence accountability, can be cognitively offloaded not only to the group, but also to 
the computer. This is one area in human-computer interaction and accountability research that deserves 
significantly more attention.  

 
 

XX.3 SUMMARY 

Military forces in the 21st century face complex and subversive threats that often cannot be defeated by 
conventional tactics. Thus, it is critical that the military be able to leverage all of its available information, 
and to have sufficient agility to apply the relevant resources to bear on emerging situations.  This is the 
driving force behind the US military’s transformation into the Information Age and NCW.  However, the 
primary advantage of operations based upon the tenets of NCW, that of rapid access to information across 
the network, will likely be a major bottleneck and possible point of failure for those humans who must 
synthesize voluminous data from the network and execute decisions in real-time, often with high-risk 
consequences under significant uncertainty. Network-centric operations will bring increases in the number 
of available information sources, volume of information and operational tempo, all which place higher 
cognitive demands on operators.  

The 10 HSC NCW challenges identified here are not mutually exclusive and apply to other domains 
such as business and civilian command and control entities such as air traffic control and first response 
systems. Specifically the adoption of NCW principles will be problematic for human decision makers who 
need to execute supervisory control across complex, distributed networked systems with a high degree of 
uncertainty. The implementation of NCW will exponentially add to the number of available information 
sources as well as the volume of information flow. Without measures to mediate this volume, information 
overload will be problematic.  To manage the increase in information across the network, increased levels 
of automation will be needed but often introduce additional human performance problems.  One potential 
design strategy is the use of adaptive automation, which has been shown in certain cases to lower 
workload, but is beset with many technical and mission-critical limitations. Workload mitigation strategies 
such as increased automation and multimodal displays will increase complexity, which can cause a loss of 
situation awareness or an unexpected and unmanageable increase in mental workload.  It is therefore 
essential that designers be able to measure whether or not interfaces with which NCW operators interact 
actually reduce complexity instead of add to it. 

 
A more fundamental issue associated with the increase in the number of available information sources, 

volume of information, and operational tempo under NCW are operator attention allocation strategies.  
NCW hinges on successful information sharing, so knowledge of the relationship between perceived and 
actual high priority tasks and associated time management strategies, as well as the impact of task 
disruptions is critical. As a result of NCW information sharing, command and control structures will 
change significantly.  Traditional hierarchical command will be partially replaced by distributed decision-
making and low-level team coordination.  Therefore, understanding how to make effective, time-pressured 
decisions within these organizational structures takes on greater importance in NCW. Moreover, leveraging 
automation to aid in supervisory monitoring of operators is another significant area of concern since NCW 
will contain embedded HSC systems. 

 
NCW will drive an increase in information-sharing tempo and rapid decision-making. Under these 

time pressures, the use of heuristics and other naturalistic decision-making methods may be subject to 
undesirable decision biases, both for individuals and groups. Often these decision biases will result in 
complacent behavior such that operators overly trust a complex automated system, but there is also 
significant distrust of automated systems, which is particularly linked to that system’s reliability. Lastly, 
this potentially displaced trust in automation and complacency can lead to a loss of accountability and 
erosion of moral responsibility. 
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Unfortunately, despite the fact that NCW exists to support human intentions, technological 

determinism is pervasive in that the primary thrust of NCW research is directed toward improvements and 
innovations in technology (Alberts, Garstka, & Stein, 2000). The typical but naïve assumption is that 
advancements in automated systems will naturally improve both system and human performance. Without 
dedicated focus on how NCW technology impacts both individual and team cognitive processes, as 
identified in these 10 areas, the DoD vision of greater combat power through the creation of shared 
situational awareness, increased speed of command, self-synchronization, and higher operational tempo, 
lethality and survivability will be replaced with a problematic, sub-optimal, and reactive network with 
significantly increased risk. 
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