
N. Streitz, A. Kameas, and I. Mavrommati (Eds.): The Disappearing Computer, LNCS 4500, pp. 143 – 157, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Intrusiveness Management for Focused, Efficient, 
and Enjoyable Activities  

Fredrik Espinoza1, David De Roure2, Ola Hamfors1, Lucas Hinz1, Jesper Holmberg3, 
Carl-Gustaf Jansson3, Nick Jennings2, Mike Luck2, Peter Lönnqvist3, 

Gopal Ramchurn2, Anna Sandin1, Mark Thompson2, and Markus Bylund1 

1 Swedish Institute of Computer Science (SICS), Kista, Sweden 
2 Department of Electronics & Computer Science, University  

of Southampton, United Kingdom 
3 Department of Computer & Systems Sciences, Stockholm University  

and the Royal Institute of Technology, Kista, Sweden 

1  Introduction 

When technologies for distributed activities develop, in particular the rapidly develop-
ing mobile technology, a larger part of our time will be spent connected to our various 
distributed contexts. When we meet physically we bring technology, both artifacts 
and services, which enable us to participate in these non-local contexts. Potentially 
this is a threat to focused and efficient activities due to the intrusiveness of the tech-
nology. Our aim is to contribute to the restoration of a number of the desirable proper-
ties of traditional local technology-free contexts. The intrusiveness itself is caused by 
at least four typical phenomena that have influenced current technology: 

• Focus-demanding and clearly distinguishable artifacts like phones or PCs ex-
plicitly mediate interaction with the distributed context 

• The functionality of services is traditionally based upon the assumption that 
communication is a deterministic flow of passive information, which for exam-
ple, does not include information of the participants´ current context 

• Services in general perform individually and without coordinated communica-
tion schemes  

• The switches between contexts introduce a high cognitive load as each distrib-
uted context typically has its own system of characteristic objects and rules. 

In the FEEL project, we have developed a system called “Focused, Efficient and 
Enjoyable Local Activities with Intrusiveness Management” (FEELIM) that consti-
tutes an intermediate alternative between the technology-dense and technology-free 
environments, which addresses the problems cited above. This research is based on 
a collaborative and cooperative setting where problems of intrusiveness manage-
ment are confounded by several users meeting and cooperating together as opposed 
to isolated users dealing with similar problems of interruption management (Chen 
2004; Ho 2005). 



144 F. Espinoza et al. 

2  Objectives 

Usability in Physical Spaces 

The design of DC environments in the form of physical spaces that support non-
intrusive mechanisms for notification, supporting both local and distributed work is 
important. Usability studies in such physical spaces were conducted, with the follow-
ing sub-objectives: 

• Capturing concrete scenarios for use of integrated local and distributed services  
• Making preliminary studies of user needs for the disappearing computer scenario 
• Evaluating the usability aspects of concrete disappearing computer environments, 

in particular the users’ experiences of the emergent functionality 
• Evaluating the usability of the integrated local and distributed services in the 

disappearing computer environment (non-intrusive services). 

These research issues were thus investigated in interactive environments with multi-
modal characteristics, which can enable mechanisms for handling intrusions. This 
means physical interactive spaces with a rich set of peripherals and computing de-
vices integrated in the interior decoration) and where small wearable/personal devices 
can interact dynamically with the stationary/public devices to create a total computing 
and communication DC environment. 

3  Principles of Design 

We have identified general design principles that can prevent or diminish many of the 
negative effects of intrusiveness phenomena resulting from work in computer dense 
environments. 

3.1  Creating Adequate Explicit Models of Work Environments 

At the core of mechanisms for diminishing intrusiveness phenomena lay good co-
ordination strategies. These in turn must rely on adequate models of the tasks being 
performed in parallel in each work environment (both in large and small scale), the 
characteristics of the participants, the physical properties of the work environment 
and the events that occur. We need also explicit and operable representations of these 
models, such that observations of a variety of contextual factors can be made and 
mapped onto those representations. One particular problem with the handling of par-
allel tasks is the cognitive load when switching between tasks. If the services support-
ing different tasks can minimize the effort in switching between tasks, the effects of 
intrusions will decrease. The implementation of such functionality in services in turn 
has to be based on better modelling of tasks and work situations. This also holds for 
the personalization of work environments, facilitating the configuration or restoration 
of an appropriate work environment suitable for a particular group. 



 Intrusiveness Management for Focused, Efficient, and Enjoyable Activities 145 

3.2  Modelling Intrusiveness and Non-intrusiveness 

This modelling should cover: 

• the social rules valid for a certain situation, 
• the normal behavioural and perception patterns within a group, and 
• the creation of rough operational initial models. 

McFarlane (1999) was the first to dissociate the notion of intrusiveness from the no-
tion of interruption. He defines intrusiveness as the degree of interference with the re-
alization of the main task of a group caused by a number of intrusions. In turn, an in-
trusion is defined as an occurrence of a process or event that is not intimately related 
to the current task of a group and that interferes with the realization of that task. It 
needs to be pointed out that interruptions and intrusions are clearly distinct concepts. 
According to McFarlane, intrusions are errors where people incorrectly perform ac-
tions from a pre-interruption task after task switching while interruptions are methods 
by which a person shifts his focus of consciousness from one processing stream to 
another. Whatever the form in which a message is received, according to Clark 
(1996), people have four possible responses then: 

1. take-up with full compliance – handle the interruption immediately. 
2. take up with alteration – acknowledge the interruption and agree to handle it later. 
3. decline – explicitly refuse to handle the interruption. 
4. withdraw – implicitly refuse to handle the interruption by ignoring it. 

3.3  Support for Local Collaboration 

To remedy the existing imbalance between technology support for shared local tasks 
and private and often distributed tasks the hardware and software support for local 
collaboration must be improved with respect to: 

• Shared focus by co-use of public devices like interactive walls or tables. 
• Simultaneous interaction by co-use of input devices such as mouse and key-

board. 
• Transparent interaction in the sense of uniform mechanisms to interact with in-

formation elements across physical and virtual boundaries. 
• Ad-hoc device integration. The different entities in the room should not be consid-

ered as separate artifacts but rather as components in a coherent dynamically con-
figured system. This should also include the personal artifacts being used in the 
room. 

• Personalization of the work space both during and between work sessions. 

A lot of work has already been done in order to try and create environments like this, 
for example in the Interactive Workspace project at Stanford University 
(iwork.stanford.edu) (Johanson et al. 2002) or in the i-LAND project at GMD-IPSI 
(later Fraunhofer), Darmstadt, Germany (www.ipsi fraunhofer.de/ambiente/) (Streitz 
et al. 1999, 2001) but none of them has explicitly targeted the issue of intrusiveness. 



146 F. Espinoza et al. 

Camera 

Wireless Keyboard and mouse for 
SmartBoard PC 

SmartBoard 

Knob for changing 
intrusiveness level 

Whiteboard 

Notepad 

iClock 

SmartBoard PC 

Door 

Chairs 

Table 

Window 

TV set 

Table 

Observer position 

Laptop 
computer and 
GSM phone 

TFCO 

PRO 

CCO 

ICO 

 
Fig. 1. The physical environment in the 15 square meter room 7517 “Pentagonen” at the IT 
University in Kista, furnished with chairs and a table catering up to six people. For the shared 
focus of the experimental groups the room is equipped with a front projected wall-mounted 
SmartBoard. TFCO, PRO, CCO and ICO represent team members using the room. Specialized 
hardware devices such as the iClock are described in following sections 

4  Implementation 

The FEELIM implementation has been build on top of the sView service architecture, 
see (Bylund 2001; Bylund and Espinoza 2000). The implementation is not a single 
monolithic component but rather a set of principles and protocols that service mod-
ules adhere to as part of their agreement to be FEELIM conformant. The next section 
describes the sView platform and this is followed by a description of the main 
FEELIM services. 

The sView Service Platform 

The sView service platform is an electronic service environment with heavy focus on 
the individual user. It enables a user to collect, store, and run electronic services, lo-
cally, or in a distributed fashion. The whole purpose of sView is to serve as a common 
area for the services to cooperate amongst themselves and to provide a unified access 
method to the services for the user. To a developer of services, the sView platform is 
characterized by openness, modularity, security, and a high degree of flexibility. To a 
user of the platform, it is accessible in many ways and available continuously. 

The system assumes a client/server model, but instead of having a uniform client 
without service specific functionality for access to all servers (as in the case with the 
World Wide Web), access to the servers is channelled through a virtual service brief-
case. The briefcase in turn supports access from many different types of devices and 
user interfaces (Nylander and Bylund 2001, 2002). It is also private to an individual  
 



 Intrusiveness Management for Focused, Efficient, and Enjoyable Activities 147 

C 
C

B 

Web kiosk 

Service Briefcase Server 
with service environments 

for multiple users 

Service Briefcase Server 
with service environments 

for a single user 

HTML UI to PSE

GUI to PSE 

WML UI to PSE 

WAP Gateway

HTML/HTTP 

WML/HTTP

WML/WAP

JPanel/SWING

Service Briefcase

A
C

B

A 
C 

B 

III 

II 
I 

IV

 
Fig. 2. The main parts of the core sView specification and their relations 

user, and it can store service components containing both service logic and data from 
service providers. This allows the service provider to split the services in two parts. 
One part provides commonly used functionality and user-specific data that executes 
and is stored within the virtual briefcase. The other part provides network-based func-
tionality and data that is common between all users. Finally, the service briefcase is 
mobile and it can follow its user from host to host. This allows local and partially 
network independent access to the service components in the briefcase. 

 

API and 
Specification Layer 

Server Layer

Service Component 
Layer 

The Core sView Specification 
(Specification of Service Component,  

Service Briefcase Server, Service Context, etc. 
Implementation of Service Briefcase) 

The sView Reference Implementation 
(Implementations of Service Briefcase Server,  

Service Context, sample service components etc.) 

IntraCom 
Preference 

Servlet 
HTML 
WML

Swing GUI 
SMTP 

Third Party Service Components

Service 
Briefcase 

 

Fig. 3. A schematic overview of the sView system in its three layers 



148 F. Espinoza et al. 

The core sView specification provides Application Programming Interfaces (APIs) to 
developers of service components and service infrastructure that builds on sView 
technology. Implementing these APIs and adhering to the design guidelines that ac-
company the APIs, assures compatibility between sView services and service infra-
structure of different origin (cf. Figure 1). The sView reference implementation pro-
vides developers with a development and runtime environment for service components 
as well as a sample implementation of an sView server. An illustration of how the 
core specification and the reference implementation are organized in three layers can 
be seen in Figure 2. 

5  The Network Briefcase Lookup Server 

The sView platform allows users' service briefcases to move around the network, 
from server to server (these servers are called sView Enterprise servers and they can 
house many user's briefcases at once) depending on where in the world and the net-
work the user may be. Since services for a user should always run somewhere, to 
stand ready in case the use should call, these servers must be situated in the network 
in computers that are constantly available. This moving around of a user's briefcase of 
services becomes a problem, however, when someone or something tries to contact 
the user through one of the services, since it is impossible to know where the brief-
case is at the moment. To remedy this problem we have built the Network Briefcase 
Lookup Server (NBLS).  

The NBLS is a server which runs in a well know place in the network. All sView 
and FEEL sub-systems are aware of its network address and use it to ask for direc-
tions when trying to locate a specific user. Users' briefcases all register their own net-
work addresses with the NBLS as soon as they change. Consequently, the NBLS has 
a constant record of the whereabouts of each user's briefcase, and can forward re-
quests for service or action to the correct one from any incoming request, much like a 
dynamic DNS provider.  

This server can route requests it receives to the appropriate user's service briefcase, 
and within this, to the pertinent service, regardless of where the user and his or her 
briefcase are located in the real world and in the network. If the NBLS is unable to 
contact the user's briefcase it should return an appropriate response and the querying 
service should also react accordingly. The address tracking function is the main func-
tion of the NBLS, but as we will see below, it also performs several other important 
functions. 

6  Implementing Mechanisms as Services 

Conceptually, the implemented mechanisms integrated in what we call FEEL soft-
ware technology consist of four distinct functional tasks, each described in more de-
tail below:  

• Filtering 
• Routing 



 Intrusiveness Management for Focused, Efficient, and Enjoyable Activities 149 

• Notification 
• File sharing  

6.1  Filtering and Scheduling Services 

The Sentinel Intrusiveness Controller1 (Sentinel) is used to establish a common level 
of agreed upon intrusiveness for an ongoing meeting. The intrusiveness-controlling 
mechanism is described by the behaviour of the Sentinel in conjunction with the end-
user services it controls, as these cooperate to achieve intrusiveness management (see 
Figure 4). The filtering of notifications relies on the intrusiveness level set in the Sen-
tinel. A high intrusiveness allows for messages to be displayed immediately and in an 
attention-grabbing manner, whereas a low intrusiveness hinders the message from be-
ing immediately displayed, or makes it display less conspicuously. 

 
Fig. 4. Sentinel intrusiveness control schema using sView, the Sentinel (in voting mode), and 
the end-user services, which enable the choice of notification and filtering 

6.2  Routing Services 

We believe that receiving notifications about messages is less intrusive than receiving 
real messages. The purpose of the Communication Agent is to act as personal central 
hub for incoming communications. The Communication Agent does not show the ac-
tual content of the incoming messages or phone calls. Instead it decides, based upon 
the Sentinel value, if the communication is allowed to pass through, or not; if the 
message is not allowed to pass through the user gets a notification instead (cf. Figure 5). 
The characteristics of the notification are varying, depending on the current intrusive-
                                                           
1 One that keeps guard; a sentry. Dictionary.com. The American Heritage Dictionary of the 

English Language, Fourth Edition. Houghton Mifflin Company, 2004. http://dictionary.  
reference.com/browse/sentinel (accessed: January 24, 2007). 



150 F. Espinoza et al. 

ness level. If the user is in state A (60-100%, high intrusiveness), a notification is pre-
sented in the graphical user interface, and the real communication is let through. The 
notification contains information about the sender, the message type, and the time it 
arrived. If the user is in state B (30-60%, medium intrusiveness) the notifications (but 
no content) are visually presented in the graphical user interface, and on any available 
public display. The real communication is blocked and queued. Furthermore, the 
sender receives an auto-reply saying that the message has been queued and will be de-
livered to the user at later stage. Finally, if the user is in state C (0-30%, low intru-
siveness), the communication is blocked and queued, as in the medium state, and 
auto-replies are sent out. A personal notification is made in the Communication Agent 
but no public displays are used. The partitioning of three discrete intrusiveness levels 
was chosen as a reasonable trade-off between an understandable model which would 
work with users in user tests and a sufficiently interesting span of intrusiveness de-
grees for demonstrating our findings. 

 
Fig. 5. The Communication Agent, running inside sView in the user’s briefcase 

6.3  Notification Services and Public Displays 

Not all notifications take place within the sView briefcase, which runs on the individ-
ual computers of the meeting participants. In some states, notifications are sent to 
“real world” terminals on public displays. The iClock is implemented as a Java appli-
cation where the user interface resembles the face of an old-fashioned analogue clock. 
The clock is publicly displayed on a wall using a small flat screen panel. The iClock 
is designed to display notifications for incoming messages for all users in its vicinity. 
When a message is received, the clock display fades out and changes notification 
mode. In this mode the message is displayed as text. The actual content of the message 
is not displayed, only, the sender, and the intended recipient and the time stamp, and a 



 Intrusiveness Management for Focused, Efficient, and Enjoyable Activities 151 

notification sound is played. This enables users to notice incoming messages with a 
minimum of disturbance since the notification sound is very short and the content of 
the message is withheld. If several notifications arrive at the same time, they are 
queued by the clock and displayed one after the other in the proper order. In addition 
to displaying messages, the iClock is aware of the Sentinel states, and the display is 
coloured in accordance with the state (green for state A, yellow for state B, and red 
for state C, respectively). The iClock can also be configured to know when messages 
should be displayed or not, for example only allowing received messages to be dis-
played in state A.  

6.4  File Sharing Services 

Zenda is a file-sharing service. It is compatible with sView, but can also run as a 
stand-alone application. It permits users to start files on each other's computers, using 
the underlying functionality of the operating system to launch the appropriate applica-
tion when a file is received. For example, receiving a PDF document will launch Ac-
robat Reader on the receiving computer. Technically, each running Zenda service in-
stance (running on individual user computers) works as a fileserver, dealing out files, 
and as a client, receiving files from other Services. Communication between involved 
users computers for this purpose is enabled by the Jini middleware. 

7  The FEEL Intrusiveness Management System 

The FEEL Intrusiveness Management system (FEELIM) has progressed through itera-
tive development from a set of individual and basic components (the underlying ser-
vice platform, display devices, negotiation algorithms, etc.) to a fully functioning and 
demonstrable prototype. Note that FEELIM to a large extent is not visible to the user 
at all: most of the technology is at work behind the scenes in servers in the network. 

The basic intrusiveness management is based on location: where a user is presently 
located, where a room is located, and so on. An administrator may specify intrusive-
ness rules for a location, say a meeting room, or the intrusiveness rules may be speci-
fied by users themselves when they are in a certain location.  

The position of a user is determined by a positioning system based on wireless 
LAN base station lookup from the SICS Geonotes project (Espinoza et al. 2001). This 
system achieves an accuracy of 10-100 meters since it is based on identifying the po-
sition of the closest connected base station, which is registered in a database. The sys-
tem is further enhanced by allowing users of the system to define arbitrary place la-
bels (Espinoza et al. 2001; Fagerberg et al. 2003) tied to any position. These serve to 
further qualify the position and enables the positioning system to achieve an arbitrary 
level of accuracy. The position of the user is made available to services in sView 
through the Position service (see Figure 6). Any other service may subscribe to the 
Position service for notifications when the user’s position changes. 

The management of intrusiveness level is based on location, since the location is 
used by the Sentinel to determine the intrusiveness level. The position or location of a 
user is of course only one in a probably endlessly large set of possible properties 
which could be used to influence the intrusiveness management. Location, however,  
 



152 F. Espinoza et al. 

 
Fig. 6. The sView position service 

is easily understood by users and it is often used for conceptual partitioning in real life 
(stay on this side of the line, park within the parking space, no cell phone use inside 
the movie theater, borders between countries, etc), and was therefore useful for our 
user testing purposes. 

The intrusiveness level of a location is determined in one of three ways. In the first, 
there is no pre-set intrusiveness value for the position. This is a very common situa-
tion since only a limited set of locations will have been configured by an administra-
tor. In this case any users that happen to meet in this position will have to use local 
negotiation to determine the appropriate intrusiveness level (local negotiation is ex-
plained below). In the second state, the intrusiveness value for the position has been 
set by an administrator. This situation is straight forward and the rules of the adminis-
trator will regulate the intrusiveness levels for any users who meet in that location. In 
the third state, the intrusiveness value for the position is governed by a hardware knob 
located in this position. The knob, which is an actual physical device which may be 
turned left or right to decrease or increase the intrusiveness level, is put in a location 
to control the intrusiveness rules for that location. Users who meet in the location can 
turn the knob to regulate the overall intrusiveness management for that spot and the 
physical properties of the knob make this a tangible experience. Also, since users are 
in the same location they can discuss, face to face, and agree upon the appropriate 
turning of the knob. The co-location of users also means that the process of changing 
the intrusiveness level is apparent to everyone there.  

Technically, the knob continuously sends its value to the position database. Any 
users who are co-located with the knob can query the position database for this value. 
If the users who are in this position, and by their location are implicitly involved in a 
common meeting, decide to change the intrusiveness level they can do so using the 
knob. All users’ Sentinel services will find out about this change next time they query 
the position database for the intrusiveness level. This mode is also characterized by 
social interaction since it is left up to the meeting participants to discuss how the knob 
should be set. 



 Intrusiveness Management for Focused, Efficient, and Enjoyable Activities 153 

 
Fig. 7. The knob 

The hardware knob is a GriffinTechnologies PowerMate, a brushed aluminum knob 
which communicates with a computer through a USB interface. The knob sends 
events whenever its state is changed; it can be turned in either direction, and addition-
ally it works as a button that can be pressed. In our prototype only the turning of the 
knob is registered. Through low-level drivers the knob communicates with the Linux 
operating system running on a laptop attached to it, and its events are then forwarded 
to FEELIM by software running on the computer.  

The feedback channels to the users consist of the applications in the sView brief-
cases, and the iClock. The sView briefcases of the different users get their intrusion 
setting events through the NBLS. This means that when a user turns the knob, the 
knob handling software updates its entry in the NBLS. It then sends a second event to 
the NBLS, which in turn is forwarded to all sView briefcases, telling them to update 
their intrusiveness setting. Similarly, when using our Jini architecture, an event is sent 
through to the NotifyRouter, informing it that a change in the intrusiveness setting has 
occurred. The NotifyRouter then queries the NBLS, and updates the state of the 
iClock when a change has occurred. Feedback is then provided to the user through the 
applications running in the sView briefcases, as well as through the iClock. The ac-
tions whenever a user turns the knob are as follows: 

1. The user turns the knob 
2. Events about the change are sent through USB to the computer to which the 

knob is attached 
3. The events are filtered by low-level drivers, and forwarded to higher-level 

software 
4. The higher-level software updates the intrusiveness entry connected to its loca-

tion in the NBLS 
5. The higher-level software sends an event to the NBLS that a change has oc-

curred 



154 F. Espinoza et al. 

6. The higher-level software sends an event through the Jini middleware to the 
NotifyRouter, telling it that a change has a occurred 

7. The sView briefcases get notified by the NBLS that a change has occurred 
8. The sView briefcases query the NBLS to get the new intrusiveness setting for 

this location  
9. The NotifyRouter queries the NBLS to get the new intrusiveness setting 
10. Applications, including the IClock, update their interfaces to reflect the change 

8  Agent Negotiation 

Whenever a message is sent to a user in the meeting room, the user's agent will inter-
cept the message and negotiate for the utility maximizing notification. The utility an 
agent obtains from a given notification is denoted by its preferences that constitute its 
utility function. In this work, agents have their preferences specified and fixed a pri-
ori. The utility function returns a value between 0 and 1 for a given message received 
by the agent. The agents can also obtain utility from the “points” that other agents 
may share with them. 

Whenever a message is displayed on a given device, the agent handling that mes-
sage must pay an appropriate fee to the system agent managing the meeting room. 
There is no cost to sending notifications to private/non-disturbing devices, but the cost 
increases the more intrusive the device is. However, the more intrusive the device, the 
more it will catch other users' attention. Thus other users have an interest in getting 
certain messages displayed on these devices and will pay a part of the cost, if and only 
if the contents/recipient/sender of the message brings them some utility. Negotiation 
(even when there is no need to display on a public device) can then lead to an impor-
tant message (for other users) being transmitted to a public device (in case it also 
brings some utility to the direct recipient of that message). The decision making of an 
agent receiving a message is generally as follows: 

• Receive message and parse subject and sender fields to see if matching with 
preferences of owner (user). 

• If message is of no value (i.e. no sender or subject found in the preference list), 
do not use any arguments in ensuing negotiation. 

• Otherwise, negotiate using promises and appeals (to past promises) with other 
agents.  

• If funds received from other agents then choose the public display if sufficient 
funds are available. 

• Else choose the instant messenger if sufficient funds are available. 
• else choose the email client (or queue) 
• Send confirmation to meeting-room server and update all agents' budgets and 

commitments accordingly. 

The algorithm for the negotiation is as follows. 



 Intrusiveness Management for Focused, Efficient, and Enjoyable Activities 155 

• Start 
• Agent receives the message - parses its contents and determines utility.  
• Agent sends out offers to all agents – offer (msg, DeviceX) - for every device 

available to it. (We assume here that messages do not need to be private but can 
easily retract that assumption if we simply code the agent to “silently” notify its 
user).  

• Agents respond with their investment given the argument supplied and the mes-
sage. The offer is not made strategically but in good faith.  

• Proponent then pools the investments and determines the device all other agents 
are willing to invest in according the utility it derives from each.  

• Proponent then notifies all agents of its final decision (allowing other agents to 
store commitments and deduct investments). 

• Proponent sends appropriate investment to system agent (keeps the extra for it-
self) and gets the message displayed. 

• End 

The choice of which argument to send is dependent on whether the opponent in the 
negotiation has made promises in the past and whether the proponent is in a position 
(given its budget) to make a promise of a future reward. In trying to maximize utility, 
the proponent will go for an appeal if this is enough to cover its needs for funds. Oth-
erwise, the proponent may make a promise of future points.  

The above process happens sequentially with all opponents in the environment. In 
this way, the proponent cumulates points from past negotiations as it is negotiating 
with each agent. In doing so, the proponent also keeps tracks of promises it is making 
and appeals it is making and therefore adjusting its cost and budget for that set of ne-
gotiation. 

9  Potential Impact of Results 

We have demonstrated that it is possible to develop a robust prototype, i.e. our 
FEELIM system, which can handle intrusiveness from standard communication ser-
vices in a collaborative work setting. The prototype is realistic in the sense that it 
handles real communication services like phone, SMS, instant messaging and email in 
a general fashion. The prototype together with demonstration scripts that we devel-
oped in the project is an excellent basis for discussions with telecom operators and 
other service providers on the development of commercial services built upon the 
same principles as FEELIM.  

The commercial development in the area of embedded systems, mobile and hand-
held computing is fast and short sighted; little effort is put into usability, considering 
the usage of the products in a situated usage context. This results in products that 
might fit an isolated usage scenario, but create problems when introduced en-masse in 
actual working contexts. This is a potential threat to health and quality of life for such 
systems’ users. 



156 F. Espinoza et al. 

The explicit purpose of the FEEL technology is to increase quality of life in the 
sense of improving the work environment in collaborative work situations. If intru-
sions can be diminished in such situations, the level of stress can be lowered and the 
efficiency and shared focus can be promoted. Even if the FEEL project has studied 
collaborative work situations, the FEEL technology is applicable also in many other 
situations of everyday life, where a focused co-located setting has to be protected 
against potentially intrusive communication requests. 

Acknowledgements 

The authors acknowledge the funding of the FEEL project by the European Com-
munity under the “Information Society Technologies” Programme (project IST-
2000-26135). 

The authors wish to thank research administrators Gloria Dixon-Svärd (DSV) and 
Eva Gudmunsson (SICS). Important technical contributions were also made by DSV 
master students Pelle Carlsson, Jennie Carlstedt, and Oskar Laurin.  

References 

Bylund, M.: Personal Service Environments - Openness and User Control in User-Service Interac-
tion. Licentiate Thesis, Uppsala University (2001)  

Bylund, M., Espinoza, F.: sView – Personalized Service Interaction. In: Bradshaw, J., Arnold, 
G. (eds.) Proceedings of 5th International Conference on the Practical Application of Intel-
ligent Agents and Multi-Agent Technology (PAAM 2000), pp. 215–218. The Practical 
Application Company Ltd., Manchester, UK (2000) 

Chen, D., Vertegaal, R.: Using mental load for managing interruptions in physiologically atten-
tive user interfaces. In: CHI ’04 extended abstracts on Human factors in computing sys-
tems, Vienna, Austria, pp. 1513–1516 (2004) 

Clark, H.H.: Using Language. Cambridge University Press, UK (1996) 
Espinoza, F. et al.: GeoNotes: Social and Navigational Aspects of Location-Based Information 

Systems. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001: Ubiquitous Com-
puting. LNCS, vol. 2201, pp. 2–18. Springer, Heidelberg (2001) 

Fagerberg, P., Espinoza, F., Persson, P.: What is a place? Allowing users to name and define 
places. In: Proceedings of ACM Conference on Human Factors in Computing Systems 
(CHI 2003), pp. 828–829. ACM Press, New York (2003) 

Ho, J., Intille, S.S.: Using context-aware computing to reduce the perceived burden of interrup-
tions from mobile devices. In: Proceedings of the SIGCHI conference on Human factors in 
computing systems, Portland, Oregon, USA, pp. 909–918 (2005) 

Johanson, B., Fox, A., Winograd, T.: The Interactive Workspaces Project: Experiences with 
Ubiquitous Computing Rooms. In: IEEE Pervasive Computing, pp. 67–74. IEEE Com-
puter Society Press, Los Alamitos (2002) 

McFarlane, D.: Coordinating the interruption of people in human-computer interaction. In: 
Human Computer Interaction - INTERACT’99, Riccarton, Edinburgh, Scotland (1999) 

Nylander, S., Bylund, M.: Providing device independence to mobile services. In: Carbonell, N., 
Stephanidis, C. (eds.) Universal Access. Theoretical Perspectives, Practice, and Experi-
ence. LNCS, vol. 2615, pp. 465–473. Springer, Heidelberg (2003) 

Nylander, S., Bylund, M.: Device Independent Services. SICS Technical Report T2002:02 (2002) 



 Intrusiveness Management for Focused, Efficient, and Enjoyable Activities 157 

Ramchurn, S.D.: Multi-Agent Negotiation using Trust and Persuasion. PhD, Electronics and 
Computer Science, University of Southampton (2004) 

Ramchurn, S.D., Deitch, B., Thompson, M.K., de Roure, D.C., Jennings, N.R., Luck, M.: 
Minimising intrusiveness in pervasive computing environments using multi-agent negotia-
tion. In: Proceedings of 1st Int. Conf. on Mobile and Ubiquitous Systems, Boston, USA, 
pp. 364–372 (2004) 

Ramchurn, S.D., Jennings, N.R., Sierra, C.: Persuasive negotiation for autonomous agents: A 
rhetorical approach. In: Kurumatani, K., Chen, S.-H., Ohuchi, A. (eds.) IJCAI-WS 2003 
and MAMUS 2003. LNCS (LNAI), vol. 3012, pp. 9–17. Springer, Heidelberg (2004) 

Streitz, N., Geißler, J., Holmer, T., Konomi, S., Müller-Tomfelde, C., Reischl, W., Rexroth, P., 
Seitz, P., Steinmetz, R.: i-LAND: An interactive Landscape for Creativity and Innovation. 
In: ACM Conference on Human Factors in Computing Systems (CHI’99), Pittsburgh, 
Pennsylvania, USA, pp. 120–127. ACM Press, New York (1999) 

Streitz, N., Tandler, P., Müller-Tomfelde, C., Konomi, S.: Roomware: Towards the Next Gen-
eration of Human-Computer Interaction based on an Integrated Design of Real and Virtual 
Worlds. In: Carroll, J. (ed.) Human-Computer Interaction in the New Millennium, pp. 
553–578. Addison-Wesley, Reading (2001) 




