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A person seeking another person’s attention is normally able to quickly assess how interruptible
the other person currently is. Such assessments allow behavior that we consider natural, socially
appropriate, or simply polite. This is in sharp contrast to current computer and communication
systems, which are largely unaware of the social situations surrounding their usage and the impact
that their actions have on these situations. If systems could model human interruptibility, they
could use this information to negotiate interruptions at appropriate times, thus improving human
computer interaction.

This article presents a series of studies that quantitatively demonstrate that simple sensors
can support the construction of models that estimate human interruptibility as well as people do.
These models can be constructed without using complex sensors, such as vision-based techniques,
and therefore their use in everyday office environments is both practical and affordable. Although
currently based on a demographically limited sample, our results indicate a substantial opportunity
for future research to validate these results over larger groups of office workers. Our results also
motivate the development of systems that use these models to negotiate interruptions at socially
appropriate times.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User
Interfaces; H.5.3 [Information Interfaces and Presentation]: Group and Organization Inter-
faces—Collaborative computing; H.1.2 [Models and Principles]: User/Machine Systems; I.2.6
[Artificial Intelligence]: Learning

General Terms: Design, Measurement, Experimentation, Human Factors

Additional Key Words and Phrases: Situationally appropriate interaction, managing human atten-
tion, context-aware computing, sensor-based interfaces, machine learning

1. INTRODUCTION

People have developed a variety of conventions that define what behavior is
socially appropriate in different situations [Barker 1968]. In office working
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environments, social conventions dictate when it is appropriate for one per-
son to interrupt another. These conventions, together with the reaction of the
person who has been interrupted, allow an evaluation of whether or not an
interruption is appropriate. Social conventions around interruptions also allow
the development of an a priori expectation of whether or not an interruption
would be appropriate [Hatch 1987].

Current computer and communication systems are largely unaware of the
social conventions defining appropriate behavior, of the social situations sur-
rounding them, and the impact that their actions have on social situations.
Whether a mobile phone rings while its owner is in a meeting with a supervisor
or a laptop interrupts an important presentation to announce that the battery is
fully charged, current computer and communication systems frequently create
socially awkward interruptions or unduly demand attention because they have
no way to determine whether it is appropriate to interrupt. It is impossible for
these systems to develop informed a priori expectations about the impact their
interruptions will have on users and the social situations surrounding usage.
As computing and telecommunications systems have become more ubiquitous
and more portable, the problem has become more troublesome.

People who design or use computer and communication systems can cur-
rently adopt two strategies for managing the damage caused by inappropriate
interruptions. One strategy is to avoid building or using proactive systems,
forcing systems to be silent and wait passively until a user initiates interac-
tion. Although this approach is reasonable for many applications in a desk-
top computing environment, applications in intelligent spaces and other mo-
bile or ubiquitous computing environments could benefit from a system being
able to initiate interactions [Horvitch 1999]. A second strategy is to design and
use systems that can be temporarily disabled during potentially inappropri-
ate time intervals. However, this approach can be self-defeating. Turning off a
mobile phone prevents unimportant interruptions, but it also prevents inter-
ruptions that could convey critically important information. Because systems
do not have a mechanism for weighing the importance of information against
the appropriateness of an interruption, people are forced into extremes of ei-
ther allowing all interruptions or forbidding all interruptions. This problem is
amplified because people forget to re-enable systems after a potentially inap-
propriate time interval has passed [Milewski and Smith 2000].

If we could develop relatively robust models of human interruptibility, they
might support a variety of significant advances in human computer interaction
and computer-mediated communication. Such models do not need to deprive
people of control. For example, mobile phones could automatically inform a
caller that the person being called appears to be busy, allowing the caller to
consider the importance of the call in deciding whether to interrupt the appar-
ently busy person or to leave a message instead [Schmidt et al. 2000]. Email
and messaging applications might delay potentially disruptive auditory notifi-
cations for less important messages, but never prevent delivery of the informa-
tion. Information displays might choose between several methods of conveying
information according to the current appropriateness of each method of com-
munication. Many specific applications could be designed for different domains.
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For example, information about interruptibility might be combined with infor-
mation on expertise and other relevant factors to automatically route incoming
technical support requests to the most appropriate member of a technical sup-
port staff.

McFarlane [1999, 2002] tested four known methods for deciding when to
interrupt people. Although his results have implications for structuring appro-
priate interactions, no single method emerged as best across all performance
measures. Czerwinski et al. [2000a, 2000b] and Cutrell et al. [2001] studied
interruptions created by instant messages and the effect of these interruptions
on different computer tasks. Importantly, they found that an instant messaging
notification is disruptive to task performance even when it is ignored. These
studies focused on very specific computer tasks and leave open questions related
to the effect of interruptions on the social situations surrounding computer us-
age. Voida et al. [2002] discuss such social situations while analyzing tensions
in instant messaging related to uncertainty about the level of attention being
given by a remote person. They suggest that instant messaging applications
might benefit from providing better indications of the availability of a remote
person. Begole et al. [2002, 2003] present temporal analyses of activity logs from
an awareness application for distributed workgroups. They find that certain
patterns may indicate when a person will become available for communication,
but note that only information related to computer usage is available for their
analyses.

Horvitz et al. [1998] have shown that models can be used to infer goals
and provide appropriate assistance. Observing low-level mouse and keyboard
events, their Lumière prototype modeled tasks that a person might be per-
forming and used its interpretation to provide assistance. Oliver et al.’s [2002]
SEER system uses models to recognize a set of human activities from com-
puter activity, ambient audio, and a video stream. These activities are a phone
conversation, a presentation, a face-to-face conversation, engagement in some
other activity, conversation outside the field of view of the camera, and not
present. The activities SEER models may relate to interruptibility, but they
are examined only in a controlled environment and cannot directly estimate
interruptibility.

Horvitz et al. [1999] present methods for estimating the importance of a
potential interruption in their discussion of the Priorities prototype. Although
they focus on using a text classification strategy to identify important emails,
they note that the methods they present can apply to other classes of notifi-
cations. These types of methods will be significant in creating systems that
balance interruptibility against the importance of potential interruptions.

Hudson et al. [2002] used an experience sampling technique to explore the
perceptions that managers in a research environment had about interruptions.
They found that there was a tension between desiring uninterrupted working
time and the helpful information sometimes obtained from an interruption. In
a result similar to that discussed by Perlow [1999], Hudson et al. found that
people sometimes isolate themselves from potential interruptions by ignoring
notifications or moving to a different physical location. We point out that this
strategy demonstrates the problem we previously discussed, that people forbid
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all interruptions because the systems they use cannot determine whether a
potential interruption is appropriate. Hudson et al. propose that researchers
focus on making interruptions more effective and suggests socially translucent
systems [Erickson and Kellogg 2000] as an approach. Bellotti and Edwards
[2001] express a similar concern that context-aware systems will not always
get it right, and the systems need to be designed so that they defer to people in
an accessible and useful manner.

This article describes work to develop and quantitatively evaluate sensor-
based statistical models of human interruptibility. Because people use social
conventions and externally visible cues to estimate interruptibility rather than
relying on invisible internal phenomena like a cognitive state, it should be
possible to develop such models empirically. One approach would be the top-
down creation, deployment, and evaluation of various combinations of models
and sensors. However, the uncertainty surrounding the usefulness of various
sensors makes it very likely that significant time and resources would be spent
building and evaluating sensors ill-suited or suboptimal for the task. This work
is instead based on a bottom-up approach, in which we collected and analyzed
more than 600 hours of audio and video recordings from the actual working
environments of four subjects with no prior relationship to our research group.
We simultaneously collected self-reports of the interruptibility of these sub-
jects. Using these recordings, we have examined human estimates of the in-
terruptibility of the people in the recordings. We have also created models of
interruptibility based on the assumption that changes in behavior or context
are indicative of interruptibility. These models use sensor values that were
manually simulated by human coding from the recordings, using a Wizard of
Oz technique [Dahilbäck et al. 1993; Maulsby et al. 1993].

This article shows that models of interruptibility based on simple sensors
can provide estimates of interruptibility that are as good as or better than
the estimates provided by people watching audio and video recordings of an
environment. More specifically, we present a study demonstrating that peo-
ple viewing the audio and video recordings can distinguish between “Highly
Non-interruptible” situations and other situations with an accuracy of 76.9%.
A model based on manually simulated sensors makes this same distinction
with an accuracy of 82.4%. Both of these accuracies are relative to a chance
accuracy of 68% that could be obtained by always estimating that a situation
was not “Highly Non-interruptible.” These types of models can be built using
only a handful of very simple sensors. While the study is based on a limited de-
mographic and will need to be validated for different groups of office workers,
the result is still very promising. The favorable comparison between human
judgment and our models indicates an opportunity for using interruptibility
estimates in computer and communication systems.

In the following section, we introduce our subjects, the collection of audio
and video recordings in their work environments, and the specifics of their in-
terruptibility self-reports. Then we present an overview of this collected data,
as described by the interruptibility self-reports and our set of manually simu-
lated sensors. This is followed by a presentation of our first study, examining
human estimates of interruptibility based on the recordings. We then move
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Fig. 1. Representative frames from the recordings.

to our second study, discussing models of interruptibility based on manually
simulated sensors, including an analysis of the usefulness of various sensors
and a comparison of these models to human estimates. We next present models
based on limited automated analyses of the recordings. Finally, we offer a short
conclusion and discuss opportunities for future work.

2. DATA COLLECTION

The recordings discussed in this article were collected in the actual working
environments of four subjects with no prior relationship to our research group.
To increase uniformity for this exploratory work, we selected four subjects with
similar working environments and tasks. Each subject serves in a high-level
staff position in our university with significant responsibilities for day-to-day
administration of a large university department and/or graduate program. The
subjects have private offices with closable doors, but their responsibilities re-
quire them to interact with many different people and they generally do not
have full control over their time. They usually work with their doors open and
responded to a variety of “walk in” requests. Because they almost never close
their office doors, it is likely that the absence of this explicit indication of non-
interruptibility makes it more difficult to estimate their interruptibility.

Recordings were collected using a computer with an 80GB disk and an
audio/video capture card connected to a small camera and microphone. Sub-
jects could disable recording for thirty minutes by pressing the space bar. The
computers had speakers used for informing subjects that recording had been
disabled, to advise them recording was about to resume, and to request inter-
ruptibility self-reports. They did not have displays. Signs were posted to alert
guests to the presence of a recording device, and the subjects were encour-
aged to disable recording if they or a guest was uncomfortable. We also pro-
vided subjects with a mechanism for retroactively requesting that recordings be
destroyed.

Grayscale cameras with wide-angle lenses were mounted in the office so
that both the primary working area and the door were visible. Figure 1 shows
images from two of the cameras. Video was captured at approximately 6 frames
per second, at a resolution of 320×240. Audio was captured at 11KHz, with 8-bit
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Fig. 2. Interruptibility self-report distribution.

Table I. Individual Subject Self-Report Distributions

Highly Interruptible Highly Non-Interruptible
1 2 3 4 5

Subject 1 9 14 40 18 56
6.6% 10.2% 29.2% 13.1% 40.9%

Subject 2 17 21 58 27 43
10.2% 12.7% 34.9% 16.3% 25.9%

Subject 3 52 26 20 10 57
31.5% 15.8% 12.1% 6.1% 34.5%

Subject 4 14 25 45 61 59
6.9% 12.3% 22.1% 29.9% 28.9%

All 92 86 163 116 215
13.7% 12.8% 24.3% 17.3% 32.0%

samples. The machines were deployed for between 14 and 22 workdays for each
subject, recording from 7am to 6pm on workdays. Our setup worked well except
in one case where a week of data was lost because an undetected improper
compression setting caused the disk to fill prematurely. For this subject, we
collected an additional 10 days of data at a later date. A total of 602 hours of
recordings was collected from the offices of these four subjects.

Subjects were prompted for interruptibility self-reports at random, but con-
trolled, intervals, averaging two prompts per hour. This is an experience-
sampling technique, or alternatively a beeper study [Feldman-Barrett and
Barrett 2001]. To minimize compliance problems, we asked a single question
rated on a five-point scale. Subjects could answer verbally or by holding up fin-
gers on one hand, but almost all responses were verbal. Subjects were asked to
“rate your current interruptibility” on a five-point scale, with 1 corresponding
to “Highly Interruptible” and 5 to “Highly Non-interruptible.” A sign on the
recording machine reminded the subject which value corresponded to which
end of the scale. Subjects were present for a total of 672 of these prompts.

3. DATA OVERVIEW

This section characterizes the data collected from our subjects. The overall dis-
tribution of interruptibility self-reports is shown in Figure 2. The distributions
for individual subjects are shown in Table I. For 54 of these 672 samples, the
subject was present and clearly heard the prompt, but did not respond within
30 seconds. We examined these individually and determined that the subject
was either on the phone or with a guest for the vast majority of the 54 cases.
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Table II. Frequency of Events During Times When the Office Occupant was Present

Door Open 98.6%
Occupant Sit 88.9%
Occupant at Desk 74.0%
Occupant Keyboard 22.6%
Occupant Monitor 46.8%
Occupant Papers 28.0%
Occupant Drink 1.0%
Occupant Talk 32.6%
One or More Guests Present 24.1%
One or More Guests Sit 9.3%
One or More Guests Stand 14.2%
One or More Guests Talk 20.7%
One or More Guests Touch 0.5%

Door Close 0.7%
Occupant Stand 13.1%
Occupant at Table 21.2%
Occupant Mouse 19.6%
Occupant File Cabinet 1.0%
Occupant Write 5.5%
Occupant Food 1.4%
Occupant on Telephone 12.7%
Two or More Guests Present 3.0%
Two or More Guests Sit 1.5%
Two or More Guests Stand 0.8%
Two or More Guests Talk 1.7%
Two or More Guests Touch 0.0%

Results in the literature suggest that these activities are highly correlated with
non-interruptibility, and this expectation is validated in the remainder of our
data. To simplify analysis and model building, we have placed these 54 cases
in the “Highly Non-interruptible” category.

While there are clearly differences in the self-report distributions for the
individual subjects, it is especially important to note that subjects self-reported
“Highly Non-interruptible” for 215 prompts, or approximately 32% of the data.
An informal inspection found that responses of “Highly Non-interruptible” were
sometimes given calmly and other times curtly by agitated subjects. For many
of the analyses in this article, we will examine this distinction and evaluate the
ability of estimators to distinguish “Highly Non-interruptible” situations from
other situations.

Table II presents how often particular events occur in the recordings. These
values are based on manually simulated sensors that will be discussed later
in this article. They are also based on the periods for which the subject was
present, as opposed to the entirety of the recordings. As previously mentioned,
these subjects almost always had their doors open. The lack of the explicit non-
interruptibility cue provided by a closed door probably makes it more difficult
to estimate their interruptibility. The subjects spent most of the day sitting,
and most of that time sitting at their desks. A guest was present approximately
25% of the time when the subjects were present, but there was very rarely more
than one guest present. While subjects frequently interacted with a computer,
they also spent a significant amount of time handling papers or talking.

4. HUMAN ESTIMATION

In order to evaluate the difficulty of estimating interruptibility and establish
an important comparison point for our models, we conducted an experiment
examining the human estimation of interruptibility. Subjects that we will refer
to as estimator subjects were shown portions of the recordings collected from the
original subjects which we will refer to as video subjects. Using the same scale as
the video subjects, the estimator subjects estimated the interruptibility of the
video subjects. The estimator subjects distinguished “Highly Non-interruptible”
situations from other situations with an accuracy of 76.9%.
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Fig. 3. The interface used by estimator subjects for human estimation.

4.1 Methodology

Using a website that advertises experiments conducted at our university, we
recruited 40 estimator subjects, each of whom was paid for a session that was
scheduled for one hour. A majority of our estimator subjects were students
at our university or at another university within walking distance. To protect
the video subjects, the estimator subjects were shown still images of the video
subjects and asked if they recognized any of the video subjects. They were only
shown recordings of video subjects they did not recognize.

Each session started with an explanation of the task. Estimator subjects
were told to evaluate the recordings as if they were walking into that situation
and needed to decide how interruptible the video subject was prior to decid-
ing whether to interrupt the video subject. A practice portion was started, and
the experimenter introduced the estimator subject to the interface in Figure 3.
The interface presented five initially unchecked radio buttons for each esti-
mate. Estimator subjects were told that they could watch the video more than
once, and they were advised that they should be as accurate as possible with-
out worrying about speed. The estimator subject then used the interface to
estimate the interruptibility of a video subject for 6 randomly selected prac-
tice self-reports. This was followed by the main portion in which the estimator
subject estimated the interruptibility of video subjects for 60 self-reports. The
main portion self-reports were selected randomly without replacement between
estimator subjects, ensuring that every self-report would be used once before
any self-report was used twice. After the main portion was completed, esti-
mator subjects provided information about their general strategies during the
main portion and their specific strategies for making estimates from particular
recordings. We will not further discuss their strategies, but informally note that
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Table III. Confusion Matrix for Human Estimates of Interruptibility

subjects reported strategies consistent with our intuition and the available liter-
ature indicating that social and task engagement are important [Seshadri and
Shapira 2001]. We finally collected answers to two seven-point Likert scales
discussed later in this section. The sessions were not timed, but none lasted
longer than the scheduled hour.

During both the practice and main portions, the interface alternated be-
tween showing 15 or 30 seconds of the recordings from immediately before a
self-report. Half of the estimator subjects started with 15 seconds, and half
started with 30 seconds. We chose to use 15 seconds of the recordings because
people naturally make these estimates very quickly. A person glancing in an
open office door can usually decide whether it is appropriate to interrupt. We
felt that showing too much of the recordings for each estimate might affect
how the estimator subjects made their decisions. While it would normally be
considered inappropriate to look in an open office door for 15 seconds, we felt
that the additional temporal information presented in 15 seconds should help
to correct for differences between normal circumstances and our recordings.
The 30-second condition was included to determine whether additional time
improved accuracy. As we will discuss later in this section, our estimator sub-
jects felt 15 seconds was sufficient and their performance did not improve with
the longer recordings.

Of the original 672 interruptibility self-reports, recordings for 587 self-
reports were used with the estimator subjects. The others were not used be-
cause they were potentially sensitive or because a technological artifact, such
as a gap in the video shortly before a prompt, might have been distracting to
the estimator subject. As 40 subjects provided estimates for 60 self-reports se-
lected randomly without replacement, each of the 587 self-reports had four or
five estimates generated for it, including at least two based on 15 seconds of
the recordings and at least two based on 30 seconds.

4.2 Experiment Results

Table III presents the human estimates in the form of a confusion matrix. Rows
correspond to the values reported by the video subjects, and columns correspond
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Fig. 4. Transforming the 5-choice problem into 2-choice problem.

to the values from the estimator subjects. The unshaded diagonal represents
instances when the estimator subject correctly estimated the same value given
by the video subject. Summing the diagonal, we can see that estimator subjects
were correct for 738 instances, or approximately 30.7% of the data. Because
“Highly Non-interruptible” is the most common value, always estimating that
value establishes a baseline chance accuracy of 706 correct, or 29.4%. Our esti-
mator subjects performed only slightly better than chance, a difference which is
not significant (χ2(1, 4800) = 1.01, p > .31). This indicates that interruptibility
estimation, as posed, is difficult.

We note that the mistakes made by the estimator subjects appear to include
a certain amount of bias, perhaps related to self-interest. If the mistakes were
random, we might expect approximately the same number of entries in the
upper-right half of the confusion matrix as in the lower-left half. This would
mean estimator subjects were equally likely to confuse video subjects for being
more interruptible as they were to confuse video subjects for being less inter-
ruptible. Instead, there are 450 entries in the upper-right half, approximately
18.7% of the data, and 1212 entries in the lower-left half, approximately 50.5%
of the data. Aggregating for each estimator subject, estimator subjects reported
significantly lower values than the video subjects (t(39) = −8.79, p < .001). This
may imply a systematic bias towards viewing another person as interruptible
when we are interested in making an interruption.

Figure 4 illustrates a transformation that reduces the problem to distin-
guishing between “Highly Non-interruptible” responses and other responses.
Because this reduced form will be used throughout this article, it is worth
clarifying that the bottom-right cell represents instances when both the video
subject and the estimator subject responded with “Highly Non-interruptible.”
The upper-left cell represents instances in which both the video subject and the
estimator subject responded with any other value. The other two cells repre-
sent instances when either the video subject or the estimator subject responded
with “Highly Non-interruptible,” but the other did not. For this problem, the
estimator subjects have an overall accuracy of 76.9%, significantly better than
a chance performance of 70.6% (χ2(1, 4800) = 24.5, p < .001).

While an accuracy of 76.9% may seem low for a task very similar to every-
day tasks, we find this level of accuracy believable because of the context in
which people normally make interruptibility estimates. People do not typically
make an initial estimate and then blindly proceed. Instead, the evaluation of
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Fig. 5. “I am confident in the accuracy of my judgments.”

interruptibility is an early step in a negotiated process [Goffmann 1982]. An
initial determination that a person is not interruptible allows an early exit
from negotiation, but other cues allow a person to decide against interrupting
despite an initial evaluation that they could. Other cues can include eye con-
tact avoidance and the continuation of the task that would be interrupted. In
designing systems to use interruptibility estimates, it will be important to sup-
port a negotiated entry, rather than assuming that interruptibility estimates
provides absolute guidance.

4.3 Estimator Subject Confidence

The validity of our human estimation results is strengthened by confidence data
collected from the estimator subjects. The first Likert scale in the experiment
stated “I am confident in the accuracy of my judgments.” Each estimator subject
responded on a seven-point scale ranging from “Strongly Disagree,” which we
will refer to as 1, to “Strongly Agree,” which we will refer to as 7. Given the re-
sults for this scale, as shown in Figure 5, it is clear that our estimator subjects
were confident in the accuracy of their estimates. We believe these confidence
levels indicate the recordings provided enough information for estimator sub-
jects to make estimates with which they were comfortable.

Interestingly, the subjects who were most confident in their estimates did
not perform better. In the 5-choice problem, subjects responding with a 6 or
7 actually did slightly worse than subjects responding with a 4 or 5, though
this difference is not significant (χ2(1, 2400) = 1.94, p > .15). They also per-
formed slightly worse in the 2-choice problem, but this difference was also not
significant (χ2(1, 2400) = 0.83, p > .36).

4.4 Recording Duration

As discussed in introducing this experiment, we felt 15 seconds of the recordings
would be sufficient for estimating interruptibility, and we included cases with
30 seconds to determine whether the additional time was helpful. This section
presents evidence supporting our initial belief that 15 seconds of the recordings
was sufficient.

The second Likert scale in the experiment stated “The 15 second videos
were long enough for making judgments.” Figure 6 shows the estimator subject
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Fig. 6. “The 15-second videos were long enough for making judgments.”

responses which indicate that the estimator subjects generally found 15 seconds
to be sufficient. Subjects who indicated a confidence level of 6 or 7 using 15 sec-
onds of the recordings did slightly worse in both the 5-choice problem and the
2-choice problem than subjects who indicated a lower confidence level, though
these differences are not significant (χ2(1, 1200) = 2.59, p > .10, χ2(1, 1200) =
0.07, p > .78). These results show that estimator subjects generally felt 15
seconds of the recordings was sufficient and that the estimator subjects who
desired more information did not do any worse than estimator subjects who
were comfortable with the amount of information available.

Further evidence that 15 seconds of the recordings was sufficient is seen
in the lack of an improvement when 30 seconds were available. In the 5-choice
problem, the overall accuracy of estimates based on 30 seconds of the recordings
is slightly worse than that of estimates based on 15 seconds, but this difference
is not significant (χ2(1, 2400) = 1.76, p > .18). In the 2-choice problem, esti-
mates based on 30 seconds of the recordings were better than estimates based
on 15 seconds, but not significantly better (χ2(1, 2400) = 0.06, p > .80). These
results indicate that the extra information available in 30 seconds of the record-
ings did not improve accuracy, which is consistent with the human ability to
make these decisions very quickly in everyday environments.

4.5 Discussion

This section has presented an experiment to explore human estimation of in-
terruptibility. The experiment showed that human estimators performed only
slightly better than chance when asked to estimate interruptibility on a 5-point
scale from “Highly Interruptible” to “Highly Non-interruptible”. These human
estimators appear to have systematically interpreted the video subjects as be-
ing more interruptible than the video subjects reported. By reducing the prob-
lem to distinguishing between “Highly Non-interruptible” conditions and other
conditions, we establish a human estimator accuracy of 76.9%.

Taken as a whole, these results seem to indicate that automatic estimates
of human interruptibility can be based on short periods of time immediately
preceding a potential interruption. Because human estimators had difficulty
accurately estimating the interruptibility of a video subject on a 5-point scale,
it seems that it might be reasonable for automatic estimators to focus on
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Fig. 7. Custom interface used for Wizard of Oz sensor simulation.

recognizing “Highly Non-interruptible” conditions. Automatic estimators could
identify extremely inappropriate times for interruptions and allow a system to
avoid them while using negotiated approaches during other times. This strat-
egy appears to work well in human interaction [Goffmann 1982] and also seems
worth pursuing as an approach to human computer interaction.

5. MODELS BASED ON WIZARD OF OZ SIMULATED SENSORS

While people regularly estimate interruptibility during everyday tasks, we are
interested in whether models based on practical sensors can automatically pro-
vide these estimates. This section presents sensors simulated using a Wizard
of Oz technique [Dahlbäck et al. 1993; Maulsby et al. 1993]. As discussed in
our introduction, the decision to use simulated sensors allows us to consider
a variety of sensors without requiring that we build them first. We can thus
limit the time and resources spent on sensors that are ill-suited or subopti-
mal for predicting interruptibility. After discussing our simulated sensors, this
section presents and analyzes models based on these simulated sensors. This
section partially duplicates preliminary results discussed in a previous paper
[Hudson et al. 2003], but significantly adds to the sensors, models, and analyses
presented in that paper.

5.1 Manual Sensor Simulation

The sensors discussed in this section were manually simulated using a custom
interface shown in Figure 7. The interface presents recordings in 15-second seg-
ments. A coder could playback the recordings at normal speed or double speed,
at their option. At the end of each segment, a coder could go to the next segment
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Table IV. Wizard of Oz Simulated Sensors for Each 15-Second Segment

Occupant Related �Occupant presence.
�Speaking, writing, sitting, standing, or on the phone.
�Touch of, or interaction with: desk (primary work surface),
table (large flat surface other than the primary work
surface), file cabinet, food, drink, keyboard, mouse,
monitor (gaze at), and papers (including books,
newspapers, and loose paper).

Guest Related �Number of guests present.
�For each guest: sitting, standing, talking, or touching (any
physical contact or very close physical proximity with
occupant, including handing occupant an object).

Environment �Time of day (hour only).
�Door open, closed.

Aggregate �Anybody talk (combines occupant and guest talk values).

or watch the current segment again. This interface, and the set of sensors it is
used to simulate, was developed after an initial exploratory coding of data from
our first subject. Data from all four subjects was coded after the procedures
were finalized. Coders began their work training for consistency. We evaluated
agreement among coders by recoding a randomly selected 5% of the recordings
and found 93.4% agreement at a granularity of 15 second intervals. In order
to minimize coding time, and because we believe information in close tempo-
ral proximity will be most useful in predicting interruptibility, we have only
coded the 5 minutes preceding each self-report, for a total of 56 hours of coded
recordings.

Using a total of four passes, our coding of the recordings identified the 24
events or situations included in Table IV. This set of manually simulated sen-
sors was chosen because we had an a priori belief that they might relate to
interruptibility, because we believed that a sensor could plausibly be built to
detect them, and because they could be observed in our recordings. While we be-
lieve that information like what applications are running on a computer could
be useful, we could not directly observe such information in our recordings.
Some sensors would be easier to build than others, and we have included sen-
sors that would be difficult to build because knowing they are useful might
justify the effort necessary to develop them.

Using these simulated sensor values, we computed a number of derivative
sensors to capture recency, density, and change effects. These are shown in
Table V, and were computed for time intervals of 30 seconds, 1 minute, 2 min-
utes, and 5 minutes. We will use the names in the left column to refer to deriva-
tives of sensors, and so “Occupant Talk (Any-300)” refers to the Any derivative
of the Occupant Talk sensor over a 5 minute interval.

5.2 Predictiveness of Individual Features

Based on the literature and our own intuitions, we expect that the strongest
indicators of non-interruptibility would be related to task engagement and so-
cial engagement [Seshadri and Shapira 2001]. We informally note that it is
almost always considered rude to interrupt a person who is talking. It is also
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Table V. Derivations Applied to Manually Computed Sensors

Imm Whether the event occurred in the 15 second interval containing the self-report
sample.

All-N Whether event occurred in every 15 second interval during N seconds prior to the
sample.

Any-N Whether event occurred in any 15 second interval during N seconds prior to the
sample.

Count-N The number of times the event occurred during intervals in N seconds prior to the
sample.

Change-N The number of consecutive intervals for which the event occurred in one and did
not occur in the other during N seconds prior to the sample.

Net-N The difference in the sensor between the first interval in N seconds prior to the
sample and the sensor in the interval containing the sample.

Table VI. Information Gain Ordering of the 30 Most Predictive Individual Features

1 Any Talk (Count-30)
2 Any Talk (Imm)
3 Occupant Talk (Imm)
4 Occupant Talk (Count-30)
5 Any Talk (Count-60)
6 Any Talk (Any-30)
7 Occupant Talk (Any-30)
8 Occupant Talk (Change-30)
9 Occupant Talk (Count-60)

10 Any Talk (Count-120)

11 Telephone (Count-30)
12 Occupant Talk (Count-120)
13 Occupant Talk (Any-60)
14 Occupant Talk (Change-60)
16 Telephone (Imm)
15 Any Talk (Any-60)
17 Telephone (All-30)
18 Telephone (Count-60)
19 Any Talk (All-30)
20 Occupant Talk (All-30)

21 Telephone (All-60)
22 Telephone (Count-120)
23 Telephone (Count-300)
24 Any Talk (Count-300)
25 Occupant Talk (Count-300)
26 Any Talk (All-60)
27 Telephone (Change-60)
28 Telephone (Any-30)
29 Telephone (Change-30)
30 Occupant Talk (Change-120)

particularly inappropriate to interrupt a person who is speaking on a telephone,
perhaps because the remote party cannot participate in the subtle nonverbal
negotiation of the interruption.

While we felt that these types of activities would need to be detected to
produce good estimates of interruptibility, it was not clear exactly which sensors
would be the most helpful. It was also not clear which easily-built sensors might
work almost as well as sensors that would be very difficult to build. To gain
some insight into these issues, we examined the predictive power of individual
features using an information gain metric [Mitchell 1997].

Described simply, information gain is based on sorting a set of observations
according to the value of a feature associated with each observation. The sort-
ing removes the entropy associated with variations in that feature. This re-
duction in entropy provides an estimate of the predictiveness of that feature.
The absolute value of this difference is not particularly interesting, only the
relative values for the features. Further, information gain only indicates poten-
tial usefulness in prediction and cannot, by itself, indicate whether a feature
indicates interruptibility or non-interruptibility. Finally, the notion of predic-
tiveness measured by information gain includes sensitivity to frequency, and so
an event that always indicates interruptibility, but almost never occurs, would
not be highly ranked.

Table VI presents an ordered list of the 30 most predictive individual fea-
tures, as indicated by information gain when distinguishing between “Highly
Non-interruptible” self-reports and other self-reports. This number of features
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Table VII. Features Selected with a Correlation-Based Feature Selection Technique

1 Telephone (Count-30)
2 Any Talk (Imm)
3 Any Talk (Count-60)
4 Telephone (Imm)
5 Mouse (Count-60)
6 Any Talk (Count-300)
7 Telephone (All-60)
8 Occupant Talk (Imm)

9 Monitor (Count-300)
10 Telephone (All-300)
11 Guests Sit (Net-60)
12 Telephone (Net-120)
13 Telephone (Count-300)
14 Any Talk (Count-30)
15 Writing (Change-30)
16 Stand (Change-300)

17 Any Talk (Net-300)
18 Telephone (All-30)
19 Mouse (Count-120)
20 Any Talk (All-120)
21 Food (Count-300)
22 Table (Change-30)
23 Guests Sit (All-300)
24 Table (Count-300)

was selected arbitrarily and is only intended to allow an examination of the
most predictive individual features. Although we had expected talking and the
telephone to be important indicators, it is very interesting to note that all 30 of
the top individual features are related to either the telephone or talking. This
metric does not consider the redundancy between the features in the chart.
While sensors for talking and the telephone will be important throughout this
article, the models discussed in the rest of the article will also examine what
additional features can complement the information gained from talking and
telephone sensors. This metric shows that, if allowed to use only one sensor, a
sensor related to talking or the telephone is the most useful.

5.3 Correlation-Based Feature Selection

As we begin to examine multiple features, we note that the combination of
manually simulated sensors and sensor derivations yields a very large number
of possible features. Using all of these features to build models could have very
negative effects. In a phenomenon known as overfitting, a model mistakenly
interprets minor details or quirks in data as representative of data it will be
asked to evaluate in the future. The overall accuracy of its future estimates is
then lower than it should be, because it is confused by differences in the minor
details that it previously mistook for important. Overfitting is very similar to
degree-of-freedom problems found in models with excessive parameters.

In order to prevent overfitting, we applied a correlation-based feature se-
lection technique [Hall 2000] as implemented in the Weka machine learning
software package [Witten and Frank 1999]. This technique uses correlations
between different features and the value that will be estimated to select a set
of features according to the criterion that “Good feature subsets contain features
highly correlated with the (value to be estimated), yet uncorrelated with each
other” [Hall 2000]. Table VII lists the 24 features selected for distinguishing
between “Highly Non-interruptible” conditions and other conditions, in the or-
der of their selection. Unlike Table VI, the number of features selected here is
not arbitrary. The correlation-based feature selection technique indicates the
point at which it believes additional features are redundant and may lead to
overfitting which, in this case, is after the (Count-300) derivative of the Table
feature.

In the next section, we will create models of human interruptibility based
on the features selected in this section. While we will revisit feature selection
in a later section, the feature selection technique used here has some good
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Table VIII. Accuracy of Models Built from the Correlation-Based Features in Table VII

qualities. First, this technique is computationally very cheap compared to the
feature selection techniques we use later. In a deployed system, the feature
selection techniques used here could regularly examine a huge number of pos-
sibly interesting features and quickly select an appropriate subset. Second, this
technique is independent of the models that will be created from the selected
features. As such, the selected features are appropriate for use with a variety
of modeling techniques.

5.4 Initial Model Construction

This section presents models constructed using several standard machine
learning techniques. Specifically, we will be using decision trees [Quinlan 1993]
and naı̈ve Bayes predictors [Duda and Hart 1973; Langley and Sage 1994]. We
have obtained similar results with support vector machines [Burges 1998] and
AdaBoost with decision stumps [Freund and Schapire 1997], but will not dis-
cuss them here for the sake of brevity. We will also not attempt to fully describe
each of these techniques. Instead, interested readers are encouraged to consult
the original references or a machine learning text, such as Mitchell [1997]. All of
our models were constructed using the Weka machine learning software pack-
age [Witten and Frank 1999], a widely available open source software package.

Confusion matrices for models constructed from the features in Table VII
are presented in Table VIII. Remember that chance is an accuracy of 68.0%,
which could be obtained by always predicting “Other Values”. The results in
this section have all been obtained using a standard cross-validation approach
involving multiple trials of model construction. In each of 10 trials, 90% of the
data is used to train, and the remaining 10% is used for testing. Each instance
is used to train 9 trials and to test 1 trial. The values reported are sums from
the 10 trials.

These results show that models based on manually simulated sensors with
features selected according to a correlation-based feature selection technique
can estimate human interruptibility as well as our estimator subjects. Both
models perform significantly better than the 68.0% chance (Naı̈ve Bayes:
χ2(1, 1344) = 16.41, p < .001, Decision Tree: χ2(1, 1344) = 12.50, p < .001),
and neither is significantly different than the 76.9% performance of our
estimator subjects (Naı̈ve Bayes: χ2(1, 3072) = 0.27, p > .60, Decision Tree:
χ2(1, 3072) = 0.02, p > .89). The difference between the models is also not sig-
nificant (χ2(1, 1344) = 0.27, p > .60). Given that we used a feature selection
technique that is independent of the modeling technique and reproduced the

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 1, March 2005.



136 • J. Fogarty et al.

Table IX. Results Using Wrapper-Based Feature Selection with a Naı̈ve Bayes
Classifier

results with distinct learning techniques, these results make us quite hopeful
that models with accuracies in the range of 75% to 80% can be driven by sensors.

5.5 Wrapper-Based Feature Selection and Model Construction

While the correlation-based feature selection technique used earlier has several
good properties, it is a heuristic and we cannot be sure the features it selects are
optimal. This section presents an alternative feature selection technique that
chooses features according to their usefulness in a particular model. It is based
on slowly adding features to a model until additional features do not improve
accuracy, and is known as a wrapper technique because it can theoretically
be wrapped around any model [Kohavi and John 1997]. Because this technique
requires the repeated application of a machine learning technique, it is compu-
tationally much more expensive than techniques like correlation-based feature
selection. The results presented were obtained in conjunction with a feature
search strategy that starts with an empty set of features and adds or removes
features from the set until there is no change that results in an improvement.
This approach is limited by the fact that it selects features appropriate to the
particular model used during feature selection. Used with a naı̈ve Bayes model,
for example, this method will not select locally predictive features that could
be useful to a decision tree model.

Table IX presents the results of applying a wrapper-based feature selec-
tion technique with a naı̈ve Bayes classifier. The 10 features shown here
were selected as good features for the naı̈ve Bayes classifier. They yield a
model with an accuracy of 81.25%, significantly better than the 68.0% chance
(χ2(1, 1344) = 31.13, p < .001), significantly better than the estimator subjects
(χ2(1, 3072) = 5.82, p < .05), and better than the naı̈ve Bayes classifier built
with the correlation-based feature selection, though this difference is not sig-
nificant (χ2(1, 1344) = 2.42, p > .11). Table X presents similar results obtained
with a decision tree classifier. Coincidentally, 10 features are also selected in
this case, though they are different than the features selected for use with the
naı̈ve Bayes classifier. The selected features yield a decision tree classifier with
an accuracy of 82.4%, significantly better than chance (χ2(1, 1344) = 37.56,
p < .001), significantly better than the estimator subjects (χ2(1, 3072) = 9.51,
p < .01), and significantly better than the decision tree classifier built with the
correlation-based feature selection (χ2(1, 3072) = 9.51, p < .01). The difference
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Table X. Results Using Wrapper-Based Feature Selection with a Decision Tree

Fig. 8. Classifier accuracy versus number of features.

between the decision tree model and the naı̈ve Bayes model built here is not
significant (χ2(1, 1344) = 0.32, p > .57).

The models presented in this section both distinguish “Highly Non-
interruptible” situations from other situations significantly better than the
76.9% accuracy of our estimator subjects. The tradeoff for obtaining these better
results is that we have expended many more computational resources during
model creation and we have selected features that may be appropriate only
with the modeling techniques we used when selecting them. These results,
taken with the results in the previous section, support the view that it should
be possible to create robust models of human interruptibility. Because the esti-
mates given by our models match and even surpass the accuracy of estimates
given by our estimator subjects, it should be possible to design systems that
effectively use these estimates as part of a negotiated interruption process.

5.6 Model Accuracy and Number of Features

Given that wrapper-based feature selection chose only 10 features from a pos-
sible set of almost 500 features, it is interesting to examine how the accuracy of
the models is improved by each additional feature. Figure 8 plots the accuracy
of the two wrapper-based models presented in the previous section as a function
of the number of features. Both models start at a baseline accuracy of 68% for
no features. They then have a very sharp improvement in accuracy when the
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Table XI. Results with “Easy to Build” Features and a Naı̈ve Bayes Model

first feature is added. In both cases, this is the Any Talk (Imm) feature. The
next handful of features yields a small, but noticeable, improvement. After this,
very little improvement is associated with each feature added, and the feature
selection terminates after 10 because no additional feature improves accuracy.

This relationship between the features and the accuracy of the models has im-
portant implications. Our data indicates that a single sensor to detect whether
anybody in the office is currently speaking can by itself yield an accuracy of
75.9%. While this is worse than the performance of our estimator subjects, the
difference is not significant (χ2(1, 3072) = 0.28, p > .59). This might seem too
simple to be reasonable, but we point out that speaking correlates with many
other activities that one might wish to recognize when estimating interrupt-
ibility. For example, people normally speak when on the telephone. It is also
generally expected that people speak to a guest who is currently in their office.
This result suggests that it may not be necessary to use expensive sensor net-
works or vision-based systems to estimate interruptibility, but that we might
instead build much less expensive systems that perform nearly as well as more
expensive alternatives.

5.7 An “Easy to Build” Feature Set

Given the results of the previous section, we now consider models using only
sensors that are readily available or could be easily constructed. In fact, we
originally created the Any Talk simulated sensor because it would be easier to
build than a sensor that differentiated between the occupant of an office talking
and guests talking. This proposed sensor could be combined with simple soft-
ware that detects mouse and keyboard activity. Inexpensive hardware placed
between the telephone and the wall can sense whether the phone is currently
off the hook. Finally, the time of day is readily available. Throughout this sec-
tion, we will refer to this set of 5 sensors from our manually simulated data as
“Easy to Build” features.

Table XI and Table XII present the features and models resulting from a
wrapper-based feature selection with the “Easy to Build” features. The naı̈ve
Bayes result of 78.9% overall accuracy is better than the 76.9% accuracy of our
estimator subjects, though not significantly (χ2(1, 3072) = 1.19, p > .27), and
worse than the 81.25% accuracy of the model in Table IX that was built from
the full set of sensors, but not significantly (χ2(1, 1344) = 1.19, p > .27). The
decision tree model accuracy of 79.2% is also better than our estimator subject
accuracy, but the difference is not significant (χ2(1, 3072) = 1.58, p > .20). It is

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 1, March 2005.



Predicting Human Interruptibility with Sensors • 139

Table XII. Results with “Easy to Build” Features and a Decision Tree Model

Table XIII. Results of Wrapper-Based Feature Selection with a Naı̈ve Bayes
Classifier

worse than the 82.4% accuracy of the model in Table X that was built from the
full set of sensors, but not significantly (χ2(1, 1344) = 2.32, p > .12).

These results for the “Easy to Build” sensors are very promising because they
indicate that models of human interruptibility can be based on technology that
is already available or easily built. This implies that we do not need to solve
hard computer vision problems or hard artificial intelligence problems before
proceeding with creating systems that use models of human interruptibility.

5.8 Models of the 5-Choice Problem

Up until this point, we have focused on models to distinguish “Highly Non-
interruptible” situations from other situations. This section presents models
of the full 5-point scale and discusses how these models can support a level
of flexibility that is not available with models of the 2-choice problem. It is
important to note that the techniques used here do not have any notion that our
five possible values represent a scale. As far as the techniques are concerned, the
five values are completely unrelated. While there are techniques that support
values in a scale, informal experimentation with some of these techniques did
not yield an improvement over the results presented here.

Table XIII presents the results of wrapper-based feature selection for the
5-choice problem with a naı̈ve Bayes classifier. The 47.6% overall accuracy of
this model is significantly better than our estimator subjects 30.7% performance
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Table XIV. Results of Wrapper-Based Feature Selection with a Decision Tree

(χ2(1, 3072) = 66.17, p < .001). Table XIV presents the results from a decision
tree model. Its 51.5% overall accuracy is significantly better than the estimator
subjects (χ2(1, 3072) = 98.88, p < .001) and better than the naı̈ve Bayes model,
though this difference is not significant (χ2(1, 1344) = 2.01, p > .15).

Models of the 5-choice problem allow systems to provide an additional level
of flexibility. People who feel they are being interrupted too often could use the
system’s interface to request that they be interrupted less frequently. Instead
of initiating a negotiated interruption for a value of 4 or lower, the system could
then only negotiate interruptions when its model estimates a value of 3 or lower.
Alternatively, systems could use the value of the estimate to decide how subtly to
initiate an interruption. Estimates of 3 or 4 could be used by a system to decide
when to initiate a negotiated interruption with an ambient information display
[Fogarty et al. 2001; Heiner et al. 1999; Redström et al. 2000], while estimates
of 1 or 2 could be used by the system to decide when to initiate with a more
direct method.

5.9 Discussion

This section has presented a variety of statistical models of human interrupt-
ibility. We first demonstrated that models based on manually simulated sensors
can differentiate “Highly Non-interruptible” situations from other situations
with an accuracy as high as 82.4%, significantly better than the 76.9% per-
formance of our human estimator subjects. This initial result is made more
interesting by the observation that the Any Talk simulated sensor alone can
provide an accuracy of 75.9% and that a set of sensors we consider easy to build
can provide an accuracy as high as 79.2%. This set of sensors does not require
any vision-based techniques and could be built and used for a very low cost.

If used in conjunction with models of the importance of different interrup-
tions and systems designed to allow negotiated entry into an interruption, the
models presented in this section could support significant advances in human
computer interaction and computer mediated communication. While this work
has not attempted to solve the hard artificial intelligence problems related to
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truly understanding human behavior, we have quantitatively demonstrated
that simple sensors can effectively estimate human interruptibility. By using
passive sensors instead of requiring that people create and maintain calen-
dars or otherwise explicitly indicate their interruptibility, our approach helps
to make interruptibility estimation practical for use in everyday systems.

6. AUTOMATED ANALYSIS OF THE RECORDINGS

While we did not initially intend to automatically analyze our recordings, the
results of our manually simulated sensor analysis made the possibility inter-
esting. Specifically, the significance of the Any Talk simulated sensor makes
it worth examining whether the audio we collected from a single microphone
placed in the corner of an office allows us to approximate the Any Talk simulated
sensor sufficiently well to support models of human interruptibility.

Because we recorded audio with a microphone placed beside the computer
used for recording, our recordings include a significant amount of fan noise from
the recording computer. There are many situations where the combined audio
and video recordings make it clear that a person is talking and the manually
simulated Any Talk sensor has a value of true, but only a faint murmur is actu-
ally audible over the fan noise in the audio. It is much more difficult to identify
these instances without video, and we would expect automated techniques to
encounter difficulties.

6.1 Silence Detection

As an approximation of the Any Talk manually simulated sensor, we decided
to use the silence segmentation functionality of the Sphinx speech recogni-
tion package [CMU Sphinx]. For each recording configuration, the silence seg-
mentation software was calibrated with a short bit of “silent” audio. For these
calibrations, we used recordings from early in the morning before the subject
arrived. These recordings contained fan noise created by our recording ma-
chine, but did not contain any other activity. After calibrating, we used the
silence segmentation with 4 different threshold configurations, designed at one
extreme to identify only the loudest activity, and at the other extreme to iden-
tify activity even slightly above the silence calibration. For each threshold,
we built a set of features representing how much of a time interval was not
silent.

To determine if these features could reasonably approximate our Any Talk
simulated sensor, we used the features from the 15 seconds before each in-
terruption to attempt to predict the value of the Any Talk (Imm) simulated
sensor value. This is intended only as a rough estimate of the usefulness of
these features as there are some problems related to using the 15 seconds
before the interruption versus the 15 seconds that were the basis for the man-
ually simulated sensor value. Given this qualification, we built a naı̈ve Bayes
model that predicted our Any Talk (Imm) simulated sensor with an accuracy
of 79.2% and a decision tree with an accuracy of 80.1%, both significantly bet-
ter than the 70.4% chance accuracy that could be obtained by always predict-
ing “Not Talking” (Naı̈ve Bayes: χ2(1, 1344) = 13.73, p < .001, Decision Tree:
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Table XV. Results Using a Naı̈ve Bayes Model with Silence Detector Features

Table XVI. Results Using a Decision Tree with Silence Detector Features

χ2(1, 1344) = 16.87, p < .001). This indicates that our silence detection features
have predictive value despite difficulties with the fan noise.

6.2 Hybrid Models

To further evaluate our implementation of the Any Talk sensor, we combined
it with time of day and our manually simulated sensors for the telephone, key-
board, and mouse. As discussed in our “Easy to Build” section of the manually
simulated sensor discussion, these sensors are already available or very easily
built. They can also be expected to produce very reliable results.

Table XV shows a naı̈ve Bayes model built using wrapper-based feature selec-
tion. Its overall accuracy of 76.3% is not significantly different from the 76.9%
accuracy of our human estimator subjects (χ2(1, 3072) = 0.08, p > .77). The de-
cision tree model shown in Table XVI has an overall accuracy of 76.9%, which is
equivalent to our human estimator subjects (χ2(1, 3072) = 0.001, p > .97). The
difference between these two models is not significant (χ2(1, 1344) = 0.07, p
> .79).

This shows that a single microphone in the corner of an office, when combined
with the time of day, a sensor for whether the phone is in use, and activity
information for the mouse and keyboard, can provide enough information to
estimate human interruptibility as well as our human estimators. The result
does not require expensive infrastructure, and so it seems very practical for use
in everyday systems. The result also shows that the implementation of an Any
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Talk sensor does not need to be perfect, as our silence detector features only
predict our Any Talk sensor with an accuracy of 80%, but are still useful for
interruptibility estimation.

7. DISCUSSION AND FUTURE WORK

Given the results in this article, there is room for substantial work to validate
and build upon our results with larger groups of people in a wider range of
environments. There are also a variety of issues to consider in other environ-
ments such as the additional noise of open-plan offices. Mobile workers pose
a different set of challenges. One issue of particular interest is development
of an appropriate Any Talk sensor. The silence detector used here adapts to
background noise well enough to work in the office environments of our video
subjects, but it is not clear whether it is sophisticated enough to identify talk-
ing in noisier environments. A substantial body of research on segmenting and
classifying audio [Lu et al. 2002] can be applied to this problem.

The estimator subjects in our study were not personally familiar with the
video subjects, and it is possible they might have performed better if they were.
However, many of the cues that people might use such as learned patterns of
availability can be modeled [Begole et al. 2002, 2003]. There is room to improve
our models by examining the strategies people use to estimate the interrupt-
ibility of colleagues. We are also interested in the bias our estimator subjects
had in estimating that video subjects were more interruptible than the video
subjects reported. Additional studies might examine whether this bias would
be removed or reversed if they were told to act as an assistant regulating access.

In more recent work, we have used the results of this work to support the
deployment of real sensors into the offices of ten office workers [Fogarty et al.
2004a]. We logged the output of these sensors and collected interruptibility self-
reports. Analyses of the collected data support the results presented in this ar-
ticle, demonstrate models for a wider variety of office workers than was studied
in this article, examine some questions regarding the amount of training data
required for these models, and explore the potential of different combinations
of sensors. Recent work by Horvitz and Apacible [2003] examined models of in-
terruptibility based on calendar information, computer activity, and real-time
analyses of audio and video streams. They collected a total of 15 hours of audio
and video recordings from three office workers. The office workers then viewed
the recordings and annotated them with a description of their interruptibil-
ity. This work is complimentary to ours, but the differences in our data and
the data collected by Horvitz and Apacible make it inappropriate to directly
compare model performance.

We intend to build systems that use the types of models presented in this ar-
ticle. Functional systems will allow us to continue to evaluate and improve upon
these models, including examining models that learn the individual nuances
of people over time. Building systems will also allow us to explore many issues
related to application use of these models. These issues include balancing the
importance of a piece of information with the cost of the interruption required
to deliver it. We are also interested in estimates of human interruptibility as
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one part of a multi-stage negotiation of an interruption. There are also a variety
of issues to consider relating to, use of models in awareness and communication
applications, some of which we have recently examined by building a commu-
nication client that shares automatically sensed information about a person’s
context and interruptibility [Fogarty et al. 2004b].

We have presented studies that quantitatively demonstrate that models cre-
ated from simple sensors can estimate human interruptibility as well as our
human estimator subjects could from the recordings. Because anyone talking
in a room is the most predictive feature we examined, our models do not re-
quire complex sensors such as vision-based techniques, and can instead be built
from a single microphone in an office and very simple sensors for telephone,
mouse, and keyboard activity. By using a passive approach, instead of requiring
people to explicitly indicate interruptibility, or create and maintain calendars,
our approach makes interruptibility, estimation feasible for use in everyday
systems. Used with models of the importance of potential interruptions and
system designs that support negotiated interruptions, our models offer to sup-
port significant advances in human computer interaction.
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