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ABSTRACT
The potential for sensor-enabled mobile devices to proac-
tively present information when and where users need it ranks
among the greatest promises of ubiquitous computing. Un-
fortunately, mobile phones, PDAs, and other computing de-
vices that compete for the user’s attention can contribute to
interruption irritability and feelings of information overload.
Designers of mobile computing interfaces, therefore, require
strategies for minimizing the perceived interruption burden
of proactively delivered messages. In this work, a context-
aware mobile computing device was developed that auto-
matically detects postural and ambulatory activity transitions
in real time using wireless accelerometers. This device was
used to experimentally measure the receptivity to interrup-
tions delivered at activity transitions relative to those deliv-
ered at random times. Messages delivered at activity transi-
tions were found to be better received, thereby suggesting a
viable strategy for context-aware message delivery in sensor-
enabled mobile computing devices.

Author Keywords
Interruption, context-aware computing, human-computer in-
terface, mobile computing

ACM Classification Keywords
H5.m Information interfaces and presentation (e.g. HCI):
Miscellaneous.

INTRODUCTION
Mobile computing devices present a conundrum for the in-
terface designer. On one hand, current mobile computing de-
vices such as phones and PDAs are contributing to feelings
of information overload and to what might be called “inter-
ruption irritability.” On the other hand, new sensor-enabled
mobile devices will permit the mobile developer to create in-
novative applications that proactively deliver information to
people when and where they need it. Many of the new appli-
cations that have the potential to add the most value to mo-
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bile computing devices are also those that will require proac-
tive prompting of the user, yet proactive prompting could
contribute to feelings of interruption and annoyance.

Mobile computing devices will increasingly deliver phone
calls, reminders, email, task lists, instant messages, news,
and other time and/or place-based information. They will
also soon run context-aware applications such as location
or activity based friend-finders, activity-triggered to-do re-
minders, and imaginative new phone services. The algo-
rithms that determine when and what information to present
will not make flawless decisions. Delivering the proactive
interruptions the user wants, therefore, will inevitably in-
crease the number of unwanted interruptions the user must
endure.

Each time a device proactively provides information, it is
competing for the user’s attention and possibly interrupt-
ing the ongoing tasks. As others have observed, although
computing power will continue to improve, permitting more
powerful mobile devices, human attention is a limited re-
source [7]. Determining a good time to interrupt requires a
complex assessment of context and message content. For ex-
ample, consider an office worker sitting at a desk discussing
a report with a supervisor. If the phone rings and it is a co-
worker with updated information for the report, the office
worker is likely to be receptive to the phone call. However,
if the phone call is from from a friend to discuss plans for the
weekend, then the office worker is likely to be less receptive.
On the other hand, the office worker might be receptive to the
phone call from the friend if the phone displays the message
visually instead of using the ring to signal the interruption.
The visual notification is less likely to disrupt the flow of the
current conversation, perhaps lowering the perceived burden
of the interruption for both people in the room.

There are at least 11 factors that impact the perceived burden
of an interruption, as listed in Table 1. Developing a system
that weighs these complex factors would require activity and
discourse recognition systems that are well beyond the state
of the art. Fortunately, recent work suggests that a small set
of sensors gathering key information for a particular domain
such as the office may provide useful information about in-
terruptibility [17] and receptiveness to context-aware infor-
mation [19]. Applications that can infer interruptibility from
sensors can defer non-time-critical prompts to the times that
are likely to be least disruptive.
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Factor Description of the Factor Prior work
Activity of the user The activity the user was engaged in during the

interruption
[8, 9, 4, 22, 2]

Utility of message The importance of the message to the user [4, 31]
Emotional state of the user The mindset of the user, the time of disruption,

and the relationship the user has with the inter-
rupting interface or device

[32, 16, 13, 21]

Modality of interruption The medium of delivery, or choice of interface [32, 1, 27, 14]
Frequency of interruption The rate at which interruptions are occurring [27]
Task efficiency rate The time it takes to comprehend the interrup-

tion task and the expected length of the task
[9, 27, 31]

Authority level The perceived control a user has over the inter-
face or device

[16, 29]

Previous and future activities The tasks the user was previously involved in
and might engage in during the future

[12]

Social engagement of the user The user’s role in the current activity [18, 15]
Social expectation of group behavior Activities and expected reaction to interruption

of nearby people
[18]

History and likelihood of response The type of pattern the user follows when an
interruption occurs

[24, 26]

Table 1. Eleven factors that influence a person’s interruptibility at a given moment.

One strategy that has been suggested to minimize the per-
ceived burden of an interruption is to present reminders im-
mediately following the completion of some action [25]. The
assumption is that at activity transitions, memory load may
be low, because a person may be between evaluation of the
last activity and formation of a new goal. In this work, we
study the possibility that prompts from mobile devices may
be perceived as less disruptive if they are presented at times
when the user is transitioning between different physical ac-
tivities. Our experiment is motivated by the casual observa-
tion that a transition between two different physical activities
may strongly correlate with a task switch, and a task switch
may be a better time to prompt the user with an interruption
than an otherwise random time. When switching physical
activities, the user has often just completed one task and is
moving onto the next, or the user is “self interrupting” the
current task to embark on a new activity. This may lower the
user’s resistance to an interruption from a mobile computing
device that presents new information.

Not every physical activity transition will mark a good time
to interrupt. For instance, it is possible that prompts at phys-
ical activity transitions could disrupt task planning and cause
a person to lose track of what he or she was planning to do.
Or, it is possible that by the time a person has changed to a
new physical activity, he or she is already deeply immersed
in a new task and not receptive to a new prompt. Finally,
it is possible that it is more difficult to respond to prompts
at the same time one is changing physical activity than at
other times. Nonetheless, it seems plausible that, on aver-
age, prompts that coincide with activity changes may be per-
ceived as less disruptive than prompts presented at random
times.

In the remainder of the paper we describe a device we built
to measure simple activity transitions and an experiment we
conducted to compare user receptivity to messages deliv-

ered by mobile computing devices at activity transitions with
those presented at other times.

RELATED WORK
The majority of prior work on interruption has focused on
desktop computing applications and office environments rather
than mobile computing.

Modeling Interruption and defining interruptibility
An interruption is an event that breaks the user’s attention
on the current task to focus on the interruption temporarily
[27]. In an office environment, interruptions range from e-
mails to impromptu meetings in the hallway. Interruptions
are not always disruptive; some are beneficial to the user.
When a person takes a coffee break or uses the restroom,
it is a self-initiated interruption from current work that can
help the person refocus on the task at hand.

The 11 factors in Table 1 all contribute to a user’s evaluation
of perceived burden of an interruption. An exhaustive model
of interruptibility would include a weighted sum of these
factors, where the context is detected automatically by ap-
propriate sensors. No work to date has considered more than
a few factors simultaneously because of the limited sensing
options available. Some factors are particularly challenging,
such as predicting the user’s future activity.

Prior work varies in the explicit or implicit definition of “in-
terruptibility.” Some of the metrics that have been used to
evaluate interruptibility are listed in Table 2. We will mea-
sure interruptibility by asking the user to rate receptiveness
to receiving a particular type of message at a particular time.
We expect that a drop in receptiveness will correspond to an
increase in perceived burden of the interruption, but in pi-
lot testing we found users could more easily understand the
question when framed in terms of receptiveness. The per-
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ceived burden of the interruption is not equivalent to the ac-
tual disruptiveness of the interruption. An interruption wel-
comed by the user may still negatively impact overall pro-
ductivity, but in this work we focus on user perception at the
time of the interruption itself.

Detecting interruptibility with sensors
Fortunately, recent prior work suggests that a few key sen-
sors placed in an office environment may provide enough
information to improve interruptibility detection without ex-
plicit detection of each of the 11 factors in Table 1 [17].
Hudson et al. studied an office environment and proposed an
interruptibility model incorporating the activity of the user,
the emotional state of the user and the social engagement of
the user. They argue that these factors can be tracked using
an audio sensor, the time of the day, and monitors for tele-
phone, keyboard, and mouse usage [17]. These factors were
sufficient to determine interruptibility with an accuracy of
75-80% when using simulated sensors. A followup study
with functioning sensors also achieved good results [6].

Another recent study used the social engagement and activ-
ity of the user, as well as social expectation of group behav-
ior, to build a model of interruption based upon switching
among desktop computing applications. This study showed
that the cost of an interruption for a user can be determined
with a 73% accuracy using a computerized meeting sched-
uler, ambient acoustics in the office, visual analysis of the
user’s pose to obtain a model of attention, and activity on
the computer desktop [12].

These studies suggest a small set of sensors may provide
valuable information about interruptibility in the office set-
ting, but mobile computing applications offer additional chal-
lenges. Mobile devices cannot rely as heavily on keyboard
and mouse monitoring or text analysis to determine user ac-
tivity. Mobile computing applications also must use sensors
worn or carried by the user, who is likely to roam throughout
the home, workplace, and community.

Detecting interruptibility in mobile applications
Hinckley and Horvitz modeled interruptibility by consider-
ing the user’s likelihood of response and the previous and
current activity. Three sensors necessary to detect these fac-
tors were built in a mobile computing device: a two-axis lin-
ear accelerometer for tilt sensing, a capacitive touch sensor
to detect if the user was holding the device, and an infrared
proximity sensor that detected if the head was in close prox-
imity to the device [10].

Kern et al. estimated a mobile computer user’s personal
interruptibility using the activity of the user, the social en-
gagement of the user, and the social expectation of group
behavior. The sensor network to determine these factors in-
cluded a two-axis accelerometer attached to a user’s right
thigh to measure a user’s activity, a microphone that de-
tected auditory context for the social situation, and a wireless
LAN access point to determine the user’s location within the
building as well as outdoors. It was found that this model

could determine interruptibility with 94.6% accuracy in a pi-
lot study with the experimenter as the test subject [18].

Siewiorek et al. created a mobile phone application that ad-
justed the modality of the interruption (i.e. vibration, ringer)
based on the activity of the user and the social expectation
of group behavior (detected using light, accelerometers, and
microphones) [26]. The device was tested using a Wizard of
Oz protocol simulating sensor behavior.

Liu used inputs from an accelerometer, a heart rate mon-
itor, and a pedometer to trigger interruptions from a mo-
bile device at “non-stressful” moments to study the impact
of an emotionally-friendly interface on interruptibility. Sub-
jects in the study were most receptive to interruptions when
the system was emotionally friendly and triggering off non-
stressful activities [20].

In this work, we study the relationship between physical ac-
tivity transitions and perceived burden of interruption in a
study with 25 subjects who carried a fully-functional sensor-
enabled mobile computing device outside of a laboratory set-
ting, each for an entire workday.

MOTIVATION
Imagine a scenario where an office worker has been sitting
for some period of time, presumably working. A task-list
program running on her mobile computing device activates
with the goal of providing a proactive reminder to bring
home a book. Consider two message delivery approaches:
(1) the reminder is delivered at a random time (e.g. 24 hours
after it was initially entered) which occurs while the person
is sitting still and presumably working, or (2) the reminder is
not delivered immediately but the next time the person gets
up and walks for a few seconds. Our approach is motivated
by the assumption that – given no other information about
the message content or the user’s situation – the second de-
livery approach would be perceived as less disruptive.

The second option is not always the most appropriate strat-
egy. For example, the person may get up from her seat and
walk to the end of a long room to give a presentation, or the
message could be a time-critical one that cannot be delayed,
even for a few minutes. Further, it is possible that an inter-
ruption at the beginning of a new task could be more costly
than when the user has been engaged in a task for some time
[5]. We set out to explore whether the second approach will
minimize disruption when other contextual information is
not available.

An interruption that is placed at the end of a task will usually
be less disruptive and annoying than an interruption placed
during a user’s task [2]. When physical transitions occur,
mental transitions are also likely.1 Therefore, when a physi-
cal activity transition occurs, the user may already be in the
process of interrupting his/her current activity and conse-
quently may be more likely to be receptive to an interrup-
tion.

1The converse is much less likely to be true.
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Authors Definition of Interruptibility Measure of Interruptibility
Bailey et al. [2] Waiting for an opportune moment to avoid

disruption on the primary task
The amount of time necessary to complete the
interruption task and the original task while
maintaining accuracy

Horvitz et al. [12] Cost of interruption based on the user’s model
of attention, such as high-focus solo activity

Willingness to pay to avoid the disruption

Hudson et al. [17] Perceived burden of interruption Self-reports of interruptibility (scale of 1-5)
McFarlane [24] Cognitive limitations to work during an inter-

ruption
Completion time, performance accuracy, and
number of task switches

Kern [18] Value of the notification Self-annotation of the value of a notification
McCrickard et al. [23] Unwanted distraction to primary task Accuracy
Speier et al. [27] Ability to facilitate decision making Performance on decisions
Hess et al. [9] Cognitive activity disruption Accuracy and reaction time

Table 2. Definitions of interruptibility and evaluation metrics used in some recent prior work.

Of the many types of messages that could be delivered – re-
minders, tasks, phone calls, instant messages, rest breaks,
etc. – even those that are time or place specific could often
be delayed for a short period of time. Therefore, we envision
a system where the mobile device is actively scheduling in-
terruptions to correspond to physical activity transitions and
(potentially) reducing the perceived burden of their delivery.
An alternative approach would be to use activity transitions
to compute a priority for incoming messages, perhaps in
combination with other information about the message con-
tent and user context. The priority score could be used by an
application to perform negotiation-based coordination.

EXPERIMENTAL FRAMEWORK AND TECHNOLOGY
To test the validity of our assumption that interruptions paired
with activity transitions will result in a lower perceived bur-
den on the user than otherwise randomly presented inter-
ruptions, we created a context-aware computing device that
can detect activity transitions in real-time. 25 subjects were
asked to wear small, unencumbering accelerometers through-
out an entire workday. We used a within-subjects design.
Each subject received two types of randomly intermixed in-
terruptions: activity-transition triggered interruptions and ran-
dom interruptions. Participants rated their receptivity to ei-
ther receiving a “reminder” or a “phone call” on a 1-5 scale.

Activity detection
We began by building a mobile system consisting of a Pock-
etPC PDA (iPAQ), a special iPAQ sleeve with an embedded
wireless receiver, and two wireless accelerometers. An ac-
tivity classification algorithm that has shown good perfor-
mance on activity recognition of household activities using
multiple accelerometers [3] was implemented for the PDA.
The accelerometers used in this work are small and light-
weight, and each runs on a coin cell battery that provides a
sufficient power for a working day [30]. The activity detec-
tion system was limited to accelerometers to test the system
under non-laboratory conditions. This allowed the subjects
complete freedom of motion without any encumbering or
overtly privacy invasive sensors.

The accelerometers each send real-time, 3-axis, 0-10G mo-
tion information at 100Hz to the PDA. Software running

on the PDA computes mean, energy, entropy, and corre-
lation features on 256 wide sample windows of accelera-
tion data, with 128 samples overlapping between consecu-
tive windows. At the sampling frequency of 100 Hz per ac-
celerometer, each window represents 1.28 seconds, thereby
resulting in a responsive algorithm with only a small lag.
Features computed on each sliding window are passed through
a previously trained C4.5 decision tree supervised learning
classifier for activity recognition. In this work, the C4.5
classifier was trained to detect only three postural and ambu-
lation activities: sitting, standing, and walking. These three
activities had particularly high recognition rates in prior work
[3] and are therefore suitable to use to robustly detect changes
in gross movement for interruptibility evaluation. For more
detail on the feature calculation, activity detection algorithm,
and classifier training, see [11].

We selected the following four transitions to target in this
work: sitting to walking, walking to sitting, sitting to stand-
ing, and standing to sitting. To reduce spurious activity tran-
sition detection, temporal smoothing is used. The algorithm
only registers a transition between two physical states when
the activity prior to the transition is detected for 10 seconds
and the activity after the transition is detected for 3 seconds.
This definition introduces a 3 second lag (in addition to the
1.5 second lag due to feature computation) but filters “spuri-
ous” transitions such as when a person rapidly moves from
sitting to walking through standing. Ideally, the technology
would have no latency. However, the system runs on a rel-
atively slow PDA computer. Despite the latency, the lab pi-
lot testing suggested that the system generally feels respon-
sive. One still feels as if he/she is still in the transition period
when the activity-triggered prompts occur.

Interruption triggering
Software was developed for the PDA to interrupt the sub-
ject once every 10-20 minutes throughout the day, either ran-
domly or at an activity transition. The software ensures that
each subject is presented with approximately the same num-
ber (plus or minus 2) of each interruption type throughout a
day. The total number of interruptions received in a day is
determined by the frequency of activity transitions detected
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Figure 1. Screen shots of the two message prompts.

(i.e. a person who is sedentary receives fewer random inter-
ruptions to keep the interruption types in balance).

At each interruption trigger, soft chimes sound and gradu-
ally increase in volume for 30 seconds. If the user does not
respond, the chimes change to a beep for another 30 seconds
that gradually increases to the maximum volume. The soft-
ware randomly choses one of the following two questions to
display on the screen: “How receptive are you to a phone
call?” or “How receptive are you to a reminder?” as shown
in Figure 1. A subject answers by clicking the large rating
button and then “ok” with a finger. No stylus was provided.
At that point the screen is turned off until the next interrup-
tion. The device can be muted for up to 1 hour by turning it
on at any time and clicking a “Mute” button.

In some prior work, subjects have been asked about inter-
ruptibility independent of content. However, in our pilot
work, people we interviewed found this difficult to do. Pi-
lot testers preferred to rate receptiveness or interruptibility
in the context of a particular type of message that they were
familiar with. We therefore selected two familiar message
types to use in this study. Prior to the start of the experi-
ment, the two notification types were explained. Subjects
were told that the “reminder” is a reminder of something on
a to-do list, but that it is not time critical (e.g. it does not
include a reminder to attend a meeting in 5 minutes). Sub-
jects were told that the phone call is a standard call but that
there is no caller ID and so there is never a way to know who
the caller is.2 Subjects were asked to answer the receptivity
question using a scale of 1-5, with 1 being “not at all recep-
tive” and 5 being “extremely receptive.” The reminder sheet
pictured in Figure 2 was taped to the back of the PDA and
used to explain the rating scale to subjects.

As the PDA chimes or beeps, a tap on the screen turns off
the sound. If the subject does not answer the question within
one minute, the answer is logged as “no response.” There
are two ways to interpret the no response (NR) in the data.
An NR can occur when a subject is not receptive but able to

2An incoming phone call is a time-dependent message. We se-
lected it because it was familiar to pilot testers, not because we
expect that it will be the type of message that would most likely be
time shifted in emerging mobile applications.

Figure 2. Reminder attached to the back of the iPAQ.

Figure 3. Placement of the wireless accelerometers.

silence the device. In this case an NR is equivalent to a “not
at all receptive.” Alternatively, a “no response” can result
from situations where the screen is accidentally tapped just
prior to hearing the sound or where the user has put down
the PDA and is out of earshot of the prompt.

Setup procedure
Each subject was asked to wear two wireless accelerome-
ters. With the help of a research assistant, one was attached
to the outside of the right ankle using a small Velcro pouch
and the other was attached to the outside of the left thigh just
above the knee using an adhesive bandage. The placement
of the sensors is shown in Figure 3. These locations were
picked based on prior work suggesting that these positions
were effective for posture discrimination and walking detec-
tion. Researchers are actively working on developing algo-
rithms for detecting activities from accelerometers located
in more convenient locations, such as in watches and shoes.
The locations used here were selected only to provide max-
imal robustness to test the paper’s main hypothesis, not to
suggest these are the sensor locations that would ultimately
be required.

The accelerometers are small and lightweight, roughly the
size of a quarter [30]. Figure 4 shows the accelerometers and
a special housing created for the iPAQ that holds the wireless
accelerometer receiver and connects to the iPAQ serial port.
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Figure 4: The 3-axis wireless accelerometers (with a U.S.
quarter) and the iPAQ with the receiver casing.

Subjects were asked to carry the iPAQ with them at all times,
either in a small pouch that attached to a belt or in a small
travel bag that was provided by the researchers.

Subjects were given the iPAQ and the wireless accelerome-
ters at the beginning of their workday and instructed on how
to wear them. They were also told to answer each question
based only on the particular situation at the time of the beep
and asked not to consider any previous questions. Subjects
were also asked to maintain their normal work schedule. At
the end of the day, a 30-minute exploratory wrap-up inter-
view was conducted.

Subjects
The study protocol was approved by the investigator’s re-
view board on the use of human subjects. Subjects were re-
cruited through posters placed in nearby office parks, stores,
and public spaces. The posters contained the following text:
“Carry a cell phone? Help Researchers learn how to design
user-friendly mobile devices.” E-mails were also sent with
the same text to local mailing lists.

Twenty-five subjects (9 male, 16 female) participated in this
study. Two additional potential subjects were dropped. One
subject stopped the study because the device was found to
be too disruptive; another subject did not push the “OK”
button after responding to the questions, preventing the sys-
tem from logging any responses. The subjects were between
the ages of 19 and 36 (mean=25.6, SD=3.3). Subject oc-
cupations were as follows: Administrative Staff (3), Lab Re-
searcher (5), Office Professional (12), Field Professional (4),
and Customer Service (1). Each of the subjects owned a
mobile phone, and none were affiliated with the authors’ re-
search group. The subjects carried the PDA for full work
day (mean=8.42 hours, SD=1.3 hours). Each subject was
compensated with a ten-dollar gift certificate.

Subjects were not told that they would experience two dif-
ferent types of interruptions but were told that we were in-
terested in making mobile computing devices easier to use.
Subjects experienced 16-48 interruptions (mean=28.8, SD=7.1)
spaced out over the course of the day. The rates of “no re-

False False Incorrect Real-trans. Classifier
pos neg classification accuracy accuracy

Mean 3.1% 12.3% 5.7% 82.6% 91.2%
SD 7.9% 4.5% 3.6% 7.0% 8.7%

Table 3: Summary of the means and standard deviations
(SD) for the activity transition detection algorithm eval-
uated on the 5 subjects not used to train the classifier.

sponse” answers ranged from 0-28% (mean = 9.4%, SD =
7.8%).

RESULTS
First we present results of our evaluation of the real-time
activity transition detection algorithm. Next we present the
findings from the interruption study itself.

Verification of transition detection algorithm
The validity of the interruption experiment is dependent upon
the quality of the real-time activity transition detection algo-
rithm. Ten colleagues who were not subjects in the interrup-
tion study were used to train the classifier. These volunteers
were asked to wear the sensors and to repeatedly perform the
three target activities.

After the classifiers were trained, five people involved in the
training plus an additional five who did not wear the sensors
in a validation phase were used to evaluate activity detection
performance. Two iPAQ PDAs were calibrated to have iden-
tical clock times. One ran the activity detection algorithm,
and the other ran an application that allowed the user to mark
his/her activity by choosing one of the three target activi-
ties. 393 known physical activity transitions were recorded
during this testing phase, against which the algorithm was
evaluated.

It was difficult for subjects to indicate a transition precisely
when it occurred. We therefore consider a classification valid
if the difference between the self-annotated transition time
and the activity transition detection algorithm time differs
by no more than 10 seconds.

False positives are cases in which the algorithm detected a
transition when one did not occur. False negatives are cases
in which a physical transition occurred but the algorithm did
not detect any type of transition. Incorrect classifications are
cases when the algorithm detected the transition but detected
the wrong type. Real-transition accuracy is the percentage
of real transitions the classifier was able to detect correctly.
For instance, if a subject transitioned from standing to sit-
ting, this accuracy represents the probability that this partic-
ular transition was detected by the algorithm given that the
transition actually occurred. The classifier-transition accu-
racy is the percentage of transitions the algorithm correctly
classified. For example, if the algorithm detected a sitting
to walking transition, the classifier-transition accuracy is the
probability that the subject was actually transitioning from
sitting to walking. In other words, given that the classifier
detected a transition, this indicates the percentage of the time
the transition was correct.
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Table 3 summarizes the means and standard deviations of
the algorithm’s performance on the five subjects not used
to train the classifier. The classifier did not perform con-
sistently for all the subjects, as illustrated by the standard
deviation. One subject fidgeted his leg for a period of time,
leading to a high number of false positives. In addition, the
subject acknowledged that he missed recording some of the
transitions. He specified the time at which this occurred, and
any transitions during this time period were not used in the
evaluation. However, it is possible that a few unmarked tran-
sitions remained in the data, resulting in an artificially low
classifier and real-transition accuracy. The algorithm was
also tested on the 5 subjects used for acquiring training data.
As expected, the algorithm has a higher detection accuracy
for the trained subjects. However, the accuracy only drops
by 8% on untrained subjects. In this work, the untrained sub-
ject results are used because the subjects in the interruption
study did not contribute any training data.

The interruption experiment requires a low false positive and
incorrect classification percentage. Therefore, the key mea-
sure is the 91.2% accuracy with respect to the classifier. It
is important that when the algorithm detects a transition that
the transition actually occurred and was correctly classified.
The relatively high number of false negatives will not affect
the interruption study protocol results because an interrup-
tion will not be triggered at that particular moment. The
false negatives may, however, have resulted in fewer inter-
ruptions being delivered to subjects who did not regularly
make activity transitions.

The possibility does exist that what is intended to be a ran-
dom, rather than an activity-triggered, interruption could co-
incidentally occur during an activity transition. However,
over the course of the day, it was assumed this situation
would be exceedingly rare and would not have a significant
effect on the overall receptivity results.

Interruption study
The number of interruptions experienced by subjects ranged
from 16-48 (mean=28.8, SD=7.1). The data were aggre-
gated on a subject level by calculating the mean for each
subject’s responses to each type of message for the entire
day, and then using that mean to represent the overall recep-
tivity of that particular subject. This is an approach common
when using ecological momentary assessment (EMA) sam-
pling [28]. A paired t-test was used to compare the mean of
the subjects’ means to evaluate if there was a difference in
overall receptivity between the two cases of interest: random
versus triggered interruptions.

A user’s failure to respond (i.e. “no response” answers) was
handled in two ways. The first method simply dropped “no
responses” from the analysis, as is frequently done in EMA
research [28]. This method is appropriate since it is un-
known whether a subject failed to answer the question be-
cause s/he was unreceptive or because s/he did not hear the
audio prompt. In the second method, a “no response” was
treated as an “extremely unreceptive” response under the as-
sumption that the subject was too busy to respond or to carry

the PDA and therefore not at all receptive to an interrup-
tion. It is possible, however, that the volunteer simply left
the PDA behind and was not within earshot.

A standard t-test would not account for the uncertainty in-
troduced from the classifier, which was measured to have
91.2% accuracy on the volunteers who did not train the algo-
rithms (see Table 3). Therefore, we adjusted the raw data to
account for the possibility that the detection algorithm mis-
classified activity changes. The accuracy adjustment was
simulated by repeatedly randomly switching 9% of the ac-
tivity transition responses to random interruption responses,
thus simulating algorithm error. Each time, new means were
computed for all subjects. Results from 25 iterations of the
simulation were then averaged. The iteration minimizes the
variation due to the removal of particular responses. The
same procedure was followed for an estimated worst case
scenario, by assuming the accuracy of the classifier to be
only 82.4%, one standard deviation below the mean accu-
racy.

The two-tailed, paired t-tests used a confidence interval of
95% with the significance level defined at p = 0.05. Table 4
summarizes the results of the paired t-tests using the raw
data (which assumes the activity detection is flawless) and
the adjusted activity-detection algorithm performance rates
of 91.2% and the assumed worst case, 82.4%.

Table 5 contains the mean and standard deviation of the num-
ber of triggered interruptions experienced by the subjects
once the assumed classifier accuracy is factored in.

The results are strongly significant and show that subjects
rated random responses as more disruptive than activity trig-
gered responses. This trend holds regardless of how the “no
responses” are treated. In addition, it holds even assuming
the worst case scenario for the activity classifier algorithm.
Furthermore, other analysis showed that the results are sig-
nificant when computed for male subjects only, female sub-
jects only, and either message type only.

DISCUSSION
The results support the strategy of using activity transitions
as a trigger for non-time-critical interruptions to potentially
reduce feelings of information overload. By delaying inter-
ruptions that are not time-sensitive until a physical activity
transition, the mobile computing device may lower the per-
ceived interruption burden of some of the messages. We
have also shown that two 3-axis wireless accelerometers can
reliably detect a user’s activity transition in real time and be
used to determine the activity transitions.

The wrap-up interviews were used to elicit more information
about what factors were salient in subjects’ decision making.
Subjects were first asked to estimate the number of inter-
ruptions they experienced and whether they would recom-
mend the study to a friend. The difference between actual
and estimated interruptions ranged from underestimating by
14 and overestimating by 71 (mean=-1.8, SD=16). Nineteen
of the subjects indicated they would recommend the study
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Accuracy Signif. Mean random score St.Dev Mean transition score St.Dev
“NR” OMITTED

All msg types 100% <.001 2.83 .51 3.34 .57
All msg types 91.2% <.001 2.92 .49 3.30 .52
All msg types 82.4% <.001 2.94 .48 3.31 .52

“NR” INCLUDED
All msg types 100% <.001 2.57 .42 3.00 .51
All msg types 91.2% <.001 2.70 .38 3.09 .49
All msg types 82.4% <.001 2.74 .38 3.07 .49

Table 4: Summary of two-tailed, paired t-tests results (N=25) for classifiers assuming 100%, 91.15%, and 82.4% accu-
racy of the activity transition detector algorithm. Shown is significance, mean raw score for the random and activity-
transition triggered conditions with standard deviations. Regardless of how “no responses” are treated, the results
indicate signficant or highly significant trends that subjects were more receptive to prompts tied with activity transi-
tions than those presented at a random time.

to a friend, 3 indicated they would possibly recommend the
study, and 3 indicated they would not recommend the study.

The subjects were also asked about their impressions of each
type of reminder. Nine of the 25 subjects favored a reminder
while the remaining 16 preferred phone calls. Most subjects
who favored the reminder estimated an average phone call to
take at least 10 times as long as a reminder. Subjects com-
mented that it was difficult to differentiate the two types of
questions, the phone call and the reminder. They would have
liked the system to highlight the difference using two differ-
ent set of chimes. Additionally, five subjects stated that they
did not use reminders and found it difficult to rate their re-
sponse because they had no previous experience on which
to base their receptivity. These comments illustrate the diffi-
culty of assessing interruptibility in a general way.

Only two of the 25 subjects muted the study, each for a to-
tal of 1 hour. One of the first subjects wore headphones a
significant portion of the day. The headphones prevented
the subject from hearing the audio prompt, and the subject
had to be notified by neighboring coworkers that the iPAQ
was signaling an interruption. As a result, the subject an-
swered “extremely unreceptive” to these interruptions be-
cause of the possible disruption to coworkers. During the
wrap-up interview, the subject stated that the disruption ex-
perienced by the coworkers did not change his receptivity
rating because he was preoccupied at the moment anyway
and would have made the same response. Furthermore, this
subject did not skew the data toward favoring the activity
transition triggered interruptions so his data was included in
the final analysis. Future subjects were asked to avoid the
use of headphones for the day, however.

The wrap-up interviews frequently indicated that the rea-
soning for choosing “not at all receptive” was that the sub-
ject was talking to his/her supervisor. Subjects were asked
whether an interruption of a different type (maybe break-
ing news, an e-mail message, or a stress reduction exercise)
or a different medium of delivery would make a difference.
Some subjects responded positively to the suggestion of us-
ing vibration to notify the user of the interruption, but they
acknowledged that they still would be unable to respond to
the interruption immediately.

Some of the five volunteers who worked as lab researchers
complained that interruptions occurred while they were con-
ducting experiments. Two subjects reported that they had
to remove their gloves to answer the questions. A few lab
researchers had considered not carrying the PDA because
they were involved in work that required precise measure-
ments and could not afford to be interrupted. Additionally,
another lab researcher noted that s/he was interrupted more
frequently during an appointment with a patient. The higher
frequency resulted from the researcher’s common behavior
of walking to attend to a patient and then sitting down to
perform tests multiple times during an appointment. This
behavior could trigger an activity-change interruption and is
an example of a situation where different activity transition
strategies may be required.

An additional office professional commented that the PDA
seemed to deliver prompts more frequently at inappropriate
times. An example situation was when the subject was lead-
ing a board discussion with several coworkers and clients
and was frequently interrupted. During this time, the sub-
ject would stand to write on a white-board but then sit back
down to continue the discussion with the rest of the group.
This too, is a situation that violates the assumption on which
our hypothesis is based.

Several subjects commented that interruptions occurred while
they were driving. Two of the subjects stated that this was
actually a good time for an interruption because they were
“just driving,” but other subjects considered this a distrac-
tion at an inappropriate time. These reminders were most
likely randomly triggered, because the activity-transition al-
gorithm would not generally detect activity changes during
sedentary driving activity.

Some subjects indicated that even though they were pro-
vided with carrying cases for the PDA, sometimes they would
forget to bring the device with them, leading to “no response”
answers to randomly triggered prompts (activity triggered
prompts do not occur if the accelerometers are moved more
than 20 feet from the PDA).

When subjects were informed the nature of the study, 5 sub-
jects noted that the algorithm should consider monitoring
their computer since there were periods during the day when
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Trigger Trigger Phone Reminder Phone Reminder
91% 82% 91% 82% 91% 81%

Mean 12.6 11.4 6.8 5.8 6.3 5.1
SD 3.6 3.3 2.9 2.4 2.7 2.4

Table 5: The means and standard deviations (SD) for the
number of triggered responses experienced by the sub-
jects broken down by two different classifier accuracy
values.

they had nothing to do and were surfing the Internet. They
described these moments as times when they would be ex-
tremely receptive to any interruption since it would keep
them occupied.

An issue to consider in future work is whether there are es-
pecially poor times to interrupt users. If so, these times may
lower the mean receptiveness of the random condition our
tests. We have not investigated if the physical activity tran-
sitions are in some way dependent upon poor interruption
times. To exclude these times would require that a detec-
tor be built that can recognize contextual cues for especially
poor receptiveness.

The qualitative interviews offered further support that the
algorithm was operating as intended throughout the study.
Overall, our results show that our volunteers were signif-
icantly (in the statistical sense) more receptive to messages
delivered at activity transitions than those delivered randomly.
However, whether this difference is large enough to impact
long-term opinions about a mobile computing device pro-
viding proactive messages remains an open question. After
months of use, will a mean difference of approximately .5
on the scale from “extremely receptive” (5) to “not at all re-
ceptive” (1) lead to a change in the user’s overall evaluation
of a device, or will a few outliers – poorly timed, memorable
prompts – dominate the user’s impression of the device’s
performance? Could a larger library of activity transition
types further reduce the user’s burden and lead to average
numbers that are 1-2 points higher overall, and would a lon-
gitudinal study show receptivity falloff rates and other nov-
elty effects? We leave these questions for future research.

SUMMARY
A change in physical activity may sometimes correlate with
a self-initiated task interruption. This study suggests that
proactive messages delivered by a mobile computing when
the user is transitioning between two physical activities (e.g.
sitting to walking) may be received more positively than
the same messages delivered at random times. The results
suggest that the perceived burden of context-aware mobile
computing devices may be minimized by time-shifting some
proactive messages to moments when the user is already
transitioning between different physical activities.
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