
15

Oasis: A Framework for Linking Notification
Delivery to the Perceptual Structure
of Goal-Directed Tasks

SHAMSI T. IQBAL
Microsoft Research
and
BRIAN P. BAILEY
Microsoft Research and University of Illinois at Urbana-Champaign

A notification represents the proactive delivery of information to a user and reduces the need to
visually scan or repeatedly check an external information source. At the same time, notifications
often interrupt user tasks at inopportune moments, decreasing productivity and increasing frus-
tration. Controlled studies have shown that linking notification delivery to the perceptual structure
of a user’s tasks can reduce these interruption costs. However, in these studies, the scheduling was
always performed manually, and it was not clear whether it would be possible for a system to mimic
similar techniques. This article contributes the design and implementation of a novel system called
Oasis that aligns notification scheduling with the perceptual structure of user tasks. We describe
the architecture of the system, how it detects task structure on the fly without explicit knowledge
of the task itself, and how it layers flexible notification scheduling policies on top of this detection
mechanism. The system also includes an offline tool for creating customized statistical models for
detecting task structure. The value of our system is that it intelligently schedules notifications,
enabling the reductions in interruption costs shown within prior controlled studies to now be re-
alized by users in everyday desktop computing tasks. It also provides a test bed for experimenting
with how notification management policies and other system functionalities can be linked to task
structure.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Systems—
Human Information Processing; H.5.2 [Information Interfaces and Presentation:]: User
Interfaces— Evaluation/methodology, user-centered design

General Terms: Experimentation, Human Factors, Measurement

Additional Key Words and Phrases: Interruption, attention, notification management systems,
breakpoints

This work was supported in part by the National Science Foundation under award no. IIS 05-34462.
Authors’ addresses: S. T. Iqbal, One Microsoft Way, Microsoft Corp., Redmond, WA 98052; email:
shamsi@microsoft.com; B. P. Bailey, 201 N. Goodwin Ave., Department of Computer Science, Uni-
versity of Illinois, Urbana, IL 61801; email: bpbailey@illinois.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1073-0516/2010/12-ART 15 $10.00
DOI 10.1145/1879831.1879833 http://doi.acm.org/10.1145/1879831.1879833

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:2 • S. T. Iqbal and B. P. Bailey

ACM Reference Format:

Iqbal, S. T. and Bailey, B. P. 2010. Oasis: A framework for linking notification delivery to the
perceptual structure of goal-directed tasks. ACM Trans. Comput.-Hum. Interact. 17, 4, Article 15
(December 2010), 28 pages.
DOI = 10.1145/1879831.1879833 http://doi.acm.org/10.1145/1879831.1879833

1. INTRODUCTION

Notifications are being increasingly used as a powerful mechanism for
proactively delivering information to users in many multitasking domains
[McCrickard et al. 2003]. We use the term notification to refer to a visual cue,
auditory signal, or haptic alert generated by an application or service that re-
lays information to a user outside her current focus of attention. Notifications
can provide useful benefits such as supporting near instant communication
[Czerwinski et al. 2000b; Latorella 1999], enabling awareness of peripheral
information [Maglio and Campbell 2000], and relaying reminders of upcom-
ing activities [Dey and Abowd 2000]. At the same time, notifications are almost
always delivered as soon as the underlying information becomes available with-
out regard for the state of the user’s ongoing task. An important challenge is,
therefore, to understand how to appropriately balance the timeliness of infor-
mation delivery with the cost of interrupting user tasks. This article presents
the architecture and implementation of a novel system, Oasis, that addresses
this challenge by leveraging the perceptual structure of user tasks to mediate
notification delivery.

Improved notification management is important for end users, as controlled
studies have consistently shown that this type of immediate interruption in-
curs costs for users in terms of decreased productivity and increased negative
affect [Adamczyk and Bailey 2004; Bailey and Konstan 2006; Czerwinski et al.
2000b; Kreifeldt and McCarthy 1981; Zijlstra et al. 1999]. The accumulation of
these costs may also be significant, as field studies have found that users re-
ceive many notifications during their workday [Iqbal and Horvitz 2007; Jackson
et al. 2001]. Recent work has also shown that users prefer to continue the use
of notifications to cue them to new information despite the interruption costs
rather than to turn the notifications off and have to repeatedly check for new
information manually [Iqbal and Horvitz 2010]. The problem of managing in-
terruptions from external sources, through notifications or other mechanisms,
is not constrained to the desktop. Similar problems have been identified in
other multitasking environments, such as, aviation cockpits [Dismukes et al.
1998; Latorella 1999], in-vehicle systems [Lee et al. 2004] and control rooms
[Stanton 1994].

An active thread of research in the domain of interruption management
has been to explore techniques for delivering notifications such that the inter-
ruption costs are reduced without significantly affecting the timeliness of the
notifications [Adamczyk and Bailey 2004; Czerwinski et al. 2000a; Fogarty et al.
2005; Horvitz et al. 1999; Iqbal and Bailey 2005; Iqbal and Bailey 2006]. Prior
research has formulated one particular approach where notification delivery
is linked to the occurrence of breakpoints within a user’s tasks. The concept of

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:3

a breakpoint originated from research in psychology showing that the human
perceptual system segments observed activities into a hierarchical structure
of discrete action units [Newtson and Engquist 1976] and that people typically
generate similar structures for the same activity [Zacks et al. 2001]. The bound-
ary between two adjacent action units is called a breakpoint and breakpoints
can be categorized based on the granularity of the units segmented.

For interactive computing tasks, it has been shown that there are
at least three granularities of breakpoints—Fine, Medium, and Coarse—
that can be reliably detected by users [Iqbal and Bailey 2007]. Empirical studies
have shown that deferral of notifications until breakpoints are reached during
task execution reduces interruption costs as measured by resumption lag and
subjective assessments of frustration [Adamczyk and Bailey 2004; Iqbal and
Bailey 2005; Iqbal and Bailey 2006]. One explanation as to why these moments
are less disruptive is because they correspond with transient reductions in
mental processing effort [Bailey and Iqbal 2008]. Studies have further shown
that coarser breakpoints correspond with successively larger reductions in in-
terruption cost [Iqbal and Bailey 2006]. In all of these studies, however, the
execution sequences of the experimental tasks were controlled, the locations
of the breakpoints within those sequences were identified a priori, and it was
the experimenter who manually triggered delivery of the notifications. It was
therefore unclear whether a computational system would be able to mimic
similar techniques or whether similar reductions in cost could be achieved for
free-form tasks, such as, tasks controlled by the goals of the user. Instead of
breakpoints, researchers have investigated the use of other aspects of task
structure such as the planning, execution, and evaluation stages of a task for
notification delivery [Czerwinski et al. 2000a; Monk et al. 2002]. Though the
empirical results are of theoretical interest, implementing these approaches
would require explicit knowledge of the tasks themselves. A distinct advantage
of using breakpoints is that they can be detected without explicit knowledge of
the tasks, thereby allowing the technique to be more broadly applied.

Our notification management system, Oasis (Omniscient Automated Sys-
tem for Interruption Scheduling) automates the process of aligning notification
scheduling with the occurrence of breakpoints within free-form tasks for the
desktop domain. When an application wants to deliver a notification, it sends
a request to Oasis specifying the desired deferral policy (e.g., defer to the next
Coarse, Medium, or Fine breakpoint). Oasis monitors the user’s interaction
stream, detects breakpoints on the fly, and signals the application when it iden-
tifies a breakpoint satisfying the specified policy, after which the application
can render the notification. For example, imagine that a user is cognitively en-
gaged in editing a document and a notification is generated by her email client.
Our system allows the notification to be deferred until the user completes the
current sentence or paragraph rather than interrupt in the middle of editing.
In general, when a user is engaged in a task and a notification is generated,
our system allows the user to complete the execution of her current thought
(i.e., the operations associated with the currently active “chunk” in memory)
before allowing the notification to be delivered. In relation to other prototype
systems for notification management, our system is the first to implement a

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:4 • S. T. Iqbal and B. P. Bailey

strategy for scheduling notifications that is grounded in cognitive principles;
in this case, principles related to the use of perceptual task structure.

We describe the architecture and implementation of the system, how it
detects breakpoints (and implicitly, task structure) without requiring explicit
knowledge of the task itself, and how it layers a set of flexible notification
scheduling policies on top of this detection mechanism. Oasis is designed to
identify breakpoints within goal-directed interactive tasks such as document
editing, image manipulation, and programming tasks, and provides access to
three levels of breakpoints: Coarse, Medium and Fine. By detecting three break-
point granularities, Oasis offers increased flexibility in balancing interruption
cost with the timeliness of notification delivery. Oasis detects Coarse break-
points independent of any specific application by tapping into the already
available system-level event stream. Detection of Medium and Fine break-
points requires access to an application’s event stream, which can typically be
exposed using lightweight plug-ins. For demonstration purposes, the current
implementation of Oasis provides plug-ins for two commonly used applications,
Microsoft Visio (diagram editing) and Visual Studio (programming). Plug-ins
for additional applications can be developed independently and interfaced with
Oasis. To support these applications, situations where improved breakpoint
detection is needed, or for other research purposes, the system includes a data
collection module, data annotation tool, and learning component that allows
statistical models for breakpoint detection to be created or refined.

The contribution of this article is the description of the architecture,
implementation, and usage scenarios of a functional notification management
system. The system demonstrates the feasibility of automating the notification
scheduling techniques that were manually applied in our prior empirical stud-
ies for controlled tasks, thereby enabling similar results to now be realized for
desktop computing tasks. The system also provides a test bed for exploring how
different notification management policies and other system functionalities
(e.g., automated structuring of command histories) can be linked to perceptual
task structure. Although we have previously reported empirical results for how
the use of our system impacts users and their tasks [Iqbal and Bailey 2008],
this article focuses on a discussion of the architecture and implementation
details of our system and the rationale for its design.

2. RELATED WORK

In this section, we discuss the benefits and costs of notification, the theory of
perceptual task structure and its efficacy for notification scheduling, and other
systems and strategies for managing notifications.

2.1 Benefits and Costs of Notifications

An application uses notifications to proactively deliver information to the user,
rendered through one of several sensory modalities—visual, auditory or haptic
[Lee et al. 2004; McCrickard et al. 2003]. Perhaps the most salient benefit of us-
ing notifications is that they reduce the user’s need for repeatedly checking an
external information source, a behavior which is also detrimental to the user’s

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:5

ongoing task [Maglio and Campbell 2000]. The use of notifications can be ben-
eficial in many situations, such as, to support peer communication [Czerwinski
and Horvitz 2002], provide awareness of collaborator activities [Dabbish and
Kraut 2004], and relay application assistance at appropriate moments [Maes
1994].

At the same time, however, current applications almost always deliver noti-
fications as soon as the underlying information becomes available. This often
results in the user being interrupted in the midst of an ongoing action. Re-
searchers have studied this phenomenon extensively and found these types
of interruptions result in reduced task productivity [Czerwinski et al. 2000a;
Kreifeldt and McCarthy 1981; Latorella 1998; McFarlane 1999; Monk et al.
2002], impaired decision making [Speier et al. 1999], and increased negative
affect [Adamczyk and Bailey 2004; Zijlstra et al. 1999]. For example, Bailey
and Konstan [2006] have shown that notifications interrupting the current
task cause users to take up to 27% more time to complete the task, commit up
to twice the errors, and experience up to twice the anxiety. Gillie and Broadbent
[1989] showed that these types of disruptive effects can be caused by the com-
plexity of the interrupting task and its similarity to the main task. Recovery
and resumption of interrupted activities also take substantial time, between
10–25 minutes, and this has been corroborated by several studies [DeMarco
and Lister 1999; Gonzalez and Mark 2004; Iqbal and Horvitz 2007]. Interrup-
tion costs are often attributed to limitations in human information processing
capabilities, where the additional demands on cognitive resources due to the
interrupting task interfere with and reduce performance on the primary task
[Navon and Gopher 1979; Wickens 2002].

Our research aims to achieve a more flexible and effective balance between
the costs and benefits of notifications for end users. In our approach, notifi-
cations are deferred for a short time in exchange for a meaningful reduction
in the ensuing interruption cost. This is achieved by linking notification deliv-
ery to the perceptual structure of user tasks.

2.2 Perceptual Task Structure and Its Use for Notification Management

Perceptual structure refers to how the human perceptual system segments an
observed, goal-directed activity into discrete units [Newtson 1973]. The bound-
ary between two adjacent units is called a breakpoint, which can be thought
of as a moment of transition in perception or action [Zacks and Tversky 2001].
Controlled experiments have shown that human observers generally agree on
the location of the breakpoints within a given goal-directed activity, indicating
there is a shared cognitive schema that drives the perceptual system [Zacks
et al. 2001]. Observers have reported using cues such as the completion of
an action, change in pace of the action, and change in the object of focus as
salient indicators of a breakpoint [Zacks and Tversky 2001]. Zacks et al. [2001]
offered evidence showing that the perceptual system organizes observed activ-
ity into at least a two-level hierarchical structure. This was achieved by asking
independent observers to watch video recordings of other people performing
physical tasks, such as, folding clothes, washing dishes, making beds etc., and

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:6 • S. T. Iqbal and B. P. Bailey

Table I. Definitions and Actions Corresponding to the Different Types of Breakpoints

Breakpoint Definition Example of corresponding action
Coarse transition from the largest meaningful

and natural unit of action to the next
Switch from an ongoing programming
task to interacting with a media appli-
cation

Fine transition between the smallest mean-
ingful and natural unit of execution to
the next

Switch from actively editing code to
compiling and debugging

Medium transition between natural and meaning-
ful units which are smaller than Coarse
but larger than Fine

Switch from one source code file to an-
other within the same project

mark the locations of breakpoints that separated the largest meaningful units
of action (defined as coarse breakpoints) and those that separated the smallest
units (defined as fine breakpoints); and then analyzing their temporal align-
ment. Results showed that the observers generally agreed on the locations of
coarse and fine breakpoints (within 1sec windows) and that the coarse unit
boundaries aligned with the fine unit boundaries more often than would be
predicted by chance. These results provide evidence of the existence of hier-
archical structures in physical tasks and that these structures can be reliably
detected by observers who did not have the experience of performing the task
themselves.

Building on this corpus of theoretical work in the domain of interactive
computing tasks, Iqbal and Bailey [2007] showed that observers can reliably
identify three granularities of breakpoints within task execution sequences. In
addition to the coarse and fine granularities identified by Zacks et al. [2001],
an additional granularity, medium, was also identified, indicating transitions
between units smaller than those surrounding coarse breakpoints but larger
than those surrounding fine. For example, for a user engaged in programming,
switching from the programming activity to interacting with a media player
(or other unrelated task) can indicate a Coarse breakpoint. A Fine breakpoint
can occur by switching from editing code to compiling and debugging the code
while a medium breakpoint can occur when switching between two source files
to edit independent sections of code. Table I defines the three granularities of
breakpoints for interactive tasks and summarizes these examples. Examples of
breakpoints for other task domains are analogous. As with Zacks et al.’s [2001]
work, Iqbal and Bailey [2007] also found that the locations of breakpoints
identified by observers were mostly consistent with the locations identified by
the users who performed the tasks. This agreement may be explained because
individuals are also observers of their own actions.

Inspired by Miyata and Norman’s [1986] conjecture that the transitions
between different tasks and phases of a task would represent less disruptive
moments for interruption, our prior work has tested the efficacy of using break-
points for notification scheduling. Through several controlled studies, our re-
sults have shown that delivering notifications at breakpoints results in lower
interruption costs than when delivered immediately [Iqbal and Bailey 2005;
Iqbal and Bailey 2006]. Results further showed that coarser granularities of
breakpoints correspond with successively lower interruption costs [Iqbal and

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:7

Bailey 2006]. Similar results have been shown to hold for different task do-
mains, including document editing, programming, diagram editing, and image
manipulation, which argues that the technique is reasonably general. In these
experiments, however, the execution sequences of the experimental tasks were
controlled, the locations of the breakpoints were manually defined a priori, and
it was the experimenter who triggered the delivery of the notifications using a
Wizard of Oz paradigm.

Other researchers have also leveraged task structure to investigate more
effective strategies for scheduling notifications. For example, Czerwinski et al.
[2000a] showed that interruptions during the execution phase of a task com-
pared to the planning or evaluation phase cause users to take more time to
switch to the interrupting task. Monk et al. [2002] demonstrated that inter-
rupting before the beginning of a subtask causes less resumption lag than
interrupting during a subtask. This corpus of empirical studies has typically
leveraged different phases of a task whereas our work emphasizes the use of
specific moments within an execution sequence such as breakpoints. The ad-
vantage of using breakpoints is that they exist in nearly all goal-directed tasks
and can be detected without explicit knowledge of the tasks themselves.

This article contributes the design of a system that automates the process
of linking notification scheduling to the occurrence of breakpoints within real
(uncontrolled) user tasks. Our system leverages the use of statistical models
for detecting the three granularities of breakpoints defined in Table I [Iqbal
and Bailey 2007], but significantly extends that prior work by layering a set of
flexible deferral policies on top of the models and by implementing a complete
end-to-end process for scheduling notifications. The system also provides a sep-
arate tool set for building customized models for detecting breakpoints within
user activities.

2.3 Strategies and Systems for Managing Notifications

Notification management generally requires coordination between the inter-
rupter and interruptee to effectively balance the cost and benefit of notifica-
tions. Existing systems can therefore be categorized as supporting at least one
of three strategies; aiding the interrupter, aiding the interruptee, or supporting
the coordination between them. The behavior of Oasis falls primarily into the
third category. However, it could benefit from having access to the informa-
tion that other systems provide to aid the interrupter, and its output could be
utilized by other systems or rendering techniques meant to aid the interruptee.

For aiding the interrupter, systems such as Lilsys [Begole et al. 2004],
MyVine [Fogarty et al. 2004], and ConNexus [Tang et al. 2001] provide visual
cues of the interuptee’s availability to be used by the interrupter. Examples
of such cues include office presence, social engagement, and desktop activity.
The interrupter can assess these cues to determine an appropriate moment for
initiating communication. In relation to our system framework, similar cues
could also be accessed by applications to determine an appropriate time win-
dow (see Sections 3.1 and 4.2) that would accompany a specific notification
request.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:8 • S. T. Iqbal and B. P. Bailey

To aid the interruptee, one class of solutions aggregates and renders the no-
tification content within a peripheral display. For example, in the Scope system,
communication events, calendar appointments, and system alerts are summa-
rized in a persistent radial display [Van Dantzich et al. 2002]. A drawback is
that the interruptee must decide when and how often to check the display for
updated information. Another class of solutions renders the notification in a
manner that reveals important attributes of the underlying notification con-
tent. For example, Gluck et al. [2007] showed that linking the content’s utility
to the salience of the notification display resulted in better performance and
user satisfaction during interactive tasks. In contrast, our system schedules no-
tifications at less disruptive moments during a user’s ongoing task. However,
because our system only signals the requesting application as to when such a
moment occurs, the application can use any modality (e.g., visual, auditory or
haptic), level of saliency, and display system for rendering the notification.

Facilitating the coordination between the interrupter and interruptee is the
strategy that most closely reflects the one realized within the Oasis system
and is representative of what McFarlane calls a mediated approach [McFarlane
and Latorella 2002]. Systems in this category have typically employed decision
theoretic approaches for deciding when to interrupt [Horvitz et al. 1999]. The
systems typically use as input some combination of desktop activity, calendar
events, and visual and acoustical information from the surrounding task envi-
ronment. For example, in the Priorities system [Horvitz et al. 1999], Lookout
[Horvitz 1999], and the Notification Platform [Horvitz et al. 2003], Bayesian
networks were used for inferring a user’s focus of attention. This information
was used to deliver notifications when the computed utility was high, that is,
when the benefits of delivering the information outweigh the cost of interrup-
tion. A descendant of the Notification Platform, Bestcom, considered the user’s
social and task context, current and future availability, and communication
preferences to predict the best device and modality for interpersonal commu-
nication [Horvitz et al. 2002]. In context of desktop computing tasks, [Fogarty
et al. 2005] demonstrated that application events could be leveraged to reason-
ably predict whether a user is interruptible or not, though they did not build a
system to demonstrate the effectiveness of their approach.

This class of systems is potentially powerful, but the decisions made by these
systems for when to interrupt have not yet been empirically shown to corre-
spond with reduced interruption costs. In addition, the rationales motivating
these approaches have not had firm grounding in cognitive principles, which
might make it difficult to interpret or explain the empirical outcomes. Rela-
tive to these systems, our system ties notification delivery to the perceptual
structure of a user’s task and leverages interaction events to automatically
detect this structure without specification of the task itself. This technique is
grounded in cognitive principles and has been shown to yield favorable results
in several empirical studies (see Section 2.2).

Finally, at least one prior system, PETDL, has shared the goal of linking
notification delivery to the structure of end-user tasks [Bailey et al. 2006].
That system provided a language for specifying interactive tasks and a separate
component for monitoring a user’s execution through those tasks. Within a task

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:9

OASIS

Breakpoint 
Detector

Scheduler

Grant 
request

Request to 
interrupt at 

(F, M, C, Any, 
Best)

F, M, C, NAB

Match?

yes

events

Requests

Update 
time

Apps in 
background

Application in 
focus

notification

interaction

no
expired

Breakpoint 
Modelsaddin

Fig. 1. Schematic of Oasis and its operation (highlighted). This article focuses on describing the
details of the design and implementation of the system.

description, costs of interruption could be assigned for each step of a specified
task, which could be used for reasoning about when to interrupt. However,
manually authoring these types of specifications for free-form tasks, such as
those commonly performed in the desktop domain, is complex and requires
substantial effort. This would be a major barrier for large-scale deployment
of such an approach. In contrast, OASIS automatically detects interruptible
moments (i.e., breakpoints) without requiring any explicit specification of the
tasks, thereby removing this barrier.

3. OASIS

Oasis is a system service that schedules notifications to occur at perceptually
meaningful breakpoints during user tasks. A schematic of the system is shown
in Figure 1. Oasis acts as an intermediary between the user and applications
that want to deliver notifications. The following scenario illustrates how Oasis
functions to better manage notifications.

Imagine a user cognitively engaged in designing a complex diagram using
Microsoft Visio or other appropriate tool. As the user is interacting with the
diagram, a collaborator sends a mail message detailing several additional fea-
tures that need to be included in the diagram. Rather than notify the user
immediately and risk disrupting the user’s ongoing actions, the mail client
sends a notification request to Oasis. The request specifies that the notification
should be deferred until the next fine breakpoint, but should not be delayed
more than five minutes. Meanwhile, the user continues to add and manipulate
elements in the diagram and Oasis continues to analyze this stream of actions.
When the user completes a particular chunk of actions (e.g., inserts and then
sets the properties on a new shape), Oasis identifies this moment as a fine
breakpoint and compares it against the policy specified for the notification.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:10 • S. T. Iqbal and B. P. Bailey

Since it matches, Oasis signals the mail client and the client can then render
the notification using its preferred technique.

In this scenario, because the user is able to complete her immediate thought
(actions) before being interrupted, she can switch her attention to the notifica-
tion and resume the interrupted task with more efficiency and less frustration
than if it had been delivered immediately. In this latter situation, the notifica-
tion would have likely interrupted an ongoing action. Had the user turned off
notifications, she may have missed information relevant to the task. Finally, if
a matching breakpoint did not occur within the specified time window, Oasis
would have granted the request at the specified time of expiration.

3.1 Policies for Scheduling Notifications

The scheduling behavior of Oasis reflects a mediated interruption management
approach where the system acts as an intermediary between the user and the
interrupting application and determines appropriate moments for delivering
notifications [McFarlane and Latorella 2002]. This approach is implemented
within Oasis through a set of scheduling policies. To send a notification to
the user via Oasis, an application prepares a notification request consisting
of the desired scheduling policy and maximum time it can wait and sends
this request to Oasis. The policy specifies the type of breakpoint at which the
notification is to be delivered. As a starting point, Oasis offers five policies
giving different balances between notification timeliness and interruption cost
that applications can specify in their request:

Next Coarse. This policy specifies that the notification is to be delivered when
the user reaches the next Coarse breakpoint in their interaction sequence. A
Coarse breakpoint is the moment between two units of action perceived to be
the largest, meaningful units in the given context [Iqbal and Bailey 2007]. For
example, in the desktop domain, a Coarse breakpoint could be the transition
from a programming activity to interacting with a digital media player. As
Coarse breakpoints typically occur less frequently but correspond with lower
interruption costs, this policy can be utilized for notifications of general interest
to the user but that are not urgent or relevant to the ongoing task. For example,
a reminder about an upcoming talk might be best scheduled using this policy.

Next Fine. This policy specifies that the notification is to be scheduled at
the next Fine breakpoint. A Fine breakpoint is defined as the moment between
two units of action considered to be the smallest meaningful units in the given
context. An example of a Fine breakpoint is when the user switches from editing
source code to starting a compilation. This policy is useful for notifications
relevant to the current task or otherwise cannot be deferred for too long. For
example, a notification for an instant message describing an error in the source
code the user is working on might choose to use this policy. This ensures that
the user receives the information in the context of the ongoing task but with
less disruption compared to delivering it immediately.

Next Medium. This policy schedules the notification at the next Medium
breakpoint. A Medium breakpoint is the moment between two units of action
where those units are smaller than Coarse but larger than Fine. An example

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:11

Table II.
Summary of the deferral policies along with heuristics for selecting each policy based on the

notification content and desired outcome for the user.

Notification content is . . . Desired outcome
Policy Relevant Urgent Less disrup-

tion
Faster deliv-
ery

Next Coarse
√

Next Medium
√ √

Next Fine
√ √ √

Next breakpoint of any type
√ √

Coarsest breakpoint in a
given timeframe

√

is when the user has just completed browsing an online API reference and is
resuming the editing of source code during a programming task. This policy
is useful for notifications that are relevant to the ongoing task but not so
urgent that they need to be delivered at a Fine breakpoint. For example, a mail
notification from a collaborator about an issue with a related programming
project could be deferred until a Medium breakpoint.

Next breakpoint of any type. This policy specifies that the notification is to
be scheduled at the next breakpoint of any type: Coarse, Medium or Fine. This
policy ensures that a notification is delivered at the next perceptual break,
regardless of its granularity. This policy would be useful for notifications that
have increased urgency for the user. For example, a notification about a required
meeting that is starting in a few minutes might be best scheduled using this
policy.

Coarsest breakpoint in a given timeframe. This policy specifies the notifica-
tion is to be scheduled at the breakpoint that has the lowest interruption cost
(i.e., coarsest breakpoint) in a given timeframe. On detection of a breakpoint,
the system uses the frequency of past breakpoints and their type to predict the
likelihood of receiving a coarser breakpoint within the remaining time. If the
likelihood is high, then the system waits. Otherwise the request is granted at
the current breakpoint. Note that the previous policy emphasizes determining
the first interruptible moment, whereas this policy emphasizes identifying the
moment with the least disruption.

The first three policies were derived directly from prior empirical work inves-
tigating effects of delivering notifications at different granularities of break-
points [Adamczyk and Bailey 2004; Iqbal and Bailey 2005; Iqbal and Bailey
2006]. The latter two policies were added to offer more flexible system behavior
and were derived from envisioning various application scenarios as well as our
experience gained from prior work. Table II summarizes the deferral policies
currently offered in our system along with heuristics for selecting each policy
based on the notification content and desired outcome for the user.

This set of policies provides only a starting point and should not be consid-
ered exhaustive or, in the case of the latter two, mutually exclusive in terms
of the breakpoints selected. The policies may be refined and new policies may
be added as experience is gained with the system. This experience would also
be useful for more carefully recommending when each policy is best applied. We

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:12 • S. T. Iqbal and B. P. Bailey

assume that applications will choose appropriate policies guided by the crite-
ria in Table II or other relevant information. In Section 4.3, we discuss how
existing systems can be used or Oasis might be extended to provide additional
information useful for selecting an appropriate policy.

An application can specify a maximum time to wait as part of its notification
request in order to prevent overly long deferrals, similar to the concept of
bounded deferral discussed in Horvitz et al. [2005]. The timeframe provides an
upper bound on the time within which the notification must be delivered so that
it does not become irrelevant for the user. If no breakpoint occurs by the end
of the given timeframe, the notification request is granted immediately. This
situation should be rare but, if it does occur, the resulting system behavior
(i.e., interrupt now) should be no worse than today’s interface. We assume
that a notification delivered at any moment within the given timeframe has
equal utility for the user and applications can determine what an appropriate
timeframe should be. Heuristics for selecting a timeframe are discussed in
Section 4.2.

3.2 Scheduling Notifications

As shown in Figure 1, two runtime components within Oasis, the Scheduler
and the Breakpoint Detector, manage notification requests. These components
coordinate to (i) identify breakpoints by evaluating user actions against sta-
tistical models of breakpoints; (ii) manage notification requests from end-user
applications; and (iii) match scheduled requests to the appropriate breakpoints
and manage the specified timeframes.

3.2.1 Detecting Breakpoints. Detecting breakpoints is necessary for
scheduling notifications within Oasis and this process is handled by the Break-
point Detector: (see Figure 2). The Breakpoint Detector buckets global system
and application events, evaluates each bucket of events using a set of statis-
tical models, and outputs a stream of breakpoint and not-a-breakpoint (NAB)
decisions. A default set of statistical models is provided with Oasis, but the
system allows new models to be created.

Two types of events are received by the Breakpoint Detector: global system
events, including mouse, keyboard, and top-level window events, and applica-
tion events, such as the event generated when text is added to a shape on the
canvas in MS Visio. Global events are captured using the Win32 API and the
necessary instrumentation is provided by Oasis. However, applications must
be instrumented to send their events to our system. For purposes of demon-
stration, we developed plug-ins for two commonly used applications, Microsoft
Visual Studio (source code editing tool) and Microsoft Visio (diagram editing
tool) that expose their event stream to our system. Similar plug-ins can be built
for other applications.

The default models used within OASIS were learned from the data and
process reported in our prior work [Iqbal and Bailey 2007; Iqbal and Bailey
2008]. These models were created by collecting authentic task execution data in
the domains of programming and diagram editing, having observers annotate
the perceived breakpoints, and learning the mappings from the surrounding

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:13

...

Mouse moved
Code compiled

Event Data Structure
6578974
6579673

Text added
Shape added

6643874
6652343

Evaluate examples 
using models

Breakpoint Detector

Scheduler

Coarse/ Medium/ 
Fine/ NAB

Win minimized
App closed

697654
699943

Win32 API

Apply 
operators

Events

Visual Studio 
Plug-in

Visio Plug-in
Bucket events 
into examples

Breakpoint 
models

Fig. 2. Schematic of the Breakpoint Detector. Visual Studio and Visio are shown as example
applications. Events are bucketed into examples and these are then evaluated using the global
model for Coarse breakpoints and the relevant application specific models for Medium and Fine.
The decision output (Coarse/Medium/Fine/NAB) is passed to the Scheduler.

interaction data to the identified breakpoints. Further details of how the models
were built and their performance are discussed in Section 4.1.

Oasis uses one model for detecting Coarse breakpoints. This model accepts
as input the global system events captured by our system and is therefore inde-
pendent of any specific application. There is an additional model for detecting
Medium and Fine breakpoints within each of our demonstration applications.
The use of default models eliminates the need for end users to engage in a
lengthy training process prior to first use of the system. However, if needed,
the models could be trained on a per user basis to improve their accuracy using
our offline tool set (see Section 3.3).

When an observed event occurs, it is sent to the breakpoint detector. The
breakpoint detector maintains a 30-second history of events and evaluates
these events every few seconds using the models. These models map the events
to each type of breakpoint and NABs. If a breakpoint is detected, the Scheduler
is notified of the occurrence and type of the breakpoint; otherwise, the current
moment is reported as a NAB.

3.2.2 Managing Notification Requests. When an application wants to ren-
der a notification to the user, it first sends a request to the Scheduler via a
network connection (see Figure 1). As described in Section 3.1, a request con-
sists of a scheduling policy and a time window. For example, the request (300,
next-medium) indicates a defer-to-next-medium policy and a time window of
300s. The Scheduler queues the request, along with the handle to the appli-
cation, and then waits either for an appropriate breakpoint to occur or for
the time window to expire. Once either occurs, the Scheduler signals the ap-
plication that its request has been granted. The application can then render
the notification using the modality and saliency of its choice. Figure 3 gives
pseudocode outlining this process.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:14 • S. T. Iqbal and B. P. Bailey

Fig. 3. Algorithm (in pseudocode based on C#) for managing notification requests.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:15

When notified of a breakpoint occurrence, the Scheduler checks whether the
breakpoint matches any of the policies specified in the requests in its queue. If
there is a match, a signal is sent to the corresponding application, which in turn,
can render its notification for the user. Matching the policies for defer-until-
next-coarse, -medium, -fine or –any-type is straightforward. The most complex
policy is defer-until-the-coarsest breakpoint within a given time frame, which
we elaborate here.

For this policy, if a Coarse breakpoint is detected, the request is imme-
diately granted since no coarser breakpoint is possible. If the breakpoint is
Medium or Fine, the scheduler forecasts the probability of the user reaching a
coarser breakpoint within the remaining timeframe. The scheduler calculates
this probability as follows:

P(coarser breakpoint occurring within X sec | current breakpoint type) =
# (current to coarser pairs with distance <= X) / # (all current to coarser pairs).

For example, suppose the current breakpoint type is Medium and there are 50
seconds left within the timeframe specified for the corresponding request. The
system traverses the distribution history of breakpoints to count the number
of Medium-to-next-Coarse pairs with a temporal distance less than 50s. This
number is then divided by the total number of Medium-to-next-Coarse pairs
in the history. If the resulting probability is less than a specified threshold
then the system grants the request. Otherwise, it waits for the next breakpoint
and the process repeats, until either a coarser breakpoint is not likely or the
timeframe given with the request expires. The probability threshold can be
specified in a system configuration file.

A default distribution history is included with Oasis. The history contains
the temporal distances between each pair of breakpoint types (e.g., Coarse-to-
next-Coarse, Coarse-to-next-Medium, etc.). The history is stored as an XML
file and is loaded at system startup. The default history was created from the
data used to train the default statistical models for detecting breakpoints (see
Section 3.2.1). However, if more accurate predictions are needed, our system
could be extended to track and use a running history of breakpoints detected
for the specific user.

3.3 Tool Set for Developing Breakpoint Models

As described in the previous section, the Breakpoint Detector relies on the
use of statistical models for detecting breakpoints. Oasis maintains a set of
default models and we expect that the use of default models will be able to
suffice for most end users and work contexts. However, for situations where
improved performance is desired or for other research purposes, customized
models can be created using a model development component within Oasis. The
model building process involves recording user interaction data, annotating
the breakpoints within the recorded data, and learning the mappings from
the interaction data to each type of breakpoint. Oasis provides a set of tools
supporting this process which we elaborate in this section.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:16 • S. T. Iqbal and B. P. Bailey

Application events

Visual Studio 
add-in

Visio add-in

Window events

Win32 API

Video stream of 
interaction data

Techsmith Screen 
Recorder SDK

5 frames/sec {event, time} {event, time} {event, time}

Activity Recorder

Data collection

Data aggregation

AVI file of on-screen 
interactions

XML file of timestamped 
window events

XML file of timestamped 
application events

Fig. 4. Schematic of the Activity Recorder service. The data is collected through system APIs
and application add-ins, is stored as AVI and XML files, and these files are later accessed by the
Breakpoint Annotator.

Model development in Oasis is similar to the process described with the
Subtle toolkit [Fogarty and Hudson 2007]. However, Subtle relies on the method
of experience sampling for labeling the training data. This method prompts the
user to enter the labels at random moments or at moments that can be specified
a priori. Because learning models of breakpoints requires the labels to be placed
at precise moments within the task execution data and these moments cannot
be known a priori, it would be difficult to directly apply this toolkit for learning
the models. Our system is therefore different in that it provides a set of tools
for capturing and retrospective labeling of the interaction data.

3.3.1 Recording Interaction Data. The Activity Recorder is a service used
to record interaction data and its architecture is outlined in Figure 4. It collects
three categories of data: a video of onscreen interaction, application events,
and global system events. The videos are used for retrospective labeling of the
breakpoints. The application and global system events are collected and used
in raw form as well as to generate higher-level features that may be predictive
of the breakpoints. The recorder has a user interface for starting, pausing, and
stopping the data collection.

3.3.2 Labeling Breakpoints. Once the activity data has been collected, the
next step is to annotate the locations of the breakpoints. The Breakpoint Anno-
tator is an interactive tool enabling this functionality, shown in Figure 5. The
tool allows a user to view a video of on-screen interaction and annotate where
they feel the breakpoints occur. When the user wants to enter a breakpoint, she
opens the breakpoint dialog by selecting the appropriate button from the play-
back control (bottom left of Figure 5). This opens a nonmodal dialogue (bottom

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:17

Fig. 5. The Breakpoint Annotator is an interactive tool for marking the locations of breakpoints
and identifying their type, entering rationale for the breakpoints, and saving the annotations to a
structured file. It also provides a visual summary of the ongoing annotations (right side).

middle of Figure 5) where the user selects the type of the breakpoint and en-
ters the rationale for why she believes this is a breakpoint, if instructed. From
within the dialog, the user can scrub the video in different increments to locate
the precise time point of the breakpoint. The breakpoint type, its rationale,
and the video time point are saved and appear in the summary panel (right
of Figure 5). Once complete, the breakpoint data can be saved as a zip archive
containing the interaction video, the breakpoint annotation records, and the
distribution history of the breakpoints. The latter is used for the prediction
algorithm described in Section 3.2.3.

3.3.3 Learning the Models. To learn the breakpoint models, the system
first creates a set of training examples by associating the global and applica-
tion event data with the labeled breakpoints. Note that this is a fully auto-
mated process and does not require any input from the user. To create training

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:18 • S. T. Iqbal and B. P. Bailey

examples, the system creates a thirty second history of the interaction data pre-
ceding each labeled breakpoint. Features are derived from the interaction data
and corresponding training examples are generated. Some example features in-
clude switching to a mail client (global), finish building project (programming)
and finish adding a shape to the current diagram (diagram editing). To distin-
guish non-breakpoint moments from breakpoints, additional training examples
are generated from a random sample of moments that were not identified as
breakpoints.

Using the training examples, the learning module filters features that are
most predictive and contribute to improved accuracy. A reduced number of fea-
tures is useful for improving the efficiency of the overall system. The training
examples and predictive features are then passed through a set of statisti-
cal models based on different learning algorithms including Decision trees,
Bayesian nets, Multilayer Perceptrons, and IB1. The models with the highest
accuracy are selected and stored in the appropriate location for use by the Oasis
system. Further details of this learning process can be found in Iqbal [2008].

3.4 Implementation and Interfacing with Applications

Oasis is fully functional and was developed in Visual C# using the.NET Frame-
work. It consists of about 14,000 lines of code. The runtime component leverages
two classes of plug-ins for accessing the user interaction data; a system plug-
in and application plug-ins. The system plug-in leverages the Win32 API for
capturing events related to the mouse, keyboard, and top-level window manip-
ulations. This plug-in is included as part of Oasis.

Application plug-ins provide access to application-level events and our sys-
tem relies on others (e.g., end users, developers, or researchers) to create these
plug-ins. However, to provide proof of concept, we developed plug-ins for two
commonly used applications, Microsoft Visio and Microsoft Visual Studio. The
plug-in for Visio was developed using the Microsoft R© Visual Studio R© Tools
for Microsoft Office. This technology allows “add-ins” to be created for any ap-
plication in the Microsoft Office suite. The plug-in captures events related to
manipulating shapes (creating, sizing, deleting, setting properties, etc.), the
canvas view position and scale, and manipulating diagrams (creating, nam-
ing, saving, closing, etc.). About 500 events are captured with this plug-in. For
Visual Studio, the plug-in was developed by extending the IDE. The plug-in
reports events related to the editing of the code (ended line of code, method,
or class), selection of menu and toolbar commands, and navigation (opening,
switching, and closing source files and scrolling the current source file). About
370 events are captured using this plugin. Because application scripting tech-
nologies have become widely available, similar plug-ins can be created for a
wide variety of end user applications in the desktop domain.

For model development, videos of onscreen interaction are captured using
the Techsmith Screen Recorder SDK. The event data is collected from the appli-
cation and system plug-ins and this data is saved as XML files. The event data
and screen interaction data contain time stamps from the system clock allow-
ing for precise synchronization. This is needed when aligning the annotated

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:19

breakpoints to the interaction data during the model building process. The
breakpoint models are learned using the Weka toolkit [Witten and Frank 2005].

The current implementation of Oasis provides an interface for applications
to connect to the Scheduler through an IP Version 4 stream socket using the
TCP/IP protocol. For an application executing on the same machine as Oa-
sis, the connection is established using the loopback address (127.0.0.1), but
this can be replaced by a different IP address if the application is executing
on a different machine. Applications that want to send notification requests
set up connections with the Scheduler a priori. The connection is attempted
using a nonblocking system call (send) to a predetermined system port. This
prevents the application from blocking indefinitely on the request and allows
the application to take appropriate action if the connection fails. If successful,
the application uses the connection for sending all notification requests to Oa-
sis. Any application capable of sending and receiving messages through IPV4
sockets can interface with Oasis.

4. DISCUSSION

In this section, we review results from a user evaluation of our system and
then discuss issues related to its implementation and the generalizability of
the underlying technique.

4.1 Evaluation of System Performance and User Impact

We conducted a user study to test the effectiveness of using default statistical
models for detecting breakpoints for novel interaction data (i.e., data that was
not part of the original training set) and to evaluate how scheduling notifica-
tions with our system impacts users and their tasks. Because details of the
study have been reported elsewhere [Iqbal and Bailey 2008], we only summa-
rize the methodology and our most significant findings.

The first phase of the study evaluated how well the system could identify and
differentiate breakpoints for novel interaction data using the default statisti-
cal models. The study was conducted in the task domains of programming and
diagram editing. To build the default models, we recruited six users (three per
domain) who performed their own tasks in the respective domain. The users
had complete control over the task and how it would be performed. Our Activity
Recorder (see Section 3.3) was installed on the users’ machine and, while the
desired task was being performed, collected about 1.5 hrs of interaction data.
Examples of the tasks performed included developing a Web-based application
in ASP.net and developing information architecture diagrams for a Web site de-
sign. Twelve observers viewed the interaction videos and identified the location
of breakpoints and their type using the Breakpoint Annotator. The breakpoint
data was fed into our model building component which generated the default
models. A 10-fold cross-validation showed reasonable performance; recall was
71% for Coarse, 84% for Medium, and 96% for Fine for the programming tasks
and 56% for Medium and 58% for Fine for the diagram editing tasks.

To evaluate the models for novel interaction data we recruited six additional
users (again, three per domain) who installed and ran our system while they

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:20 • S. T. Iqbal and B. P. Bailey

performed their own tasks in the respective domain. Our system was using the
default models and was configured to record the detection of breakpoints. The
users later reviewed their interaction videos and retrospectively identified the
locations of their breakpoints. The locations of these user-identified breakpoints
were compared to the locations of the system-identified breakpoints. Results
showed that users and the system agreed on the location of 43% (programming)
and 40% (diagram editing) of the breakpoints. However, the default models
particularly struggled to differentiate the type of the breakpoints, with recall
values ranging between 2 and 42%. These results were lower than expected and
highlight the challenge of creating a robust set of default models for breakpoint
detection.

We see several directions forward for improving model performance.
One is to train the default models using a much larger training set,
which might be possible by collecting labeled data from many users or ob-
servers. Another direction would be to have users train personalized mod-
els, which has been shown to increase model performance [Fogarty and
Hudson 2007]. A third direction would be to begin with the default models
but train them further with additional data collected from the user.

Given the active research on modeling user activities [Fogarty and
Hudson 2007; Horvitz et al. 2003; Horvitz et al. 2002], we believe performance
for default and/or personalized models will reach acceptable thresholds for
breakpoint detection. We therefore wanted to test the effects of scheduling no-
tifications at breakpoints for free-form user activities. To compensate for the
model accuracies, we combined the breakpoint data and learned new models
that would detect the occurrence of a breakpoint without differentiating its
type. This yielded recall accuracies of 59% and 52% for programming and dia-
gram editing, which was sufficient for the next phase of our study. To identify
the breakpoint types, we had the users retrospectively label the type of the
breakpoints that were detected by Oasis.

Sixteen users participated in this phase of the evaluation, consisting of grad-
uate and undergraduate students. A diagram editing task (design a leisure
space for students) and a programming task (develop a set of digital image fil-
ters) were created and performed using MS Visio and Visual Studio. The tasks
were designed to be open-ended, meaning that users had complete freedom
in how they would achieve the goal; the task steps were not predetermined
in any way. The tasks were more challenging and of longer duration than the
controlled tasks typically used in prior lab studies. Eight users performed the
diagram editing task while the other eight users performed the programming
task. The tasks lasted about two hours.

During the study, users received two types of notifications: those relevant
to the task and those of general interest to the user. For example, relevant
notifications included references to useful examples of source code or leisure
space diagrams whereas general interest notifications included actual refer-
ences to new releases of common software or announcements related to our
institution. Relevance was included as a factor to understand how it interacts
with the system’s scheduling behavior. Sixteen notifications were delivered per
user, eight relevant and eight of general interest. An application was created

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:21

that generated notification requests at random moments during the user’s task
and rendered the notifications when the requests were granted.

Our system was configured to grant requests under two conditions. In one
condition, requests were granted immediately and this served as a baseline.
For the other condition, the system granted requests using the defer-to-next
breakpoint policy. Users identified the types of the breakpoints retrospectively,
allowing us to analyze the scheduling behavior for each type of breakpoint.
Given the scope and complexity of the study, testing the other policies was
not included here but should be a focus of future work. Dependent measures
included the user’s reaction time (time to acknowledge a notification), resump-
tion time (the time to resume the main task), and self-reported frustration. We
also gained user feedback about the effectiveness of the scheduling behavior
through post experiment interviews.

A compelling finding from our study was that the concept of scheduling
notifications at breakpoints fit well with how the users preferred the notifica-
tions to be managed. For example, when asked to characterize their preferred
moments for a notification, many users described how they preferred, “finish-
ing the current thing [action] rather than jumping to something else.” More
specifically, users pinpointed moments such as after adding specific shapes to
a diagram or completing specific lines of source code, and describing how these
actions related to the completion of their current goal; the same behavior our
system seeks to mimic. Quantitatively, we found that scheduling notifications
at breakpoints reduced frustration by 20% and reaction time by 25% relative to
immediate delivery. This reduction in cost was balanced against notifications
being deferred for only about 90 seconds on average.

User feedback also provided insights into when applications should specify
each of the tested policies. For example, an application should choose a defer-to-
medium or defer-to-fine policy for a notification relevant to the user’s task and
choose a defer-to-coarse policy for notifications of general interest. The rationale
expressed by users is that they wanted to receive relevant notifications while
they were still in the context of the main task, otherwise they felt the need
to return to it; whereas they wanted the general interest notifications to be
deferred until after they had left the main task and were more amenable to
receiving general information. Overall, the results from our study show that
scheduling notifications at breakpoints can result in a measurable benefit for
users and fits their own expectations for managing notifications. However, the
study also clearly indicates that more research is needed to improve breakpoint
detection, preferably in a manner that does not impose a burden that may
inhibit user adoption of this type of system in practice.

4.2 Constructing a Notification Request

When an application wants to render a notification using our system, it must
construct and send a notification request. Each notification request consists
of two components: the scheduling policy and a time window within which
the notification must be delivered (see Section 3.1). The application must
select the time window carefully because it will affect the system’s scheduling

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:22 • S. T. Iqbal and B. P. Bailey

Table III.
Recommended values (in seconds) for the time window for each of the scheduling policies in Oasis

Defer-to-coarse Defer-to-med Defer-to-fine Defer-to-any Defer-to-best
190 158 114 225 659

behavior. For example, a time window that is set too short could override the
corresponding policy because the likelihood of detecting a matching breakpoint
would be low. On the other hand, setting the time window too long could reduce
the utility of the notification’s content, (e.g., if a matching breakpoint does
not occur, the notification would be delayed until the time window expires). To
assist application developers, we offer initial heuristics and discuss additional
parameters that may be considered for specifying an appropriate time window.

An initial set of heuristics for appropriate time windows for each pol-
icy was derived by analyzing the breakpoint data set reported in Iqbal and
Bailey [2007]. The heuristics are summarized in Table III. This dataset in-
cluded the breakpoint distributions for several programming, document edit-
ing, and image manipulation tasks and was the most robust dataset we had
available. Our goal in analyzing the dataset was to calculate durations for which
there would be a reasonable likelihood of a breakpoint occurring that would
satisfy the given policy. For example, for the defer-to-coarse, -medium, and -fine
policies, we computed the heuristic based on the median distance between each
of those types of breakpoints in the data set. For the defer-to-any policy, we used
the median distance between all adjacent pairs of breakpoints. For the defer-
to-best policy, we computed the heuristic as the median distance to the next
breakpoint of any type and then added the maximum distance from any break-
point to the next Coarse. The heuristics could be later refined by examining a
larger data set and leveraging the experience gained from use of the system.

In selecting an appropriate time window as well as the scheduling policy,
an application may want to consider parameters such as the urgency and rel-
evance of the notification content with respect to the user’s ongoing task. For
example, if an application is aware that the notification is more urgent for
the user or relevant to her task (e.g., using systems like Giornata [Voida and
Mynatt 2009] or Tasktracer [Dragunov et al. 2005]), it may specify a shorter
time window in its request (the exact value would require some calibration).
This would allow opportunity for a suitable breakpoint to occur but help guard
the utility of the notification. Though challenging, applications may leverage ex-
isting techniques for computing these values dynamically [Marx and Schmandt
1996; Horvitz et al. 1999] or, in the future, may be able to query system ser-
vices to retrieve these values automatically [Dragunov et al. 2005]. One may
also envision a system like Oasis making a user’s current activities (the struc-
ture of which it already detects) available to applications, with some level of
abstraction, along with predictions for how long s/he may remain on that activ-
ity as well as probabilities of switching to other activities. Applications may be
able to leverage this information in determining how relevant or urgent their
information is relative to the current task and create notification requests ac-
cordingly. Determining relevance or urgency is challenging, and the effect of
inaccurate assessment is not negligible. Applications or services may therefore

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:23

consider establishing a user feedback mechanism to tune their algorithmic
estimations of these attributes, which would help to improve the efficacy of the
overall system behavior.

4.3 Granularities of Breakpoints

Our system schedules notifications by detecting interruptible moments during
user tasks. As a result, the system is not able to provide measures of a user’s
interruptibility between these moments (i.e., it does not provide a continuous
cost function). This capability would be useful, for example, for enabling addi-
tional scheduling policies in our system. One method for converging toward a
more continuous cost function consistent with our current approach is to detect
successively finer granularities of breakpoints (e.g., in the extreme case, down
to the transitions between keystrokes). However, we have not pursued this
level of detail in our system because the empirical evidence has not yet shown
that delivering notifications at breakpoints with a granularity finer than those
already detectable by our system yields a measurable benefit for the user [Iqbal
and Bailey 2006]. That is, delivering a notification at a breakpoint with a very
fine granularity has not been shown to be better than delivering it immediately.

Conversely, it might also be useful to detect additional granularities of break-
points coarser than those currently detectable by our system. An example of
this type of breakpoint would be a transition between physical activities within
the office (e.g., switching between interacting with the desktop and reading
physical documents). This type of breakpoint could be detected by deploying
sensors throughout the office environment [Fogarty and Hudson 2007] and
learning statistical models using a process and tools similar to those described
in this article. Because empirical benefits of using this class of breakpoint have
been shown in the domain of mobile computing [Ho and Intille 2005], notifica-
tion management systems similar to Oasis should consider implementing this
extension.

4.4 Generalizing to Other Tasks, Domains, and System Functionalities

Oasis demonstrates the technique of aligning notification scheduling to the
perceptual structure of user tasks and the system was implemented in the
desktop domain as a proof of concept. An evaluation offered initial evidence
indicating that the system provides an empirical benefit for users during au-
thentic activities and that the system’s behavior is consistent with how users
prefer notifications to be managed. The evaluation tested the system in the two
task domains that it currently supports: programming and diagram editing. In
addition, prior work has tested the technique and shown favorable results for
other interactive tasks, including document editing, image manipulation, and
communication tasks. We therefore believe the technique generalizes to the
class of goal-directed, content generation tasks. Further research is needed to
test the efficacy of our system for interactive tasks that are less goal-directed or
do not involve content generation. For example, one challenge with these types
of tasks is that the perceptual structure may be more difficult to detect, by both
systems and human observers. For example, if a user is browsing the Web for

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:24 • S. T. Iqbal and B. P. Bailey

leisure (where the goal is less obvious and there is no content generation), it
may be more difficult to reliably identify the transitions between meaningful
units of action.

Extending the capability of a system like Oasis to other desktop task do-
mains would require that the event streams of the desired applications be
made available to the system. As application plug-in and scripting architec-
tures have become common, the technical feasibility for exposing the event
streams is already available. For example, we were able to create plug-ins for
MS Visio and Visual Studio with relatively modest effort. And in the Task-
Tracer project [Dragunov et al. 2005], it was demonstrated that plug-ins could
be created to capture a very large number of interaction events for the entire
MS Office suite (Excel, Word, Powerpoint, and Outlook). Generally speaking,
developers should report as many events as possible and allow the model build-
ing component to learn which events to include in the breakpoint models. In
addition, the effect on the user experience caused by a growing number of no-
tifications in the desktop domain provides a strong incentive for developers to
create these types of plug-ins. For example, an application that interacts with
a notification management system for delivering frequent information updates
would have a clear user experience and marketing advantage over competing
applications that do not provide similar support.

Though our system was implemented in the desktop domain, the basic tech-
nique of deferring notifications until breakpoints can be effective in other do-
mains where users perform goal-directed tasks. For example, for mobile com-
puting, researchers have already found that deferring notifications until the
user initiates a physical transition (e.g., from sitting to standing) yields positive
results relative to immediate delivery [Ho and Intille 2005]. In the domain of
ubiquitous computing, researchers have found that transitions between differ-
ent task and leisure activities within the home would also serve an important
role in notification management [Nagel et al. 2004]. In safety critical domains
such as driving, notifications from in-vehicle information systems could be de-
ferred until the driver completes a critical action such as turning, stopping at a
light, or reaching a steady speed. However, in this environment, systems would
likely need to consider other contextual factors such as weather and traffic con-
ditions in addition to the sequence of localized driver actions when deciding
when to render notifications.

Finally, system functionalities beyond notification management could be en-
abled with access to the perceptual structure of user tasks. For example, this
information could be used by content generation tools (e.g., programming, im-
age manipulation, and document editing tools) to organize a linear sequence of
user commands into a hierarchical structure. For example, this structure would
enable users to perform undo and redo actions at different levels of granularity
or could be used to create a better visual summary of the command histories.

5. CONCLUSIONS AND FUTURE WORK

Users rely on notifications to maintain awareness of desired information. Be-
cause the applications or services delivering notifications have no capability of

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:25

understanding the state of the user’s task, they often render their notifications
at overly disruptive moments. Empirical research has shown favorable results
for using perceptual breakpoints during task execution as less disruptive mo-
ments for notification, but it has been unclear whether this strategy could be
effectively implemented or what the effects on end users would be for authentic
activities.

This article has contributed the design of a system called Oasis that demon-
strates the feasibility of aligning notification delivery with the perceptual struc-
ture of user tasks. The key aspects of our system are that it detects task struc-
ture without any explicit knowledge of the task itself, layers flexible scheduling
policies on top of the detection mechanism, and provides a service that applica-
tions can access for scheduling notifications with these policies. An evaluation
showed that the system can provide empirical benefits for the user and led to
initial recommendations for how and when each of the policies is best utilized.
Our system has been fully implemented and other researchers can use it to fur-
ther explore notification scheduling policies and other system functionalities
based on the use of task structure. The source code of Oasis can be obtained by
contacting S. T. Iqbal.

We see several directions for future work. One immediate direction is to
explore how to build more robust default statistical models for breakpoint
detection or methods for creating personalized models that limit the training
overhead for users. Another direction is to conduct longer-term studies of how
a notification scheduling system like Oasis affects users and their tasks and
study the use of the system for a more diverse task set. A third direction is
to better understand if and how users develop a mental model of the system’s
behavior and how they react to this type of automated decision making. A
fourth direction is to explore development of additional notification scheduling
policies that leverage task structure and other contextual factors. Finally, it
may be fruitful to explore how the use of perceptual task structure could enable
or improve other types of system functionalities, such as automatically creating
structured command histories.

ACKNOWLEDGMENTS

We thank the users who volunteered to participate in our related studies.

REFERENCES

ADAMCZYK, P. D. AND BAILEY, B. P. 2004. If not now when? The effects of interruptions at different
moments within task execution. In Proceedings of the ACM Conference on Human Factors in
Computing Systems. 271–278.

BAILEY, B. P., ADAMCZYK, P. D., CHANG, T. Y., AND CHILSON, N. A. 2006. A framework for specifying
and monitoring user tasks. J. Comput. Hum. Behav. 22, 4, 685–708.

BAILEY, B. P. AND IQBAL, S. T. 2008. Understanding changes in mental workload during execution
of goal-directed tasks and its application for interruption management. ACM Trans. Comput.
Hum. Interac. 14, 4, 1–28.

BAILEY, B. P. AND KONSTAN, J. A. 2006. On the need for attention aware systems: measuring effects
of interruption on task performance, error rate, and affective state. J. Comput. Hum. Behav. 22,
4, 709–732.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:26 • S. T. Iqbal and B. P. Bailey

BEGOLE, J. B., MATSAKIS, N. E., AND TANG, J. C. 2004. Lilsys: sensing unavailability. In Proceedings
of the ACM Conference on Computer Supported Cooperative Work. 511–514.

CZERWINSKI, M., CUTRELL, E., AND HORVITZ, E. 2000a. Instant messaging and interruption: influ-
ence of task type on performance. In Proceedings of the Annual Conference of the Human Factors
and Ergonomics Society of Australia (OZCHI). C. Paris, N. Ozkan, S. Howard, and S. Lu, Eds.,
356–361.

CZERWINSKI, M., CUTRELL, E., AND HORVITZ, E. 2000b. Instant messaging: effects of relevance and
timing. In Proceedings of HCI: People and Computers XIV. S. Turner and P. Turner, Eds., British
Computer Society, 71–76.

CZERWINSKI, M. AND HORVITZ, E. 2002. Memory for daily computing events. In Proceedings of HCI:
People and Computers XVI. F. Culwin, Ed.

DABBISH, L. AND KRAUT, R. E. 2004. Controlling interruptions: awareness displays and social
motivation for coordination. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work. 182–191.

DEMARCO, T. AND LISTER, T. 1999. Peopleware: Productive Projects and Teams 2nd Ed. Dorset
House Publishing Company, New York.

DEY, A. K. AND ABOWD, G. D. 2000. CybreMinder: a context-aware system for supporting re-
minders. In Proceedings of 2nd International Symposium on Handheld and Ubiquitous Comput-
ing. 172–186.

DISMUKES, K., YOUNG, G., AND SUMWALT, R. 1998. Cockpit interruptions and distractions. ASRS
Directline 10.

DRAGUNOV, A. N., DIETTERICH, T. G., JOHNSRUDE, K., MCLAUGHLIN, M., LI, L., AND HERLOCKER, J. L.
2005. TaskTracer: A desktop environment to support multi-tasking knowledge workers. In
Proceedings of the International Conference on Intelligent User Interfaces. 75–82.

FOGARTY, J. AND HUDSON, S. E. 2007. Toolkit support for developing and deploying sensor-based
statistical models of human situations. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM Press, 135–144

FOGARTY, J., KO, A. J., AUNG, H. H., GOLDEN, E., TANG, K. P., AND HUDSON, S. E. 2005. Examining
task engagement in sensor-based statistical models of human interruptibility. In Proceedings of
the ACM Conference on Human Factors in Computing Systems. 331–340.

FOGARTY, J., LAI, J., AND CHRISTENSEN, J. 2004. Presence versus availability: The design and
evaluation of a context-aware communication client. Int. J. Hum. Comp. Studies, 61, 3, 299–
317.

GILLIE, T. AND BROADBENT, D. 1989. What makes interruptions disruptive? A study of length,
similarity, and complexity. Psych. Rese. 50, 243–250.

GLUCK, J., BUNT, A., AND MCGRENERE, J. 2007. Matching attentional draw with utility in inter-
ruption. In Proceedings of the ACM Conference on Human Factors in Computing Systems. ACM
Press, 41–50

GONZALEZ, V. M. AND MARK, G. 2004. “Constant, constant, multi-tasking craziness”: managing
multiple working spheres. In Proceedings of the ACM Conference on Human Factors in Computing
Systems. 113–120.

HO, J. AND INTILLE, S. S. 2005. Using context-aware computing to reduce the perceived burden of
interruptions from mobile devices. In Proceedings of the ACM Conference on Human Factors in
Computing Systems. ACM Press, 909–918

HORVITZ, E. 1999. Principles of mixed-initiative user interfaces. In Proceedings of the ACM Con-
ference on Human Factors in Computing Systems. 159–166.

HORVITZ, E., APACIBLE, J., AND SUBRAMANI, M. 2005. Balancing awareness and interruption: inves-
tigation of notification deferral policies. In Proceedings of the 10th User Modeling International
Conference. L. Ardissono, P. Brna, and A. Mitrovic, Eds., Springer, 433–437.

HORVITZ, E., JACOBS, A., AND HOVEL, D. 1999. Attention-sensitive alerting. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence. 305–313.

HORVITZ, E., KADIE, C. M., PAEK, T., AND HOVEL, D. 2003. Models of attention in computing and
communications: from principles to applications. Comm. ACM, 52–59.

HORVITZ, E., KOCH, P., KADIE, C. M., AND JACOBS, A. 2002. Coordinate: probabilistic forecasting of
presence and availability. In Proceedings of the 18th Conference on Uncertainty and Artificial
Intelligence. Morgan-Kaufmann, 224–233.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



Oasis: A Framework for Linking Notification Delivery • 15:27

IQBAL, S. T. 2008. A framework for intelligent notification management in multitasking domains.
Ph.D. Thesis. Department of Computer Science, University of Illinois at Urbana-Champaign.

IQBAL, S. T. AND BAILEY, B. P. 2005. Investigating the effectiveness of mental workload as a
predictor of opportune moments for interruption. In Proceedings of the ACM Conference on
Human Factors in Computing Systems. 1489–1492.

IQBAL, S. T. AND BAILEY, B. P. 2006. Leveraging characteristics of task structure to predict costs of
interruption. In Proceedings of the ACM Conference on Human Factors in Computing Systems.
741–750.

IQBAL, S. T. AND BAILEY, B. P. 2007. Understanding and developing models for detecting and
differentiating breakpoints during interactive tasks. In Proceedings of the ACM Conference on
Human Factors in Computing Systems. 697–706.

IQBAL, S. T. AND BAILEY, B. P. 2008. Effects of intelligent notification management on users and
their tasks. In Proceedings of the ACM Conference on Human Factors in Computing Systems.
93–102.

IQBAL, S. T. AND HORVITZ, E. 2007. Disruption and recovery of computing tasks: field study, anal-
ysis and directions. In Proceedings of the ACM Conference on Human Factors in Computing
Systems. 677–686.

IQBAL, S. T. AND HORVITZ, E. 2010. Notification and awareness: a field study of alert usage and
preferences. In Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW). ACM, 27–30.

JACKSON, T. W., DAWSON, R. J., AND WILSON, D. 2001. The cost of email interruption. J. Syst. Inform.
Technol. 5, 1, 81–92.

KREIFELDT, J. G. AND MCCARTHY, M. E. 1981. Interruption as a test of the user-computer interface.
In Proceedings of the 17th Annual Conference on Manual Control. Jet Propulsion Laboratory,
California Institute of Technology, JPL Publication 81–95, 655–667.

LATORELLA, K. A. 1998. Effects of modality on interrupted flight deck performance: implications
for data link. In Proceedings of the 42nd Annual Meeting of the Human Factors and Ergonomics
Society. 87–91.

LATORELLA, K. A. 1999. Investigating interruptions: Implications for flightdeck performance.
National Aviation and Space Administration, Washington, DC.

LEE, J. D., HOFFMAN, J. D., AND HAYES, E. 2004. Collision warning design to mitigate driver
distraction. In Proceedings of the ACM Conference on Human Factors in Computing Systems.
65–72.

MAES, P. 1994. Agents that reduce work and information overload. Comm. ACM 37, 7, 30–40.
MAGLIO, P. AND CAMPBELL, C. S. 2000. Tradeoffs in displaying peripheral information. In Proceed-

ings of the ACM Conference on Human Factors in Computing Systems. 241–248.
MARX, M. AND SCHMANDT, C. 1996. CLUES: Dynmic prsonalized message filtering. In Proceedings

of the ACM Conference on Computer Supported Cooperative work.
MCCRICKARD, D. S., CATRAMBONE, R., CHEWAR, C. M., AND STASKO, J. T. 2003. Establishing tradeoffs

that leverage attention for utility: Empirically evaluating information display in notification
systems. Int. J. Hum.-Comput. Studies 58, 5, 547–582.

MCFARLANE, D. C. 1999. Coordinating the interruption of people in human-computer interaction.
In Proceedings of the IFIP TC.13 International Conference on Human-Computer Interaction. 295–
303.

MCFARLANE, D. C. AND LATORELLA, K. A. 2002. The scope and importance of human interruption
in HCI design. Hum.-Comput. Interact. 17, 1, 1–61.

MIYATA, Y. AND NORMAN, D. A. 1986. Psychological issues in support of multiple activities. In User
Centered System Design: New Perspectives on Human-Computer Interaction, D. A. Norman and
S. W. Draper Eds., Lawrence Erlbaum Associates, Hillsdale, NJ, 265–284.

MONK, C. A., BOEHM-DAVIS, D. A., AND TRAFTON, J. G. 2002. The attentional costs of interrupting
task performance at various stages. In Proceedings of the Human Factors and Ergonomics Society
46th Annual Meeting.

NAGEL, K. S., HUDSON, J. M., AND ABOWD, G. D. 2004. Predictors of availability in home life
context-mediated communication. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work. ACM Press, 497–506.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.



15:28 • S. T. Iqbal and B. P. Bailey

NAVON, D. AND GOPHER, D. 1979. On the economy of the human processing system: a model of
multiple capacity. Psych. Rev. 86, 254–255.

NEWTSON, D. 1973. Attribution and the unit of perception of ongoing behavior. J. Person. Soc.
Psych. 28, 1, 28-38.

NEWTSON, D. AND ENGQUIST, G. 1976. The perceptual organization of ongoing behavior. J. Experi.
Soc. Psych. 12, 436–450.

SPEIER, C., VALACICH, J. S., AND VESSEY, I. 1999. The influence of task interruption on individual
decision making: An information overload perspective. Decis. Sci. 30, 2, 337–360.

STANTON, N. 1994. Human Factors in Alarm Design. Taylor and Francis, London, UK.
TANG, J. C., YANKELOVICH, N., BEGOLE, J., KLEEK, M. V., LI, F., AND BHALODIA, J. 2001. ConNexus

to awarenex: Extending awareness to mobile users. In Proceedings of the ACM Conference on
Human Factors in Computing Systems. ACM Press, 221–228.

VAN DANTZICH, M., ROBBINS, D., HORVITZ, E., AND CZERWINSKI, M. 2002. Scope: Providing aware-
ness of multiple notifications at a glance. In Proceedings of the Conference on Advanced Visual
Interfaces.

VOIDA, S. AND MYNATT, E. D. 2009. It feels better than filing: everyday work experiences in an
activity-based computing system. In Proceedings of the 27th International Conference on Human
factors in Computing Systems. ACM.

WICKENS, C. D. 2002. Multiple resources and performance prediction. Theo. Issues Ergon. Sci. 3,
2, 159–177.

WITTEN, I. H. AND FRANK, E. 2005. Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, San Francisco, CA.

ZACKS, J., TVERSKY, B., AND IYER, G. 2001. Perceiving, remembering, and communicating structure
in events. J. Exper. Psych. Gen. 130, 1, 29–58.

ZACKS, J. M. AND TVERSKY, B. 2001. Event structure in perception and conception. Psych. Bull.
127, 3–21.

ZIJLSTRA, F. R. H., ROE, R. A., LEONORA, A. B., AND KREDIET, I. 1999. Temporal factors in mental
work: effects of interrupted activities. J. Occup. Organiz. Psych. 72, 163–185.

Received June 2009; revised March 2010, July 2010; accepted August 2010

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 4, Article 15, Publication date: December 2010.


