
Support For Multitasking and Background Awareness
Using Interactive Peripheral Displays

Blair MacIntyre 1, Elizabeth D. Myna t t 1, Stephen Voida 1, Klaus M. Hansen 2, Joe Tullio 1, Gregory M. Corso 3

1College of Computing
GVU Center, Georgia Tech,
Atlanta, GA, 30332-0280

[blair, mynatt, svoida,jtullio} @
cc.gatech.edu

e university of Aarhus
Aabogade 34A,
8200 Aarhus N

Denmark
marius@ daimi.au.dk

3School of Psychology
GVU Center, Georgia Tech,
Atlanta, GA, 30332-0170

gregory, corso @psych.gatech. edu

Abstract

In this paper, we describe Kimura, an augmented office
environment to support common multitasking practices.
Previous systems, such as Rooms, limit users by
constraining the interaction to the desktop monitor. In
Kimura, we leverage interactive projected peripheral
displays to support the perusal, manipulation and awareness
of background activities. Furthermore, each activity is
represented by a montage comprised of images from current
and past interaction on the desktop. These montages help
remind the user of past actions, and serve as a springboard
for ambient context-aware reminders and notifications.

Keywords: Context-aware computing, ubiquitous
computing, ambient displays, office computing, Rooms.

1 Introduction

Advances in technological capabilities enable new forms of
interaction and often suggest the re-examination of previous
interface concepts that could not be fully realized by the
technology of the day.

In this research, we take as a starting point the use of
interactive, projected displays in individual offices. Often
discussed in the context of ubiquitous computing and
augmented environments, these displays are envisioned as a
natural extension to traditional computing in a work setting.
In particular, we are interested in leveraging projected
displays as peripheral interfaces that compliment existing
focal work areas, and supporting the natural flow of work
across these two setting. We are not alone in believing that
the effective design of peripheral displays can revolutionize
human-computer interfaces; the intuitive appeal of such
displays has given rise to an assortment of exciting research
that is exploring possible ways to take advantage of people's

Permission to make digital or hard copies of all or part of this work fox"
personal or classroom use is granted without tee provided that copies
are not made o1" disu'ibuted tbr prolit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific pemlission and/or a fee.
UIST Ol Orlando FI,A
Copyright ACM 2001 1-58113-438 -x/01/l 1 ...$5.00

Figure 1: The augmented office environment including
the focal and peripheral interactive displays.

uncanny ability to utilize peripheral information with
comparatively little effort [2][12].

We use these peripheral displays to assist users in managing
multiple "working contexts"--coherent sets of tasks
typically involving the use of multiple documents, tools, and
communications with others. This goal of supporting multi-
tasking is not new and has received considerable attention in
a variety of research communities (e.g., [17]). Awareness of
the need to support multiple simultaneous activities drove
the development of the multi-windowed graphical user
interface [17], and the subsequent addition of multiple
"virtual desktops" to these interfaces [7].

Unfortunately, these graphical user-interfaces do not
provide effective support for managing multiple working
contexts. Limited screen real estate makes it impossible to
maintain an awareness of background activities. Moreover,
constraining the interaction to the desktop is a poor match
for common human behaviors such as using large amounts
of physical space to simultaneously organize, monitor, and
manage multiple activities [20]. The goal of our research is
to leverage large projected interactive surfaces to support
innate human abilities such as peripheral awareness, and
human cognitive practices such as multi-tasking and off-
loading information into the physical environment [10].

Our system, Kimura, separates the user's "desktop" into two
parts, the focal display on the desktop monitor, and the
peripheral displays projected on the office walls, as shown

~L~IBI 3 (2) UIST '01 41

Figure 2: One montage design. Items spiral out from the
center based on relative importance.

in Figure 1. As the user shifts between working contexts,
background activities are illustrated as visual montages on
the peripheral display.

From Kimura's point of view, a working context is the
cluster of documents related to a general activity, such as
managing a project, participating in a conference, or
teaching a class, as well as the collection of on-going
interactions with people and objects related to that activity.
Any cluster can have numerous documents, including text
files, web pages, and other application files, that have been
used in the course of the activity, plus indications of on-
going activity such as email messages without replies and
outstanding print jobs. Kimura automatically tracks the
contents of a working context, tagging documents based on
their relative importance. As in previous systems, such as
Rooms [7], users demarcate the boundaries of working
contexts manually, as this operation is light-weight from the
user's perspective and error-prone if left to the system. One
contribution of this work is creating and using logs of
activity to support both awareness, and resumption, of
background tasks.

Background activities (working contexts) are visualized as a
montage of images garnered from the activity logs. These
montages are analogous to the "room overviews" provided
by other multi-context window managers, but where these
systems show the exact layout of the current windows in
each room, our goal is to show visualizations of the past
activity in the context. These visualizations help remind the
user of past actions (see Figure 2); the arrangement and
transparency of the component images automatically creates
an icon for the working context. Another contribution of this
work is the design of these visualizations of past activity.

The montages are displayed on an interactive projected
surface, and thus help support common whiteboard
practices [20]. Users can reposition montages, for example,
to indicate the respective priority of background activities,
as well as annotate them with informal reminders.
Additionally, montages serve as anchors for background
awareness information that can be gleaned from a context-
aware infrastructure. Supporting interaction with the
montages, and their integration with background contextual
cues, represents another key contribution of this research.

1.1 Paper Overview

In this paper, we first present a scenario that highlights
several key interactions with our system. Following this
illustration, we discuss the substantial related work in this
area, and describe our contributions with respect to these
previous efforts. We then describe in more detail the novel
aspects of our interface, namely the design of, and
interaction with, the montages. Next, we discuss our system
architecture, and our design decisions with respect to
creating a scalable and flexible context-aware architecture.
We close by describing our plans for future research.

1.2 Scenario

As Charlie walks into his office Monday morning, his
whiteboard displays multiple montages consisting of
documents and other computer images. Glancing at the
board, Charlie decides that working on the new budgets can
wait until Wednesday and jots a quick reminder on the
montage. Next, he decides to start his day by working on his
advisory board briefing for next week. As he selects the
montage, his desktop reconfigures to contain the
applications he left running when he worked on the briefing
last Friday, and the montage appears on the wall near his
monitors. The Netscape browser still contains the agenda for
the meeting, and his initial set of slides are loaded into
PowerPoint. He notices that a different Netscape window is
prominently displayed in the montage, showing part of a
review of last year's briefing that he studied carefully on
Friday afternoon. As he works on the slides, he decides to
email the laboratory director to ask if he should include
some preliminary data in the presentation to answer some of
the criticisms in that review. As he sends the message,
Charlie wonders when, if ever, he'll get a reply, as the busy
director is not known for his timely responses. Charlie
works on the slides for another hour and then sends a copy
to the printer. Checking the printer queue, he finds that he is
behind three large print jobs. Mentally reminding himself to
get the printout later in the rooming, he decides to shift
gears and review his notes before a lunchtime meeting.

As he selects the project montage from his board, the
briefing materials disappear from his desktop and the
updated montage is now visible on the wall. His recent
efforts at writing a project paper are now on his desktop, as
well as his notes from the design session last month. As he
contemplates his notes, he notices that the face of the
laboratory director is visible on the whiteboard, layered on
top of the briefing notes. Ah, the director is likely in the
coffee area. Chaflie intercepts the director and gets the quick
answer he needed. As he finishes reviewing the design
notes, Charlie realizes that his lunchtime meeting will
convene shortly.

Charlie quickly saves his notes and grabs his lunch. Out of
the comer of his eye, he notices that the briefing montage
has a printer icon overlaid on top of it. The printout! Charlie
heads off to retrieve his printout before the meeting.

42 UIST '01 November 11-14, 2001

2 Related Work
This research leverages and extends efforts in many areas of
HCI, especially the extensive past work on multiple-
workspace window managers (especially Rooms [7]) and
the use of projected displays in office settings (especially
Flatland [19]). We are also influenced by, and build on,
research in context-aware and ubiquitous computing,
ambient displays, and activity monitoring.

2.1 Multiple-WorkspaceWindow Managers

It has long been recognized that a fundamental problem of
desktop computer systems is the small amount of display
real estate available to users. Starting with Rooms [7], and
continuing though recent 3D systems, such as the Task
Gallery for Windows2000 [25], virtually every window-
based desktop computer system has had one or more
"virtual desktop managers" to help users manage large
numbers of application and document windows in the small
space of the desktop monitor. The mismatch between the
small amount of screen space and the common "messy
desk" work practices people engage in when working with
paper is argued eloquently in [7], and their arguments and
observations have formed the basis for most of the
subsequent virtual desktop managers. Except where other
systems differ, we will refer to Rooms in the discussion that
follows.

Rooms is based on the observation that, when working on a
specific task, users typically interact with a small "working
set" of documents and tools. The difficulties of working on
multiple tasks cannot be overcome by simply giving the user
more desk (screen) space, since some windows are shared
between tasks, making it impossible to arrange the windows
so that all windows for all tasks will be near each other.
Furthermore, it is difficult to navigate efficiently between
window groupings in a large flat virtual space without
additional navigation metaphors or constraints.

The "rooms" metaphor allows users to collect the windows
representing these documents and tools into screen-sized
rooms, one for each task, and navigate between the rooms to
switch their working set of windows. Rooms, and all
subsequent systems, provide a variety of tools for navigating
between rooms, obtaining an overview of the space, and
sharing windows between one or more rooms (e.g., clocks,
system monitors, control panels, etc.). Rooms also allows a
shared window to have a different size and configuration in
each room, a feature not found in most subsequent systems.

As discussed in Section 1, in our work we extend the notion
of "task," as defined in Rooms and subsequent systems, to
"activities" that include more than just the documents and
application windows currently being used. One implication
of this distinction is that we portray past actions, including
completed tasks (e.g. working with a now closed
application), as part of an activity. Additionally, we move
the iconic representation of the activity off the desktop into
the physical office (onto the augmented whiteboard). The
montages we use as the iconic representation of the
activities are designed to convey what was actually being

done in the task, not just what windows are currently open.
The montages are constructed from images of the most
"important" windows, with different measures of
importance being possible. Furthermore, we collect
additional information about the activities, such as the status
of print jobs, email and collaborators, and use this
information when generating the montages to support
peripheral awareness of the state of the activities as a whole.

We place the activity icons (montages) onto the augmented
whiteboard to support awareness of background tasks (see
Section 2.2 for a more detailed discussion of our use of the
augmented whiteboard). Many of the navigation and
interface design issues in Rooms, and subsequent systems,
were designed to overcome the fact that only the focal
desktop is typically visible. By having representations of all
activities continuously visible on a large, interactive surface,
we can take advantage of users spatial abilities to organize,
monitor and navigate directly to a desired activity.

There have also been attempts at leveraging our 3D abilities
within a standard display by replacing the 2D desktop with a
3D world containing 2D documents (e.g., [1] [25]). Of these,
the Task Gallery [25] has gone the furthest in bringing live
2D applications into a true 3D world. It takes advantage of
the input and rendering redirection features of a custom
version of Windows2000 to present existing 2D applications
in a 3D space. The Task Gallery is effectively a 3D version
of Rooms, where the rooms are laid out along a 3D hallway,
with the current room on the wall at the end of the hall.
While proposing a number of interaction metaphors to
support interacting with 2D documents in a 3D environment
on a 2D display, the Task Gallery still suffers from many of
the same limitations of Rooms, stemming from the lack of
screen real estate.

Manufaktur [1] is a 3D collaborative workspace supplement
to the traditional 2D desktop, that uses OLE/ActiveX
containers to capture images of live applications on the
Windows desktop. It focuses on supporting the organization
of documents in a shared 3D world, analogous to how
designers and architects organize physical artifacts in the
real world. Users can select documents and models they are
working on for inclusion in the 3D workspace, arrange them
according to their working contexts, and reopen them at a
later time. However, it is not designed to support multi-
tasking activities, being analogous more to a file manager
than a task manager.

A number of systems have proposed moving 2D documents
off the desktop and into the real 3D physical world via head-
mounted displays [5][6] or projectors [21][23]. These
systems aim to increase the apparently available screen
space, capitalize on people's spatial abilities, and leverage
the association of virtual information to physical objects.
One limitation of many of these systems is that they do not
support people orchestrating their work between areas of
focused activity that require high resolution displays, and
peripheral areas of information that require minimal
attention and interaction.

~IIBI 3 (2) UIST '01 43

2.2 Interactive Wall-Sized Displays

This work is also influenced by research in augmented
whiteboard interfaces, in particular Flatland [19], as it strove
to support the informal work practices for individual offices.
Our system is designed to compliment Flatland's interface.
Each of our montages is a segment that responds to gestures
for moving and annotating the segment. More generally, the
whiteboard interface is designed to support casual
inspection and organizational activities.

Our work extends previous efforts in whiteboard interfaces
by directly connecting interaction on the whiteboard with
interaction on the desktop. As an extension of traditional
desktop computing, the whiteboard hosts montages that act
as links back to previous activities. Additionally the
whiteboard serves as the display medium for background
awareness cues.

There has been substantial research in augmented
whiteboards for conference rooms, including Tivoli [18] and
iLand [27]. Some of the interaction techniques for large
display surfaces, such as "throwing" in iLand, would be
useful in our environment. Likewise the advanced projector
display techniques of [21] could enable users to paint their
interactive whiteboard on any surface in their office.

2.3 Other Related Work

There has been a large number of systems that attempt to
capture information from live desktop systems for a variety
of purposes, and while we do not share the same goals as
many of these system, we share the engineering concerns.
Manufaktur and the Task Gallery, mentioned above, are the
closest to our goal of capturing as much information about
running applications as possible. Lumiere [9] is closest to
our current implementation, which uses Windows system-
level hooks to get access to all applications and user activity.
Like Lumiere, we use the information to build a model of
user activity, although the end applications are far different.

As mentioned in Section 1, we rely on the same human
perceptual abilities that motivated much work in ambient
and peripheral displays (e.g., the AmbientRoom [12]). Our
montages act as peripheral displays that present information
about background tasks in a non-obtrusive manner. One
novel aspect of our work is the construction of ambient
displays from actual images of the user's work, in contrast
to using only abstract or iconic imagery. Our montage styles
are reminiscent of the "piles" [16] that conveyed the age and
type of items in desktop folders.

Our system can also be viewed as a context-aware
application; to function, we rely on the continued
deployment of a context sensing and aggregation
infrastructure such as the Context Toolkit [26]. We do not
know of any context-aware applications that combine a
detailed model of the user's multi-tasking activity with
external context in the way we do here.

3 Interaction Design
Multitasking is a complex, albeit common, human activity.
Piles of paper around the periphery of a desk are a physical
manifestation of multitasking, indicating a repeated practice

of pulling materials into the center for focused work and
then collapsing them back into a pile on the periphery when
attention is turned elsewhere. Phrases such as "keeping tabs
on things" and "juggling as fast as I can" harken to the need
to constantly monitor multiple activities.

It is the intent of our design to support these common
multitasking practices. Constantly available visual
representations of background tasks afford many
interactions that support multitasking. The representations
are available for perusal, reminders and large-scale
organization and prioritization. Moreover the content of the
representations serves to remind users of past actions.
Finally, new information about a background activity can be
attached to these representations, leveraging peripheral
awareness capabilities.

In the following sections, we describe our interface design
in detail. Although we attempt to be consistent, we use a few
terms interchangeably. Notably, in our design, we envision
an interactive wall display. This large display is created by
three projectors that project behind, and to the left and right
of, the desktop monitors. Currently the display is made
interactive by projecting on SMART Boards TM, a
commercially available interactive whiteboard. Additionally,
our research is influenced by our work on the interactive
whiteboard, Flatland. Hence we also refer to our wall
displays as whiteboards. The final version of our system will
include other whiteboard functionality as found in Flatand
and similar systems.

3.1 Basic interaction with the wall display

We envision two types of interaction with the wall display.
First, and most importantly, users will treat the wall display
as a peripheral interface for keeping track of the existence
of, and changes in, background activities. Second, users will
directly manipulate the montage images, in conjunction
with other whiteboard tasks, while standing at the wall
display.

Selecting a montage triggers a task switch. This operation
can be performed from the desktop or from the wall display.
The contents of the past activity disappear from the desktop
and reappear as a montage on the wall display.
Simultaneously, the contents of the new task appear on the
desktop. The montage for the current task is also displayed
near the desktop monitors. This near-periphery display
allows the user to remain aware of contextual cues, such as a
past browsing activity, that are no longer part of the active
desktop. Moreover any additions to the montage, such as
annotations (described below), are also available for perusal.
Montages retain their position on the wall display so that a
background task will return to its prior location unless the
user explicitly rearranges the montages.

Montages can be manipulated in the obvious ways on the
wall display: moved, deleted and so on. Simple gestures are
associated with these common behaviors; montages are
segments as in Flatland [19], and therefore react according
to a specified behavior when gesturing on them and adjust
their size to fit their contents. Currently, the behaviors

44 UIST '01 November 11-14, 2001

Figure 3: Overview shot of the peripheral wall display and
the desktop monitor. Two of the montages include
annotations (a red scribble and the blue text "Due Wed").

connected to montages are moving when selected, and
annotating when de-selected.

Annotating montages is an example of an interaction that is
well-suited for the wall display: using the dry pens of
various colors provided with the SMART Boards, the user
may annotate montages with simple ink.

3.2 Visualizing tasks with montages

Montages are peripheral representations of a user's working
contexts. As such, they should express the semantics of the
working contexts and their relationships in a non-intrusive,
albeit suggestive, way. We have explored various
visualizations of the information conveyed by montages (see
Figures 4-6). In all of the montage prototypes, images from
the user's actions in the working context are manipulated to
provide a quasi-summary of past activity.

At this point, our designs are based on our own informal
understanding of the key characteristics of a working
context's history; namely characteristics such as primacy
(what consumed most of the user's time), recency (what
were the last actions of the user) and inter-relationships
(what parts of the tasks are performed in close concert with
each other) are highlighted. We combine literal
representations of the working context (application
snapshots) with various visualization techniques to convey
its history at a glance.

For the montages, we have tried to obtain a sketchy look in
order to suggest that the information on the wall displays is
peripheral to the active working context of the user:
montages are shown with sketchy backgrounds in soft
colors using a separate color for each montage.

Some visualization techniques are common to all three of
our prototype designs. For example, recency is encoded as
transparency so that the most recently used documents are
the most opaque. We are using five levels of transparency.
Another example is our use of watermarks (highly
translucent images). In many cases the low-res images of
documents are not entirely readable; their visual utility is

Figure 4: Two montages arranged in a spiral based on
the decreasing significance of their contents.

Figure 5: Visualization of two montages retaining original
spatial layout of documents.

I

~!i ;ii ¸̧ i ̧~ iiii~i~ ̧

Figure 6: Two montage visualizations based on relative
interdependence of documents.

similar to a thumbnail image. Therefore, to enhance the
recognizability of the images, we incorporate watermarks of
the application icon for major applications.

In Figures 4-6, we demonstrate three major organization
schemes for montages.

Spirals of Significance. In the first design, documents are
organized according to their overall significance in the task,
as the most significant documents should be more easily
recognized. As shown in Figure 4, document images are
organized in a spiral with the most significant document
placed in front and the less significant documents spiraling
out in order of decreasing significance. The sizes of the
documents also decrease according to their significance. The
current significance rating is a measure of how much time
was spent on a particular item, weighted by how recently it
was used.

~k.~l~ 3 (2) UIST '01 45

Preserving Spatial Relationships. Since the spatial
organization of documents on the desktop is often visually
salient for recall [10], an iconic rendering of this
relationship may be easily recognizable by the user. As
shown in Figure 5, document images in the montage are
placed akin to where they were on the desktop display, and
their sizes are also relatively the same. Additionally, the
stacking order of the documents is preserved so that the
most recently used document is represented at the front.
Montages retain the same aspect ratio as the desktop display
(0.75 in this case).

Relative Interdependence Mapping. Complex activities
likely include a number of inter-related tasks; as different
information sources are used for different purposes, sub-
groups emerge in the working context. Likewise documents
may have strong similarity ratings due to common content.
Exposing these relationships may help characterize the
activity, especially activities that are left untouched for long
periods of time.

The visualization in Figure 7 tries to take advantage of these
relationships by using a modified version of the automatic
layout algorithm presented in [14]. The measure of relative
interdependence between two documents is currently based
on the number of times the user has switched between
documents.

The algorithm creates a graph of nodes and edges using a
mechanical system simulation: nodes with edges tend to
stay together and nodes without edges get repelled. Also,
edges may have an intensity, a higher intensity of an edge
meaning that nodes connected by the edge will be more
attracted.

In our case, nodes are documents and there is an edge
between two documents if the user has switched between
the documents. The "connectedness" of two documents (the
intensity of their edge) is calculated from the probability
that the user will switch between the two documents. This
measure is calculated using the actual switches a user has
made between documents.

In Figure 6, the top left document in the left montage has not
been used a lot in connection with the other documents. In
the right montage, the two leftmost documents have been
used together.

3.3 Background awareness cues

As stated previously, montages serve as anchors for
background awareness cues related to a particular working
context. Two examples are shown in Figure 7 based on the
earlier scenario. When a person who is deemed critical to a
background activity becomes available, their face is shown
on the montage. In the current system, we notice emails sent
to individuals where there has not been a reply. When one of
these individuals is available in a public place, such as the
coffee room, the montage is adjusted to note their
availability. As faces are extremely salient visual cues, our
intention is to use them sparingly.

.

Figure 7: Awareness cues associate with a montage

Another example is the use of tools that are left operating in
the background. The status of these jobs, such as a print
request, is reflected in the montage. Figure 7 also illustrates
a completed print job for a particular activity.

We are currently conducting experiments to determine the
relative noticeability of different forms of background cues.

3.4 Working contexts and the desktop

Other multi-desktop systems, such as Rooms, provide a
variety of facilities for controlling which applications
appear in the different desktops. The architecture of
Windows 2000, however, has minimized the need for these
facilities in Kimura. First of all, many of the small utility
applications that were commonly shared across desktops are
integrated into the taskbar, which is automatically shared
across all desktops. Perhaps more importantly, if we ignore
programs that use the old "multiple document interface"
(where the application opens one large window and creates
subwindows for each document), the applications
themselves generally "do the right thing" when they (or
their documents) are opened in the context of a multi-
desktop manager.

When an application is running and the user tries to open it,
by clicking on its icon or one of its documents, applications
that should only have one shared instance, such as
messaging applications (e.g., Instant Messenger) or mail
readers (e.g., Outlook Express), attempt to activate their
window. Applications that should have one window per
document (e.g., Word), activate the window for the already
opened documents and create new windows for new
documents. Some programs, such as web browsers (e.g.,
Internet Explorer), always create a new window when the
user tries to open the application.

In Windows, multi-desktop managers function by using
Win32 facilities to hide windows that are not on the current
desktop. Since our desktop manager keeps track of the
windows that are opened in each desktop, when a hidden
window (i.e., one that was created on a different desktop) is
activated, our desktop manager reveals it and adds it to the
current working context. Therefore, it becomes part of the

46 UIST '01 November 11-14, 2OO1

l I Tuple Server 1 Interpretation Agents

External Context
Agents

I Prln~r Monitor Agent ~-----

I F~ rp M°nlt°r Agerlt

[,MAP Monitor Age4zt ~--~

Button Monitor Agent ~- - -

Augmented Whlteboard

Figure 8: Architecture of Kimura. Arrows indicate primary
data flow. The system is designed as a collection of
agents communicating via shared tuple spaces.

current desktop, and continues to exist in both desktops. We
expect to discover applications that do not behave
"correctly," and will introduce additional window
management controls as they become necessary to deal with
these special cases.

3.5 Inferring working contexts

The problem of inferring a person's working contexts is
non-trivial. As a person goes about their daily activities, they
interact with a multitude of documents (files, email
messages, and web pages) to accomplish each task. We view
a working context as a cluster of documents that relate to a
particular task or activity. A basic problem that we must
address, then, is how to tell which documents are associated
with each working context. For example, when a new web
page is accessed or document opened, is it part of the
current working context, the start of a new working context,
or a signal to shift to some other existing working context?

For this stage of our research, we will not attempt to solve
this problem. We have chosen to avoid automatic techniques
because it is unclear how well they will work, and we do not
want the success or failure of these automatic techniques to
confound our study of the utility of peripheral information
displays. Instead, we will enlist the help of the user by
having them identify and explicitly switch between working
contexts, using a set of lightweight tools to create, destroy,
and manipulate working contexts over time.

4 System Architecture
Kimura's architecture can be broken down into five main
components, as shown in Figure 8: desktop monitoring and
management agents (for the Windows2000-based focal
display), external context monitoring agents, tuplespace-
based communication, activity interpretation agents, and the
augmented whiteboard.

In general terms, the desktop and external context
monitoring agents continuously collect information about

the user's activities and store it in the "raw" tuple spaces.
The desktop agent also keeps track of which windows
belong with which activities, and switches which windows
are visible when the user requests a different working
context. The activity interpretation agents collect this
information and use it to create a representation of the user's
activities in the "interpreted" tuple space. The whiteboard
process uses this representation to create the montages on
the augmented whiteboard display, and supports the
interactions with the whiteboard.

4.1 Design Considerations

The architecture is designed to be

• flexible enough for research exploration, and

• practical for real use.

To satisfy the first goal, the majority of the system (aside
from some low-level Windows routines) is implemented in
Java, and a blackboard architecture is used for
communication. The system is designed as a collection of
distributed agents communicating via centralized tuple
spaces (implemented using Java TSpaces [28]). This
approach is well understood, and is also used in systems
such as the Open Agent Architecture [3] and Interactive
Mural [13]. Tuple spaces are robust in the face of process
failure, and allow each agent to be implemented
independently.

To ensure the system is practical for real use, we made three
design decisions:

• We use the low-level Windows hooks API to monitor and
control applications. These hooks work with all
applications, although they do not provide information in
exactly the form we desire (e.g., it is hard to robustly
acquire window images). Over time, we expect to add
special handling for some applications (see Section 5).

• We do not change the behavior of the Windows desktop
in any substantial way (aside from controlling which
windows are visible). This approach contrasts sharply
with the Task Gallery, for example, which replaced the
Windows desktop with an entirely different metaphor.

• The desktop is controlled asynchronously to the rest of
the system. The cost of activity monitoring, data
interpretation and display on the augmented whiteboard
does not impact the performance of the desktop.
Similarly, when the user switches activities, the desktop
reacts immediately, regardless of the speed of change on
the whiteboard.

In the remainder of this section we will describe the major
components of the system, and close by discussing the
engineering challenges of creating a system of this sort.

4.2 Desktop Monitoring and Management Agents
Our focal display is a Windows2000-based computer.
Win32 "hooks" lets us intercept events, ranging from low-
level input to window manager events, on all windows
system-wide. A component running on our desktop system
uses a DLL that provides callbacks to hooked events

~=IBI 3 (2) UIST '01 47

detected by the operating system. The callback information
for each hooked event is packaged and sent as a Windows
message to the desktop monitoring and management agent
(written in Java), which stores the information in the desktop
raw data tuple space.

This agent captures the entire history of the layout of
windows on the desktop, and maintains a list of currently
open windows for each activity. Each time a window is
moved or resized, or the focus changes, the window layout
is recorded. Each time a window acquires the focus, a
snapshot of the window is taken and stored in a networked
filesystem. This strategy ensures we have a relatively up-to-
date image of each window, without overloading the system
by capturing each window update. Since Windows only lets
us capture the visible part of a window, capturing when the
window has focus ensures that the window is not obscured.

The desktop agent also watches the tuple space for
SwitchMontage tuples (see Section 4.4), which signal that
the user has switched to a different activity. When this tuple
is seen, the windows for the current activity are hidden and
those for the requested activity are exposed. The desktop
agent also handles exposure of hidden windows (from
another activity) when they are activated, as discussed in
Section 3.4.

4.3 External Context Monitoring Agents

In addition to monitoring a user's interaction with
application windows, we also want to acquire any relevant
information to provide a clearer picture of each activity. To
illustrate the use of external context, we are monitoring
email and web accesses, as well as the status of print jobs.
All of the monitoring is currently done without
instrumenting specific applications, although this strategy
may change over time.

Web access is monitored by an HTTP proxy server (the web
monitoring agent). The printer and email monitor agents
run on our Unix mail and print servers. The email monitor
agent periodically scan a user's inbox and "sent mail"
folders for new messages, correlates them based on message
ids, and writes a trail of mail activity into the IMAP raw
data tuple space. The printer monitor agent watches the
print queues for jobs created by the user, and writes status
information to the printer raw data tuple space.

Kimura assumes it will operate within a more general
context system, such as the Context Toolkit 1 [26] or
CoolTown [4]. Currently, we use Java i-Buttons [11] to
trigger the sorts of external context events that such a system
would generate (such as the arrival of a colleague). The
iButton events are written into the iButton raw data tuple
space by the iButton monitor agent, and used by various
agents for testing and demonstration purposes.

1. We have not yet hooked into the Context Toolkit infrastructure
at Georgia Tech, but plan to do so soon.

4.4 Tuplespace-based Communication

As mentioned above, the use of tuple spaces (and other
blackboard systems) is common in current distributed
interactive systems (e.g., [28]), and offers a number of
advantages over connection-oriented event-distribution
schemes. These advantages include resistance to isolated
process failure, global shared state, and the simplicity of
using an unstructured data store. TSpaces also provides
persistent tuple spaces, greatly simplifying the debugging of
individual agents.

There are two situations that typically cause problems for
tuple spaces. First, they have trouble dealing with high-
volume updates that need to be distributed with low latency,
making them inappropriate for distributing data such as
mouse motion events. Second, the performance of the event
matching algorithms suffers if a tuple space becomes large.
We address the first concern by never sending high
frequency data (i.e., we do not capture mouse motion, only
actions like button or keyboard presses). We address the
second concern by using multiple tuple spaces, as shown in
Figure 8. The raw data tuple spaces (there are currently five)
are used to store the transient data collected by the various
monitors. The interpreted data tuple space contains the
processed data that is used to create the montages.

Data Flow. The data flow is shown by the arrows in
Figure 8. Most data flows from the monitor agents, through
the interpreter agents, into the interpreted tuple space, and
finally into the augmented whiteboard process. The
whiteboard process also monitors the iButton raw data space
for simulated context tuples, which it uses when generating
the montages.

Control data flows in the other direction, from the
whiteboard process into the interpreted data space. The
whiteboard stores both the montage annotations and
SwitchMontage tuples (created when the user selects a
montage to switch to) in the interpreted space. Any monitor
or interpreter agent that cares about activity changes can
subscribe to receive SwitchMontage tuples. For example, the
desktop monitor agent switches the contents of the desktop
to the windows for the specified activity when it receives a
SwitchMontage tuple.

4.5 Context Interpretation

The context interpretation is done by Java agents that collect
data from the raw tuple spaces, merge the data into internal
activity timelines, and store the information needed by the
augmented whiteboard in the interpreted data space.

The principle agent is the desktop agent, which extracts a
representation of the current document activity from the
desktop raw data space. We have implemented two other
agents as examples of the potentially useful activities. The
printer agent extract the status of print jobs in the current
activity from the printer raw data space, and creates print Job
tuples associated with the current montage. The email agent
extracts from the IMAP raw data space a list of email
messages that have been sent during the current activity, for

48 UIST '01 November 11-14, 2001

which replies have not been received, and creates
unrepliedEmail tuples associated with the current montage.

Even though the current collection of montages only uses a
fraction of the data we collect (e.g., we currently use only
the last position, size and image of each window, and are
ignoring the web access log), the architecture makes it
simple for us to experiment with alternative montage styles
and content. The interpreters maintain complete internal
representations of the merged data, and can access any of
the tuple spaces, including the interpreted data space, as
desired. Therefore, they can be modified relatively easily to
extract the alternate collections of activity information and
add it to the interpreted data store.

4.6 Augmented Whiteboard

The augmented whiteboard is implemented as a single
process with three main components, all implemented in
separate threads: graphical input/output based on SATIN
[8], communication with the interpreted and iButton raw
data spaces (described in Section 4.4), and communication
with multiple SMART Boards.

The whiteboard display class is an instance of a SATIN
Sheet: montages are implemented as segments on top of
SATIN Patches, annotations are basic SATIN Strokes, and
montage image elements are implemented using the SATIN
image class. We use standard and custom SATIN
interpreters and recognizers to control the montages.

On start up, the whiteboard reads tuples for existing
montages from the interpreted data space and creates the
initial display. The whiteboard process then subscribes to
the interpreted data space for similar tuples, and reflects any
tuple space updates on the display. If any unrepliedEmail
tuples exist for a montage, the process monitors the iButton
space for the appearance and disappearance of the recipient
of the email, and uses this information as discussed in
Section 3.3.

The whiteboard process talks directly to the two SMART
Boards on the office wall. It translates tool position
messages to the coordinate system of the SATIN window,
based on the ID of the SMART Board (provided by the
SMART Board API), and sends synthetic mouse events to
the SATIN Sheet. Tool change messages (e.g., blue pen
picked up) are also sent to the SATIN Sheet and used for
actions such as coloring montage annotations.

4.7 Engineering Challenges and Obstacles

Aside from the usual challenges associated with building
any complex distributed application (such as
communicating huge amounts of image data between
components and dealing with replicated distributed state
[15]), the most significant engineering challenges are related
to monitoring and controlling the activity on the Windows
desktop. While the Hooks API allows us to monitor window,
mouse and keyboard activity, it does not allow us to see
what is going on inside the applications, such as what files
are open and what windows are associated with an
application. As pointed out in [25], without a standard

application interface to inspect the applications, we must
resort to dealing with applications on a case-by-base basis.
It is even difficult, for example, to sort out splash screens
and dialog boxes from content windows.

Another feature we foresee needing in the future is to reopen
documents. Assuming we can discover more than just the
window images for a selected set of applications (such as
the URLs of web page accesses, the folders and message
numbers of email messages, and the document details for a
few other key applications), there are still a large set of
problems that must be dealt with to properly reopen a
document. Ensuring that the window is in the correct place,
not to mention scrolling the document to the correct
location, is not possible in the general case.

5 Conclusions and FutureWork
We believe that Kimura is an important step toward unifying
focal and peripheral office displays in a way that supports
existing work practices. By adding activity montages to an
augmented whiteboard, we integrate peripheral awareness
of background activities into the existing work area, and
allow users to organize and annotate these montages as they
would other content on their whiteboard.

While this paper illustrates the key ideas of this project, and
Kiruma is currently useful for managing multiple working
contexts, there are many interesting research questions left
to explore. For example, we would like to integrate some of
the ideas in Rekimoto's Time Machine Computing system
in the system [22], to allow users to scroll back through
time, seeing older montages for one or more activities.

Ideally, if we allow users to scroll through time, we also
need to allow users to reopen old documents and
applications. This requirement means we must discover
more information about each open window, such as the
application and document it represents, as discussed in
Section4.7. Our goal is to first deal with common
applications (e.g., Microsoft Office, Netscape Navigator,
etc.) and add additional application support over time. One
key application that we need a richer undertanding of is the
email reader. While we currently monitor mail that has been
sent and received, we would like to know more, such as
which message and folders are commonly accessed in an
activity, if there are partially written messages open, and to
whom are they addressed.

Another rich area of future work (both engineering and
research) lies on the augmented whiteboard. We intend to
integrate many of the features of Flatland [19] into our
whiteboard, and integrate these features with desktop
applications. We would also like to feed information about
the user's activity, such as what they are typing, to a
recommender system [24], and use some of the space on the
whiteboard to display documents relevant to the current
activity. In general, we would like to make better use of our
actitity logs in support of the current activity, such as
displaying a collection of images of unopened documents
near the focal display to provide greater context to the user
(and eventually give them access to these documents).

~ .
~--L.~IBJ 3 (2) UIST '01 49

Finally, a major focus of our future work will be the design
of, and interaction with, the montages. As we gain a better
understanding of the working contexts, we will continue to
refine what elements are shown and how they are arranged.
For example, we can adjust the montage contents based on
the length of time since the activity was last conducted to
help users reacquire their mental context as their memory of
the events fade. We intend to provide much better support
for interacting with the annotations, and develop methods of
rearranging the annotations as the montages change over
time.

Acknowledgments
This work has been supported by the NSF under grant
9988712, as well as an Academic Equipment Grant from
Sun Microsystems, and a software donation from Microsoft.
We would like to thank all our colleagues and students for
their feedback on the ideas in this paper.

6 References
[1] Bttscher, M., Mogensen, P., Shapiro, D., and Wagner, I.

(1999) "The Manufaktur: Supporting Work Practice in
(Landscape) Architecture." In Proceedings of the The Sixth
European Conference on Computer Supported Cooperative
Work (ECSCW 99), Copenhagen, Denmark, pp 21--40.

[2] Buxton, W. (1995) "Integrating the Periphery and Context: A
New Model of Telematics" In Proceedings of Graphics
Interface '95, pp. 239-245.

[3] Cohen, P. R., Cheyer, A., Wang, M., and Baeg, S. C. (1994)
"An open agent architecture", in AAAI Spring Symposium,
pp. 1-8, Mar. 1994.

[4] CoolTown home page, http://www.cooltown.hp.com/
[5] Feiner, S., Maclntyre, B., Haupt, M., and Solomon, E. (1993)

"Windows on the world: 2D windows for 3D augmented
reality" In Proceedings of the ACM UIST '93 Symposium on
User Interface Software and Technology, pages 145-155.

[6] Feiner, S. and Shamash, A. (1991) "Hybrid user interfaces:
Breeding virtually bigger interfaces for physically smaller
computers" In Proceedings of the A CM UIST '91 Symposium
on User Interface Software and Technology, pages 9-17,
Hilton Head, SC.

[7] Henderson, J.D.A., and Card, S.K. (1986), "Rooms: The Use
of Multiple Virtual Workspaces to Reduce Space Contention
in Window-based Graphical User Interfaces," ACM
Transactions on Graphics, Vol. 5, No. 3, July 1986, pp. 211-
241.

[8] Hong, J. I. and Landay, J. A. (2000) "SATIN: A Toolkit for
Informal Ink-based Applications." In Proceedings of the
ACM UIST 2000 User Interfaces and Software Technology,
San Diego, CA., pp. 63-72.

[9] Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and
Rommelse, K. (1998). ''The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of Software
Users," In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, July 1998.
Hutchins, E. (1995) Cognition in the Wild, Cambridge, MA,
MIT Press.
iButton home page. http://www.ibunon.com/.
Ishii, H. and B. Ullmer (1997) "Tangible Bits: Towards
Seamless Interfaces Between People, Bits and Atoms," In
Proceedings of ACM CHI '97 Conference on Human Factors
in Computing Systems, pp. 234-241, 1997.
Johanson, B., Fox, A., Hanrahan, P., and Winograd, T. (2000)
"The Event Heap: An Enabling Infrastructure for Interactive

[10]

[111
[12]

[13]

Workspaces", available at http://graphics.stanford.edu/
papers/eheap/

[14] L~szl6, S.-K. (1994) "Dynamic layout algorithm to display
general graphs." In Heckbert, P.S. (Ed.) Graphics Gems IV,
Academic Press, pp 505-517.

[15] Maclntyre, B. and Feiner, S. (1996) "Language-level support
for exploratory programming of distributed virtual
environments," In Proceedings of the ACM UIST '96
Symposium on User Interface Software and Technology,
pages 83-94, Seattle, WA.

[16] Mander, R., Salomon, G., and Wong, Y.Y. (1992) "A 'Pile'
Metaphor for Supporting Casual Organization of
Information," In Proceedings of ACM CHI '92 Conference on
Human Factors in Computing Systems, pp. 627-634, 1992.

[17] Miyata, Y., and Norman, D. A. (1986) "Psychological Issues
in Support of Multiple Activites," In User Centered Design,
D. A. Norman and S. W. Draper, eds., Lawrence Erlbaum,
NJ, pp. 265-284.

[18] Moran, T., Chiu, P., Harrison, S., Kurtenbach, G., Minneman,
S., and van Melle, W. (1996) Evolutionary engagement in an
ongoing collaborative work process: A case study. In
Proceedings of CSCW'96.

[19] Mynatt, E.D., Igarashi, T., Edwards, W.K., and LaMarca, A.
(1999) "Flatland: New Dimensions in Office Whiteboards."
In Proceedings ofCHl'99, pp 346--353.

[20] Mynatt, E. D. (1999) "Writing on the Wall," Proceedings of
INTERACT '99. pp. 196-204.

[21] Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and
Fuchs, H. (1998) "The Office of the Future: A Unified
Approach to Image-Based Modeling and Spatially Immersive
Displays," In Computer Graphics (Proc. ACM SIGGRAPH
'98), Annual Conference Series, pp. 179-188.

[22] Rekimoto, "Time-Machine Computing: A Time-centric
Approach for the Information Environment," In Proceedings
of the ACM UIST '99 Symposium on User Interface Software
and Technology, pages.

[23] Rekimoto, J. and Masanori Saitoh, "Augmented Surfaces: A
Spatially Continuous Workspace for Hybrid Computing
Environments", Proceedings of CHI'99, 1999

[24] Rhodes, B.J. (1997) "The Wearable Remembrance Agent: A
system for augmented memory," in Personal Technologies
Journal Special Issue on Wearable Computing, Personal
Technologies 1(4), pp. 218-224.

[25] Robertson, George, van Dantzich, Maarten, Robbins, Daniel,
Czerwinski, Mary, Hinckley, Ken, Risden, Kirsten, Thiel,
David and Gorokhovsky, Vadim. (2000) "The Task Gallery:
A 3D Window Manager." In Proceedings of CH1 2000, pp
494-501.

[26] Salber, D., Dey, A.K. and Abowd, G.D. (1999) "The Context
Toolkit: Aiding the Development of Context-Enabled
Applications," To appear in Proceedings of ACM CHI '99
Conference on Human Factors in Computing Systems.

[27] Streitz, N.A., Geigler, J., Holmer, T., Konomi, S., MUller-
Tomfelde, C., Reischl, W., Rexroth, P., Seitz, P., and
Steinmetz, R. (1999) "i-LAND: an interactive landscape for
creativity and innovation." In Proceedings of the CHI '99. pp
120-127

[28] Wyckoff, P., McLaughry, S.W., Lehman, T.J. and Ford,
D. A. (1998) "T Spaces", IBM Systems Journal, Vol. 37, No.
3, p. 454

50 UIST '01 November 11-14, 2 0 0 1

