
The current broadband infrastructure
promises to bring huge volumes of information
to us faster than ever before. Even now, reports,
data, music, and movies flood our electronic and
paper worlds. Once only executives and
researchers were required to handle large
amounts of information. Today, home users are
swamped with information from their broad-
band connections. It seems most of us live in a
kind of semi-organized information soup. How
long will the simple tool metaphor
of direct manipulation graphical
user interfaces (GUIs) support our
expanding information needs?

COMMUNICATIONS OF THE ACM March 2003/Vol. 46, No. 3 47

Executives and other busy people employ some-
one—an assistant—to relieve them of the effort
required to manage daily activities and informa-
tion, freeing them to focus on and perform more
important tasks more efficiently. In fact, in today’s
information-packed world everyone could use an
assistant. But current information systems provide
only passive tools for organi-
zation and searching. By con-
trast, assistants actively filter
incoming information, com-
municate in an appropriate manner, and are aware
of the supervisor’s needs and goals. Moreover, good
assistants pay attention, are polite, and are easy to
talk to.

Our goal in building attentive agents is to create
good assistants. This goal is not new (see [5]).
Licklider was perhaps the first to imagine that
computers could behave more like assistants than

like calculators [4]. People establish goals and com-
puters take action in support of these goals. On
this view, computers are active participants in get-
ting work done, and engage with their users in
ongoing activity. The nature of this user-computer
relationship is very important to understand, as
effective communication depends on it.

Consider the relationship
users have with most GUI-
based applications and tools.
Such systems might often

seem rude, interrupting the user in the middle of
an ongoing task, popping up modal dialogue
boxes while the user is typing into a different text
field, or using precious computational cycles
searching for the latest network driver just as the
user urgently searches for the calendar. By all
accounts, such systems are bad assistants that no
reasonable person would tolerate.

In the anticipated symbiotic
partnership, men will set the goals,

formulate the hypotheses, determine
the criteria, and perform the

evaluations. Computing machines
will do the routinizable work that

must be done to prepare the way
for insights and decisions in

technical and scientific thinking.
J.C.R. Licklider, 1960

� By Paul P. Maglio and
Christopher S. Campbell

Attentive Agents

48 March 2003/Vol. 46, No. 3 COMMUNICATIONS OF THE ACM

Attentive Agents
By contrast, attentive agents are computational sys-
tems that attend to what users do so they can attend
to what users need, just as good assistants do. By
closely watching users work with information and
modeling the user’s state, attentive agents can com-
municate with users more effectively than non-
attentive agents, provide timely and relevant
information, and support rapidly changing user
interests and goals. For instance,
attentive agents might filter
information to help manage the
user’s attention (see the article by
Shell, Selker, and Vertegaal in
this section), or might scout out
information ahead of the user to
suggest promising links to fol-
low [3].

To be attentive, agents must
collect information about the user
as well as information about the
world, including what data the
user works with, and what physi-
cal objects are in the user’s envi-
ronment. Knowledge of the user’s
activities and environment pro-
vides common ground between
user and attentive agent, enabling
effective and natural communica-
tion [2, 9]. Knowledge of user
activities allows attentive agents to
inform or notify the user of
potentially helpful information at
opportune moments. For exam-
ple, a robotic head called PONG
senses where the user is looking—
and what the user is saying—and
responds by appropriately shifting eye gaze and facial
expression (see the sidebar by Koons and Flickner). By
collecting information about the user’s state, an atten-
tive agent such as PONG can communicate engage-
ment and emotion to convey system states naturally.

To learn how to create effective attentive agents

that act like good assistants, our work has centered on
two main issues. First, we have explored ways to build
attentive agents with our Simple User Interest Tracker
(Suitor) system, which collects information about
users and the world—such as the weather, stock
prices, who is in the office today—and uses this infor-
mation to provide additional information on topics of
current interest. Second, we have used the Suitor
framework to evaluate methods of displaying such

additional information to users, showing significant
performance benefits for a specific type of scrolling
display over other types of displays.

Suitor: A Framework for Attentive
Agents
We developed Suitor as an extensible framework for
building attentive agents [8]. Suitor can be used to
create customized agents that monitor user actions,
search the world for information (investigators),
process user actions or world events (reflectors), and
act on the data received (actors). We use Suitor to
create individual attentive devices or computers, and
to distribute agents across devices in the environ-
ment to create attentive spaces. Suitor has also been
used to develop applications that perform specific
attentive functions, such as task-specific help or
Web navigation assistance, as well as large-scale
attentive systems that monitor multiple modalities

It seems most of us live in a kind
of semi-organized information soup. How long

will the simple tool metaphor of direct
manipulation GUIs support our expanding

information needs?

User actions

Suitor Blackboard

Information
Delivery

Actor

Actor

ReflectorReflector

Investigator

Investigator

Investigator

User Model

• CYer of Muthe
• Towerreflex
• Externdkerm

Facts

CYer of Muthe owerreflex

Figure 1. Suitor’s
architecture includes

investigator agents
that monitor the user
and the state of the

world, and add
information to the

blackboard; reflector
agents that make

inferences based on
what is on the

blackboard, possibly
developing and main-
taining a model of the
user; and actors that

present information
from the blackboard

to the user.

COMMUNICATIONS OF THE ACM March 2003/Vol. 46, No. 3 49

and perform complex
inference.

Figure 1 illustrates
Suitor’s architecture.
All processing in Suitor
revolves around the
blackboard—a shared
memory and scheme
for dispatching infor-
mation to interested
agents. Investigators
collect data and post
that information on
the blackboard. Reflec-
tors receive posted
information, process it,
and post new informa-
tion on the black-
board. Actors receive
posted information
and take action, such
as notifying the user.
When information is
posted to the black-
board, Suitor notifies
all reflectors and actors
registered to receive
that type of informa-
tion.

Investigator agents
gather information
from the world outside
of Suitor. They moni-
tor user actions, watch
Web sites for changes,
or scan for database
updates. Investigators
automatically register
themselves with Suitor and post information on the
blackboard about the user or about the world. Inves-
tigator agents can be created to gather any type of
information, including user interactions with the
operating system, user identity, and information from
network databases. However, investigator agents can-
not gather information posted on the blackboard.

In attempting to build effective attentive agents for
individual users, we created a variety of investigators
that monitor running applications, applications the
user is currently working in, keyboard input, mouse
movements, Web browsing, Web searching, news
information on the Web, stock quotes, and user eye
gaze. We paid extra attention to eye tracking as eye
gaze is a powerful source of evidence of user informa-
tion interests [12]. We developed an investigator agent

that monitors the user’s
eye gaze and calculates
the coordinates of gaze
direction. Data pro-
vided by this gaze
investigator allowed us
to determine whether a
user is reading [1] or
searching.

Reflector agents
post information to the
blackboard and consider
what has been posted
there by other agents.
Reflectors decide what
to do about information
discovered by investiga-
tors and other reflectors.
They can construct a

model of the user’s interests and they can gather infor-
mation based on the user’s interests. For example, text
gathered by investigators monitoring interactions with
the computer—keyboard input, email received, Web
pages read, files opened—can be combined and ana-
lyzed to produce key words derived from words that
occur more frequently in the pooled text than would be
expected given their overall frequency in the language.
In this case, the user’s current interest can be repre-
sented in a user model as a list of words that distinguish
the sorts of text being written and read. Investigators
constantly post information about what the user is typ-
ing and what the user is viewing to Suitor’s blackboard.
As this information arrives, reflector agents determine
word frequencies and update the current list of key-
words. As user interests change—as the user shifts
attention from one task to another—the key words that
represent interests change.

Actor agents are the inverse of investigators: They
act on information posted to the blackboard but can-
not post information themselves. Actors perform
some action on the outside world, such as displaying
information to the user. For instance, a scrolling ticker
can display headlines to the user based on the list of
currently relevant key words in the user model and on
additional information gathered from the outside
world. Reflector agents prioritize news and other facts
that investigators have gathered by comparing them
with the user model, and only information that has
some overlap with the user’s interest is selected for dis-
play, ordered by how much overlap exists.

Single-User Scenario
Putting these pieces together, we implemented an
application that monitors the user’s Web-browsing

Figure 2. Suitor uses eye tracking
to monitor the user’s reading

activity on a Web page. It then
displays potentially interesting

headlines of related stories found in
the ticker display at the bottom of

the screen. The display of eye
images on the left is for illustrative

purposes only; they allow an
experimenter to verify that online

gaze tracking is active. At the
moment this screenshot was taken,

the user was reading the second
paragraph on the Web page. The
gaze points on the Web page are

marked with red dots and are
connected by red lines according to

the sequential pattern of eye
movements. Suitor detects this

pattern indicates the user is
reading, collects the read text and

title of the article, infers that the
user is interested in the topic of the
article, and automatically displays a

related story headline in the
ticker window.

activity [6], monitors the user’s eye gaze to deter-
mine what text the user is reading [1], finds addi-
tional relevant information on the Web [8], and
displays the additional information in a ticker win-
dow. In this scenario (shown in Figure 2), news
headlines scroll by in the ticker display at the bot-
tom of the screen, and the user clicks on one of
them to show the associated story in the browser
window. If the user starts reading a story in the
browser (indicating interest), Suitor collects this
information and stores it in the user’s model. Some
time later, Suitor may find a new story related to
what was read and show the headline of that new
story in the ticker window. If the user wants to con-
tinue reading about the topic, the user can click on
the related headline with the mouse. This function-
ality gives the Suitor application many properties of
a good assistant. Suitor pays attention to user
actions, and uses its observations to provide rele-
vant information. In this case, Suitor can effectively

integrate new information into the user’s informa-
tion environment by following the shifting focus of
user attention.

Another pivotal attribute of a good assistant is to
provide additional information in an unobtrusive
manner, for instance, keeping users from being dis-
tracted from their primary tasks by information they
no longer have interest or in which they have only a
passing interest (see the article by Shell, Selker, and
Vertegaal in this section). A scrolling ticker display
located at the margin of the user’s main screen is
often intended to be both informative and unobtru-
sive, suited to display peripheral information—
information not central to the current task, but that
might be helpful to it or be informative in other
ways [7].

The information provided by the attentive Suitor
application discussed previously (and shown in Fig-
ure 2) may be informative and thus helpful to the
user, but it will typically not be central to the user’s

50 March 2003/Vol. 46, No. 3 COMMUNICATIONS OF THE ACM

Dave Koons and Myron Flickner

PONG is an attentive agent that watches the user,
reacts to user actions, and conveys attention and
emotion. PONG expresses happiness on seeing the user
and sadness when the user leaves. PONG engages by
looking directly at the user and maintaining eye con-
tact during conversation. PONG communicates confu-
sion and surprise to inform the user that it does not
understand an action or statement. PONG provides a
compelling demonstration of how attentive agents
naturally engage and communicate with people.

PONG’s namesake ping-pong ball eyes and surgical
tubing lips are simple components that create an
entertaining demonstration. PONG uses joint audio
and video processing [2] to interact with a person. A
microphone array is used to orient the head to the
sound source. A camera system finds the user’s eyes

so PONG can establish eye contact.
Automatic speech recognition
enables PONG to have a conversa-
tion. PONG knows its name and age,
is very good at arithmetic, and can spell. PONG
demonstrations in elementary classrooms have
resulted in excellent feedback from future inventors. It
is possible build your own PONG (see [1]).

References
1. Koons, D. PONG: The attentive robot. How to build a Pong robot.

IBM Research Report RJ10213 (2001); www.research.ibm.com/
resources/paper_search.shtml.

2. Haritaoglu, I., Cozzi, A., Koons, D., Flickner, M., Yacoob, Y.,
Zotkin, D., and Duriswami, R. Attentive toys. International Confer-
ence on Multimedia and Expo (2001).

Dave Koons was a researcher at the IBM Almaden Research
Center. Myron Flickner is the manager of the Attentive Envi-
ronments group at IBM Almaden Research Center, San Jose, CA.

c

PONG: The Attentive Robot

PONG senses and
responds to a user’s

gaze, voice, and
facial expression.

current task. We found a scrolling ticker display
located at the margin of the user’s main screen to be
unobtrusive yet accessible to the user, and thus suited
for displaying peripheral information.

To verify our ticker design, we experimentally
evaluated this interface component with respect to its
relative informativeness and distraction in compari-
son with a variety of alternative scrolling ticker dis-
plays [7]. Our results show that scrolling tickers in
which text scrolls in very rapidly and stops for a
time—discretely scrolling tickers—are as informative
and less distracting than continuously scrolling tick-
ers. Our results also show that discretely scrolling
tickers are as informative and less distracting than
non-scrolling or instantly updating tickers. In the
case of a continuously scrolling ticker, too much
motion in the user’s visual field tends to make the
display distracting. Some motion, however, turns out
to be helpful, as it updates the user about when to
schedule glances at the ticker display.

By placing information in the margin of the screen,
Suitor can present peripheral information without
being distracting. By controlling the display of periph-
eral information, Suitor can effectively integrate this
type of information delivery with the user’s shifting
focus of attention. Unlike modal dialogue boxes, for
example, the ticker display does not reprioritize user
activities, and thus minimizes interruption.

Suitor is implemented in Java. It is a framework
for developing attentive applications. Developers can
create their own agents by extending the appropriate
agent type and adding the desired functionality. For
example, adding a new sensor to the system means
creating a new type of investigator agent with the
appropriate code to extract data from the sensor. An
instance of this new agent is registered with Suitor
automatically when its constructor is called, and all
data collected by the agent is posted on the black-
board. Developers can create reflector and actor
agents in the same manner by extending these types
as appropriate.

Conclusion
Like good human assistants, paying attention to user
actions helps attentive agents anticipate user needs,
thus providing appropriate help with information
management. In developing Suitor, we created a
programmable framework that enables easy combi-
nation of evidence from sensors—camera, keyboard,
application use—to make inferences about user
interests and states. By studying how attentive
agents notify or inform, we found that certain dis-
play characteristics (such as motion) cause distrac-
tion and affect user performance. Throughout, we

have tried to uncover necessary attributes of attentive
systems. Although we have discussed attentive agents
that react to users, more proactive agents are also
possible.

Attentive agents are assistants that aim to effectively
communicate with users, provide timely and relevant
information in a nondistracting way, and support
rapidly changing user interests and goals. By exploring
means for agents to collect data about users and the
world, as well as methods to display results to the user
using peripheral displays, we have begun to realize this
potential to create systems that are helpful and easy to
use—systems that meet people’s expectations and pro-
vide natural modes of communication.

References
1. Campbell, C.S. and Maglio, P.P. A robust algorithm for reading detec-

tion. In Proceedings of the ACM Workshop on Perceptual User Interfaces
(2001).

2. Clark, H.H. Using Language. Cambridge University Press, Cambridge,
England (1996).

3. Lieberman, H. Letizia: An agent that assists Web browsing. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence.
(1995), 924–929.

4. Licklider, J.C.R. Man-machine symbiosis. IRE Transactions on Human
Factors in Electronics HFE-1. (1960), 4–11.

5. Maes, P. Agents that reduce work and information overload. Commun.
ACM 37, 7 (July 1994), 31–40.

6. Maglio, P.P. and Barrett, R. Intermediaries personalize information
streams. Commun. ACM 43, 8 (Aug. 2000), 96–101.

7. Maglio, P.P. and Campbell, C.S. Tradeoffs in the display of peripheral
information. In Proceedings of the CHI 2000. (The Hague, The Nether-
lands, Apr. 2000). ACM Press, NY, 241–248.

8. Maglio, P., Campbell, C.S., Barrett, R., and Selker, T. An architecture
for developing attentive information systems. Knowledge-based Systems
14, (2001), 103–110.

9. Maglio, P.P., Matlock, T., Gould, S.J., Koons, D., and Campbell, C.S.
On understanding discourse in human-computer interaction. In Pro-
ceedings of the 24th Annual Conference of the Cognitive Science Society
(Fairfax, VA, 2002). Lawrence Erlbaum, Mahwah, N.J. 602–607.

10. McCrickard, D.S., Catrambone, R. and Stasko, J.T. Evaluating anima-
tion in the periphery as a mechanism for maintaining awareness. In
Proceedings of the IFIP Conference on Human-Computer Interaction
(INTERACT’01). IOS Press, Tokyo, Japan, 148–156.

11. Vertegaal, R., Slagter, R., Van der Veer, G., and Nijholt, A. Eye gaze
patterns in conversations: There is more to conversational agents than
meets the eyes. In Proceedings of CHI 2001. (Seattle, Apr. 2001). ACM
Press, N.Y., 301–308.

Paul P. Maglio (pmaglio@almaden.ibm.com) is a manager and
researcher at the IBM Almaden Research Center, San Jose, CA.
Christopher S. Campbell (ccampbel@almaden.ibm.com) is a
researcher at the IBM Almaden Research Center, San Jose, CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/0300 $5.00

c

COMMUNICATIONS OF THE ACM March 2003/Vol. 46, No. 3 51

