User Model User-Adap Inter (2007) 17:475-510
DOI 10.1007/s11257-007-9033-x

ORIGINAL PAPER

Predicting time-sharing in mobile interaction

Miikka Miettinen - Antti Oulasvirta

Received: 14 July 2006 / Revised: 23 February 2007 / Accepted in revised form: 3 June 2007 /
Published online: 28 July 2007
© Springer Science+Business Media B.V. 2007

Abstract The era of modern personal and ubiquitous computers is beset with the problem
of fragmentation of the user’s time between multiple tasks. Several adaptations have been
envisioned that would support the performance of the user in the dynamically changing
contexts in which interactions with mobile devices take place. This paper assesses the feasi-
bility of sensor-based prediction of time-sharing, operationalized in terms of the number of
glances, the duration of the longest glance, and the total and average durations of the glances
to the interaction task. The data used for constructing and validating the predictive models
was acquired from a field study (N = 28), in which subjects performing mobile browsing
tasks were observed for approximately 1h in a variety of environments and situations. The
predictive accuracy achieved in binary classification tasks was about 70% (about 20% above
default), and the most informative sensors were related to the environment and interactions
with the mobile device. Implications to the feasibility of different kinds of adaptations are
discussed.

Keywords Time-sharing - Attention - Multitasking - Interruptions - Mobile interaction -
Mobility - Classification - Predictive models - Bayesian networks

1 Introduction

Human-computer interaction in the era of modern personal and ubiquitous computers is

beset with the problem of fragmentation of time between multiple tasks (Adamczyk and
Bailey 2004; Card and Henderson 1987; Gonzélez and Mark 2004; Ho and Intille 2005;
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Hudson et al. 2003; Jameson et al. 1999; McFarlane and Latorella 2002; Tamminen et al.
2004). Users must switch back and forth, temporarily leaving some tasks on hold or slowing
them down. Thus there are nearly always several unfinished, simultaneous, successive, and
overlapping tasks. For the user, the cognitive challenge is to plan and execute the sharing of
time in such a way that the length and frequency of interactions with the device, as well as
the timing of shifts between tasks, are in balance with the demands of the situation. Figure 1
illustrates the variety of time-sharing patterns a 30-s time window can exhibit when the user
is mobile.

The psychological notion of time-sharing refers to performing two or more tasks simul-
taneously by sequentially handling information from perceptual channels (Wickens 1984).!
Time-sharing behavior is pervasive and has been observed repeatedly in various settings
(see e.g., Gonzélez and Mark 2004; Oulasvirta et al. 2005; Wikman et al. 1998). Because
the allocation of processing time to an interaction task is an essential precondition for its
advancement, the user’s time can be seen as a kind of resource—a resource that is abundant
at times and scarce at others. The frequency, length, and timing of interaction give character
to this resource. When forced into a situation of inappropriately timed, too long, or too short
shifts, progress in the task is compromised. Moreover, people constantly interleave tasks and
subtasks across psychological modalities (Jameson and Klockner 2005; Vera et al. 2004).

Sadly, however, present-day computers are ignorant of the way users share time between
the user interface and the environment. There are several examples, given in the next sub-
section and elaborated throughout the rest of the paper, demonstrating adaptations that could
address this problem, assuming that real-time prediction of time-sharing was possible. To cri-
tically assess the feasibility of such adaptations, we present a wizard-of-oz feasibility study
(Hudson et al. 2003; Fogarty et al. 2005) looking at automatic prediction of time-sharing
based on sensors of varying degrees of sophistication. Rather than just pooling results from
empirical work, we contribute to the field by examining the possibility of using predictive
models for the development of real-world computing and communication applications (see
Horvitz and Apacible 2003). Our analysis and modeling focuses on the sharing of time in
mobile interaction, one of the increasingly more important domains of user modeling and
adaptation (Kobsa 2001). For these ends, four questions are addressed in the paper:

1. Information needs. Of all possible quantifications of time-sharing, which ones are useful
for the proposed adaptations?

2. Phenomenon. What regularities are there in the users’ time-sharing behavior such that
they might be captured by available and foreseeable sensors?

3. Engineering. What kind of sensors and computational models are needed for successful
prediction of time-sharing?

4. Feasibility. What is the overall feasibility of predicting time-sharing and what kind of
adaptations are realistic?

1.1 Consequences of suboptimal time-sharing strategies to interaction

The notion of time-sharing has originated from analyses of various domains where time-
sharing is an issue of safety—Ilike driving, piloting, air traffic control, and radar opera-
tion (Salvucci 2005). Cognitive models of the scheduling of cognitive, perceptual, and mo-
tor operations in interaction tasks explain why people often select suboptimal scheduling
strategies that have to be continuously corrected as the tasks proceed (Fu and Gray 2004,

I Please note that in this paper time-sharing does not refer to the sharing of CPU time among multiple users,
but the sharing of the user’s time among multiple tasks.
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Fig. 1 Examples of gaze deployment patterns demonstrating that users allocate time to an interaction task
in many different ways when mobile. The boxes represent 30-s time windows, within which the black bars
are glances to the interaction task (mobile browsing) and the white bars to the environment. (A) Sporadic,
short glances at irregular times; (B) alternating, approximately equally long glances to the device and the
environment; (C) concentrated attention to the device predominates. Adapted from the dataset of Oulasvirta
et al. (2005).

Gray and Boehm-Davis 2000). In the following, we summarize a number of problems that
have been observed and their consequences to interaction.

First, long interruptions may result in slowdowns in user response times to events, or
missing them entirely and thus to even errors. Moreover, attentional displacement (looking
off the target when returning to the main task (Wikman et al. 1998), and memory interference
(Glanzer et al. 1981) may occur. On the other hand, too frequent switches lead to a poor level
of sampling/processing quality due to build-up of switch costs (see Monsell 2003). Third, foo
long shifts away from a task resultin long periods of unawareness over other events, increasing
uncertainty over them. In driving, for instance, long glances away from the primary task are
risky and may lead to fatal consequences (Wikman et al. 1998). Finally, and related to the
third one, investing all time to just one task ensures maximal resources for its processing, but
compromises other tasks.

Thus, the duration of uninterrupted time dedicated to a task, the relative proportion of
such periods, and their frequency are all associated with different consequences to the user’s
ability to interact. In our work, we have assessed four related metrics as characteristics of
time-sharing.

1.2 Existing and envisioned adaptations

Noting the importance of the problem, several papers have been published recently that
present adaptations presuming sensor-based information about the user’s time-sharing beha-
vior (although this term is rarely used). A distinction is here made between four categories
of potentially useful adaptations:

1.2.1 Optimization in presentation

First, optimization in presentation means changing the format or style of a UI (but not the
content or functions) according to capacities implied by the user’s current time-sharing pat-
tern. One explored example in this category is the facilitation of visual search when the user’s
time is scarce (Méntyjérvi and Seppédnen 2003). Text on display is summarized and enlarged
when the user is “in a hurry”. A more speculative example is adaptively provided task-
resumption cues to overcome displacement after interruptions (Altmann and Trafton 2004).
Here, longer glances away from the application could be taken as an indication of being
interrupted, and the cues could be presented to help the user to remember where she was left.
(However, experiments have shown that the design of efficient cues is not trivial; e.g., Cutrell
etal. 2001.) It might also be appropriate to make presentations richer and more detailed when
the user is not interrupted but is predicted to allocate more time to the task.
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1.2.2 Preparation of resources

Second, preparation of resources means the execution of resource-intensive preparatory ope-
rations (network, memory, or computational) when the user is not paying attention to the
device (Salovaara and Oulasvirta 2004). For example, being able to predict breaks in in-
teraction during mobile browsing would enable the device to identify suitable moments for
proactive pre-caching of web pages in order to reduce the delays caused by a slow network
connection.

1.2.3 Adaptation of functionalities and timing

Third, adaptation of functional properties like timing could provide new opportunities for
interaction or inhibit potentially disruptive ones. Timing of functions is a form of adaptation
that is about “saying the right thing at the right moment” (Fischer 2001). Mixed-initiative
UlIs, for instance, could use information on the user’s allocation of processing time to decide
when to take turns in negotiation (Horvitz 1999a). Communication applications could use
information on the user’s time-sharing as an index of availability, and postpone or redirect
messages accordingly (Horvitz et al. 1999; Fogarty and Lai 2004; Fogarty et al. 2005). The
attentive Uls enterprise has envisioned functionalities being launched according to the user’s
concentration on a specific target (Vertegaal 2003). Finally, interruptions (e.g., pop-ups and
messages) could be presented between tasks rather than during them (Ho and Intille 2005),
or abrupt changes in time-sharing behavior could be utilized for delivering messages.

1.2.4 Social awareness cue

Fourth, in awareness systems, information about time-sharing could be used as a cue indi-
cating availability. In general, awareness cues are representations of a remote user’s state or
situation based on automatic interpretations of sensor data. They enable the users to orient
to a remote person in order to align ongoing activities and trigger new ones (Dourish and
Bellotti 1992). For example, the work by Begole and colleagues looked at visualizations of
a worker’s rhythms in time as a means for informing colleagues in the office of one’s pre-
sence (Begole et al. 2003). In mobile awareness systems, even crude cues are known to be
interpreted flexibly and creatively according to situational demands (Oulasvirta et al. 2007).
For example, the manipulation history cue (“the user has/has not used the phone during the
last 15 minutes”) is often interpreted as an indication of availability for communication and
messaging, feedback on whether or not the other has received a message, proximity to the
phone, interruptability, inability to respond to messages and being asleep. We believe that
more detailed cues such as “user is not paying attention to the phone at all” or “user is
concentrating on the phone” might be useful as well, informing communication decisions
and in general supporting understanding of what a particular person is doing at the moment.
(See also Fogarty and Lai 2004; Fogarty et al. 2004.)

1.3 Approach: a wizard-of-oz feasibility study

The practical motivations of this study are based on the idea of a service running on a
computer, here a mobile device, which would provide applications with information about
the user’s time-sharing. The service would receive data from a variety of sensors as input,
and respond to queries from applications by returning either its single best guess of the value
of a time-sharing variable or a probability distribution over all possible values.
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As will be argued below, numerous factors affect time-sharing besides those that could
be monitored with an attainable collection of sensors. Since people can interleave tasks in
many different ways, also across modalities, the problem is far from trivial. However, it seems
plausible that there might be systematic dependencies between observable variables and time-
sharing, and capturing such dependencies successfully in a statistical model might enable us
to predict time-sharing with sufficient accuracy to meet the needs of relevant applications.

We approach this challenge by means of a wizard-of-oz feasibility study (Hudson et al.
2003). The idea is to take realistic data and build predictive models on the basis of sensors
that are partially simulated by human codings of the data (thus the term “wizard-of-0z”). The
type of prediction addressed in this paper is that of unobtrusive “keyhole prediction” where
the user does not actively contribute to the prediction process (Carberry 2001). Both the
specific findings and the improved overall understanding resulting from this kind of a study
provide valuable guidance to developers interested in the feasibility of various adaptations
to time-sharing.

1.4 Related research: online detection of users’ interruptability and attentional state

The importance of attention as a limiting factor has been recognized, and several previous
studies have focused on modeling its relation to observable data. The operationalized variable
varies from one study to another. Although the results are not directly comparable to ours,
the previous studies illustrate complementary perspectives and clarify the relationship of our
work to other related efforts.

Fogarty and colleagues (2005) explored the interruptability of programmers working with
desktop PCs in an office setting, aiming to predict the level of interruptability based on soft-
ware sensors that monitored low-level input events at the user interface. They first gathered
training data by logging the actions of the users and observing their response times to ran-
domly presented notifications. A collection of sensors was then created to extract higher-level
features from the log data, and the response times were clustered in three groups represen-
ting interruptability in the corresponding situations. Interruptability was defined in terms of
the response time to an abrupt notification. The resulting data set was used for creating a
classifier that predicted the level of interruptability on the basis of the observable actions of
the users, and the predictive performance of the classifier was evaluated to assess the overall
feasibility of optimizing the timing of interruptions. In terms of the general approach, the
study is similar to ours, but the activities of the users, the environment in which they took
place, and the conceptual approach to quantifying the “available resources of the user” are
different.

Ho and Intille (2005) investigated the interruptability of mobile users based on the idea
that certain moments are more appropriate for delivering messages than others, and an adap-
tive application could try to identify the appropriate moments rather than tracking the degree
of interruptability continuously. The hypothesis was that users are more receptive to inter-
ruptions upon a transition in posture or movement. The participants carried a PDA equipped
with accelerometers while performing the normal activities of a workday. Messages were
delivered to the device both at activity transitions and at random times, and the participants
rated the perceived burden of each interruption. The results indicate that messages delivered
at transitions were in fact considered somewhat less disturbing. The study is similar to ours
in the sense that the participants were interacting with a mobile device in a variety of natural
settings. On the other hand, the interaction involved in acknowledging a short message is
quite different in nature from mobile browsing, and the idea of concentrating interactions at
activity transitions is not directly applicable to the needs of our research.
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Other interesting studies concerned with the adaptation of notification flow for mobile
users have been performed by Kern and colleagues (Kern and Schiele 2003; Kern et al.
2004). They proposed that a distinction should be made between personal and social inter-
ruptability. The former is the perceived cost of an interruption to the user, while the latter
represents the cost to other people present in the social situation. The levels of personal and
social interruptability define a two-dimensional space, which was mapped directly to a cor-
responding grid that specified the appropriate notification modality (including the possibility
of omitting immediate notification altogether). In the first study (Kern and Schiele 2003), cer-
tain stereotypical situations (e.g., “walking in the street” and “conversation in a restaurant”)
were assigned to specific regions of the space representing personal and social interrupta-
bility, and the feasibility of recognizing the situation based on the auditory environment,
movement, and location of the user was evaluated with a working prototype. Interruptability
was not modeled directly in terms of the sensor data, but was assumed to be fully determined
by the situation. The second study (Kern et al. 2004) avoided this assumption by relying on
explicit ratings of interruptability obtained from a sample of users, and presented a number
of technical improvements in the construction of the model and the hardware platform.

Jameson and colleagues (2006) conducted a laboratory experiment where the participants
were required to (a) speak quickly versus not (as an indicator of time pressure) and (b)
navigate through a simulated airport terminal versus stand still. The objective was to assess
the feasibility of detecting the resource limitations of the user from the speech signal. 70-80%
accuracy was achived (chance level 50%) in the presence of background noise, and the most
useful sensor counted the number of syllables in an utterance.

Vertegaal (2003) explored the possibilities for adapting to the user’s attention in indoor
environments with ubiquitous computers. In this setting, the multitude of devices results
in conflicting demands, and modeling the user’s attention could enable more natural and
convenient interactions. The proposed system evaluates the overall interruptability of the
user, prioritizes the demands for attention, and chooses an appropriate device and modality
for presenting notifications. In some cases, information about the user’s attention could also
control the operation of a device directly, for example pausing a video automatically when the
user is not watching it. Compared to our work, the problems addressed are somewhat different.
Mobile users (at least currently) only interact with a single device, but the interactions take
place in environments that are so complex and dynamic that resource limitations need to be
considered.

Some of the most elaborate models to date for adapting to the attentional states of the
user have been constructed at Microsoft Research (Horvitz 1999b; Horvitz et al. 1999,2003;
Horvitz and Apacible 2003). The work attempts to provide a foundation for both enhancing
existing applications and creating new kinds of applications based on mixed-initiative com-
puting. Although mobile devices are considered as part of a larger system, the focus is on
office and home environments equipped with desktop computers. The proposed models rely
on a wide variety of sensors monitoring the user’s activities, including gaze deployment,
posture and movement, location, and interactions with computing devices. In addition, the
goals and interests of the user as well as the contents of the messages being delivered are
relevant in some applications. Several different constructs are proposed for describing the
attentional states of the user. Some of these reflect the availability of attention or its specific
target, while others are stereotypical situations that are assumed to determine the appropriate
behavior of the application. The model computes a probability distribution for either the
current attentional state or a future state, and a detailed utility function determines the trade-
offs involved in each possible adaptation. In other words, the approach takes into account
both the uncertainty in a particular interpretation of the situation and the potential costs and
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benefits of the adaptations. Our work is also based on probability models, but we do not
consider the needs of individual applications in detail. However, if the prediction of the time-
sharing of mobile users turns out to be feasible and appropriate, the utility-based approach
represents an important direction for future research.

The most essential distinguishing characteristic of our work compared to the studies
presented above is the conceptualization of the user’s available time as a resource, which
constitutes a necessary prerequisite for the progress of interactions with the mobile device.
This view, inspired by work in cognitive sciences (e.g., Simon 1971), maintains that the
user’s ability to handle interactions of varying duration and complexity depends to a large
extent on the other demands of the situation. Successful prediction of variables describing
time-sharing would enable adaptive applications to ask whether or not the user is capable of
performing a particular task under the observed circumstances. This is a different question
than whether or not the user feels interruptable. Therefore, our approach complements the
studies that have modeled the interruptability of mobile users independently of the required
interactions, and is relevant to a wide variety of adaptations.

2 Towards modeling requirements: human strategies in time-sharing

This section presents empirical findings from cognitive psychology and human factors
research. The objective is to gather “requirements” that will be addressed in the construction
of the predictive models.

2.1 Internal and external constituents of time-sharing

Ideally, a person could perform several tasks simultaneously without additional costs. From
a cognitive perspective, what leads to the sequential sharing of time is the presence of a
resource competition situation where multiple tasks compete for limited resources. The mul-
tiple resources theory (Wickens 1984,2002) suggests that competition increases with the
processing-difficulty and resource-similarity of the tasks. This notion is also relevant to
mobile human-computer interaction where the competition is between mobility tasks (e.g.,
route planning, talking, waiting, estimating time-to-target, controlling personal space) and
interaction tasks, which compete mainly for the visual and motor resources (Jameson and
Klockner 2005; Oulasvirta et al. 2005).2

Although one might easily think that external events are the root cause of diverted atten-
tion, time-sharing is actually largely driven by internal processes (Kushleyeva et al. 2005).
Satisfactory time-sharing requires the ability to create and schedule future intentions, the
facility to remember, maintain and prioritize them, and the ability to switch from carrying
out one intention to another when needed (Burgess 2000). Internal control is necessary
also because environmental feedback is not always available or reliable (Fu and Gray 2004;
Salvucci 2005). In addition to time and resource costs of internal operations (Vera et al. 2004),
a general switch cost poses perhaps the most important internal limitation to time-sharing
(Pashler 1993). This cost ranges from tenths of seconds to a few seconds, the exact cost
depending on many factors (Monsell 2003), and are arguably caused by two mental events:
reconfiguration of the task set and interference from previous tasks. As will be discussed later,
avoiding the accumulation of switch costs is an important aspect of time-sharing strategies.

2 Jameson et al. (1999) uses the terms environment-related and system-related basically in the same meaning
as our mobility and interaction tasks.
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External constraints imposed by the task environment obviously play a role as well (Vera
et al. 2004). Simply because of different constraints, differences in fragmentation should
follow. In addition, orienting responses to abrupt events in the environment can break the
top-down control of attention (Niitinen 1992). In mobile interaction, due to the presence of
multiple tasks and events requiring attention, the span of continuous attention allocated to a
single task is typically in the order of ten to few tens of seconds (Oulasvirta et al. 2005). By
contrast, an observational study revealed that office workers’ time is divided into spans of
three minutes per task on average (Gonzalez and Mark 2004).

2.2 Users’ tactics and strategies in time-sharing

Despite serious cognitive limitations, people are able to do on-line interleaving of tasks
fluently. To understand how, we review some tactics and strategies of time-sharing. Table 1
summarizes some of the findings discovered by the authors based on the data of Oulasvirta
et al. (2005).

There are several reasons why these are at least locally rational strategies given the internal
and external constraints. First, as argued, more switching leads to poorer overall quality
of processing due to the accumulation of switch costs (Monsell 2003). Thus, there is a
qualitative difference (in processing quality) between allocating time in a frequent and erratic
manner versus in a continuous manner with few switches. In order to counteract this effect,
people exhibit a tendency to continue performing a lower-priority task longer than optimal.
This tendency implies that time-sharing must also be sensitive to goal and task hierarchies
(Salvucci 2005). Related to this, task boundaries are natural places to switch (Adamczyk
and Bailey 2004; Ho and Intille 2005; Miyata and Norman 1986) and people often resist
switch-aways just before task boundaries. Moreover, due to the prioritization of tasks, not all
tasks need to be immediately executed but are more easily postponed than others, this tends to
happen when the workload increases. It is worth noting that time-sharing accuracy increases
with practice. People can interleave their tasks with the maximum accuracy of 50ms after
extensive training (Pashler 1993).

Second, countering and reducing costs due to increasing uncertainty (over the events of
the task environment) during long interruptions is important. Elapsed time in a task is found
to be a good predictor of urgency to switch away to another task (Kushleyeva et al. 2005).
Third, pre-knowledge of what is to be expected, in semantic memory, is used as a source for
longer-term calibration of time-sharing. For example, when a metro train leaves the station,
experienced travelers “preprogram” themselves to what is the end signal of the task, the
announcement of the destination station or its visual characteristics observable from the
windows. After this, only brief sampling is required, and unnecessary devotion of processing
time to irrelevant stimuli can be avoided (Oulasvirta et al. 2005). The crucial role of longer-
term tactics, strategies and plans suggests that time-sharing emerges in a longer-term span
that is distinct from ephemeral actions and reactions to external events.

Given all task and cognitive constraints, users choose one strategy from the space of
possible strategies determined by the constraints (Eng et al. 2006). Because of the psycholo-
gical reality of situation-independent strategies and the contiguity of similar situations in the
world, it is reasonable to consider the temporal dependencies between successive time slices
in the predictive model. Taken together, these findings speak for looking at long enough time
spans, implementing time-dependent sensors (e.g., elapsed time) and, somehow, modeling
the user’s pre-knowledge of the task.
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Table 1 Time-sharing strategies, examples, and possible rationales

#

Strategy / Tactic

Example (from Oulasvirta
et al. 2005)

Possible rationale

Withdrawing resources from
a task of secondary impor-
tance

Postponing task switch when
the workload increases

Avoiding frequent
task-switching

Resisting switching just be-
fore the end of a task or a
subtask

Switching to tasks that have
been on hold for a long time

Calibrating switching to
expectancies of future
events

Resisting switching from
tasks when a nodal event (an
event breaking the current
task and signaling the change
of context or upcoming of a
new task) is expected soon

A participant slows down
walking when interacting
with the mobile browser ap-
plication.

A participant stops wal-
king entirely when interac-
ting with the mobile browser
application

A participant keeps gazing at
the mobile device despite va-
rious environmental distrac-
tions.

In order to finish an almost
completed interaction task, a
participant slows down wal-
king as he gets closer to the
escalator that marks the end
of the walking task.

A participant makes a short
glance to the browser to see if
the page loading state has fi-
nally changed. (Page loading
typically took about 16s in
the experiment.)

A participant sits down in bus
and looks out of the window
to estimate when it arrives to
a given destination.

A participant in a metro car
approaching the target sta-
tion keeps looking out of
the window and prepares to
leave the car.

The secondary task taxed the
resources needed for interac-
tion (the main task).

The secondary task taxed the
resources needed for interac-
tion (the main task), and the
secondary task can be perfor-
med later on.

Minimizes the accumulation
of switch costs.

Uniform tasks and subtasks
are better cognitively mana-
ged than fragments.

Long periods of unaware-
ness of the progress of
page loading decrease ove-
rall task performance even
though page loading is only a
waiting subtask and does not
directly contribute to achie-
ving the task goal.

Enables preprogramming of
attention to recognize only
the end signal and to bet-
ter ignore irrelevant stimuli
in the environment. Reduces
resources needed for moni-
toring the environment. Re-
quires previous experience
of the situation.

Unawareness of a nodal
event increases uncertainty.
Preparing for the upcoming
task switch is necessary for
fluent action.

3 The prediction task

At a general level, we define the prediction task as follows:

Given the information provided by simulated sensors, compute the probability distri-
butions of certain variables describing the user’s gaze deployment pattern during the
next 30 seconds.
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In the rest of this section we define the prediction task in detail and explain the underlying
rationale.

3.1 Targets of time-sharing

First, for reasons of simplicity, we chose to analyze the sharing of time between interaction
tasks (implied by mobile browsing) and mobility tasks (implied by goal-oriented activities in
the environment). By contrast, others before us have analyzed time-sharing between multiple
tasks or targets, but the analysis has been limited to well-defined tasks the structures and
modalities of which are known in advance to the researchers with significant accuracy in
controlled conditions (Jameson and Klockner 2005; Jameson et al. 2006; Vera et al. 2004).
Our data was collected in non-controlled environments and thus the tasks were not known
with comparable accuracy to us researchers—a situation typical of studies concerned with
mobile devices that are used in various circumstances not known in advance.

3.2 Time window

Second, time-sharing is a phenomenon taking place over a period of time. Most of the
adaptations discussed in Sect. 1.2 are concerned with the ability of the user to interact with
the mobile device in the immediate future. Therefore, we chose to predict time-sharing for
a time window extending from the present onwards. As additional experiments we will also
consider the cases where the time window is entirely in the past or centered around the
present.

Several reasons supported choosing a time window of 30s: (1) the relatively short-term
nature of events and actions in mobile use situations; (2) the relatively long spans of time
needed for effective time-sharing to become manifest even there, and (3) the envisioned
utility to the adaptations discussed in Sect. 1.2. However, we will also report the predictive
performance achieved with time windows of 15 and 60s.

3.3 Time-sharing variables

Third, echoing points made by others before us (Fogarty et al. 2005; Horvitz and Apacible
2003), we believe that there is no single measure of “available time” that would support all
adaptations. We will therefore use the following four variables for describing complementary
aspects of time-sharing within the predicted time window:

— Total refers to the total amount of time spent on looking at the interaction task.

— Longest refers to the duration of the longest uninterrupted glance to the interaction task.

— Average refers to the average duration of glances to the interaction task.

— Frequency refers to the number of glances to the interaction task. (Unlike the other
variables, larger Frequency does not necessarily mean more processing time for the
interaction task due to the accumulation of switch costs.)

These variables are best suited for optimizing the presentation of information or the timing
of interactions, or being conveyed as a social awareness cue (see Sect. 1.2). Providing task
resumption cues or proactive preparation of resources would involve predicting glances away
from the interaction task. The corresponding set of variables for these adaptations is basically
the reverse of the list presented above, and is omitted from our analysis for the sake of
simplicity. On the other hand, the time-sharing variables may represent only a subset of
the information that would be needed for adaptation of functionalities. Explicit modeling
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of the tasks performed by the users might also be required, but in this paper we focus on
time-sharing as a general phenomenon relevant for several kinds of applications.

4 The data set

Building predictive models of time-sharing requires a realistic data set, which we acquired
from Oulasvirta et al. (2005). The data set covers mobile Web browsing carried out in an
urban setting where the users were traveling and visiting several different kinds of places.
Urban mobility is characteristic of mobile HCI, and due to the complex and dynamic nature
of the situations, it represents a suitable acid test for predictive models. We here report how
the data was gathered and what assumptions about the phenomenon are implied.

4.1 Experimental method and data collection

The method used by Oulasvirta et al. (2005) is called a semi-naturalistic field study because
of the partial control over the events in the experiment, particularly as determined by the
tasks the subjects performed and the locations in the city they were performed in. In this
context, observing user behavior required full capture and recording of events with a four
mini-camera setup.

4.1.1 Participants

Twenty-eight subjects participated in the study; 15 of them were 20 to 26 and 13 of them
41-47 yearsold. Half of the participants were male, half female. They were experienced in
using mobile phones (M = 7.5years) and browsing the Web with a PC (M = 6.7 years).
They were also familiar with the Helsinki area (M = 24.1 years) and its public transportation
system (M = 6.2years). None of them had prior experience with mobile browsers.

4.1.2 Tasks and materials

The subjects performed 25 assigned information retrieval tasks using an Opera browser on a
Nokia 6600 (see Appendix A). They were taken to nine situations in a city center (busy street,
escalator, quiet street, bus, metro platform, railway station, cafeteria, metro car, laboratory)
and, while performing the tasks, they were either explicitly asked to do something typical
of the situation (e.g., walking, drinking coffee in a café) or the activity was implicit in
the situation (e.g., getting off the bus). The total recording time per subject was about 1 h.
Appendix B shows a time-annotated example of the progression of an individual experiment.

Each task was performed in one of three Instructed Time Pressure (ITP) conditions: (1)
in the hurry condition, the instruction was to “Do as many tasks as you can as quickly as
possible.” (2) In the baseline condition, a single task was performed within a given (4 min) or
implicit time frame (e.g., “You can continue doing the task until we arrive to the Sorndinen
metro stop”). The time frame was sufficient to perform the task, but if exceeded, the expe-
rimenter stopped the task and instructed the subject to move on to the next task. (3) In the
waiting condition, the participants waited for something, and were told that they had plenty
of time to carry out a single task: “We’ll be waiting for a call from my colleague, you have
plenty of time.” The presence of the ITP manipulation is beneficial for ecological validity,
because not all tasks were therefore carried out “as quickly as possible”.
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4.1.3 Design

The subjects in both age groups were randomly assigned (1) route direction (normal or
reverse) and (2) task order (normal or reverse). However, it should be noted that the relation-
ship between locations and tasks was not fully random. We will return to this limitation of
the data set later when evaluating the usefulness of place-related and task-related sensors.
The Instructed Time Pressure (“hurry”, “wait”, or an implied “deadline’) conditions were
assigned to natural reference situations (although some of them could not be assigned to
certain situations, e.g., the “wait” ITP to walking situations). With repetitions of the situations
(e.g., there were several escalator, metro, and walking situations) within a set, a different ITP
was administered each time, if possible. Thus, the order of the ITPs was only partially
counterbalanced, and the ITPs could not be entirely separated from the nine locations.

4.1.4 Recording and analysis

Four 30 g Watec WAT 230A minicams were used for recording the trials. The video streams
were sent to a receiver in the participant’s backpack and backed up onto a tape carried by the
experimenter. Figure 2A shows the camera setup.

From the video tapes, deployment of visual gaze was manually coded at a granularity of
1s. The other coded variables included: task id (25 different values), location (9), posture and
mode of movement (4), crowdedness (4), page-loading state (3), the ITP condition (3), and
interaction with the device (2). Later on, these codings were augmented with background
information about the subjects (to simulate user profiles), locations, and tasks (see Sect. 5).
A total of 33h of video was analyzed in this manner. Figure 2B shows an example of video
output.

The experimenter’s shadowing posed a possible source of distraction to the participants,
despite the fact that they were instructed not to talk to or look at the experimenter. Indeed, the
data does contain occasional glances to the experimenter, but their relative frequency is low
compared to glances to other targets in the environment. Moreover, since the shadowing was
always done in the same way, the experimenter following one or two footsteps behind the
participant, we believe that its effect is uniform across the situations. Measuring the impact
of an experimenter’s presence to multitasking behavior remains to be examined rigorously,
but at the time this study was conducted, there was no alternative to a human experimenter
recording the environment of the participant.

4.2 Time-sharing variables: descriptive statistics

While Oulasvirta et al. (2005) reported only the gaze deployment behavior observed during
page loading, we here include all the data in our analysis. The purpose of this section is to
introduce the reader to the data by giving examples of the relationships between observable
conditions and the four time-sharing variables. By contrast to the prediction task (see Sect. 3)
where we compute the probability distributions of the time-sharing variables for the imme-
diate future, this analysis looks at dependencies between pairs of variables within the same
time window.

As can be seen from Fig. 3, different places were associated with different time-sharing
behavior. Moreover, recent change of place was a factor. For example, when the place had
changed within the last 30s, Average dropped from 20.9s to just 13.2s. These regulari-
ties hint that there are qualitative differences in how processing time is shared in different
situations.
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Fig. 2 (A) The mini-camera
setup used to record attention,
action, and context. (B) Video
integrated on the fly from the four
streams.

Second, walking speed had a strong (Pearson) correlation with all of the time-sharing
variables (|0.260| < all r’s < ]0.360]). Correlation with crowdedness, for example, was
notably weaker (|0.019| < all r’s < ]0.085]). Third and not surprisingly, more interaction
with the browser, as measured by segments of interaction started in a time window, was
associated with more glances, average Frequency rising from 1.67 to 2.08 to 2.46 for 0,
1-2, and 3—4 glances, respectively. Average was lower in situations when the performance
of the task had already continued for over 60 s (17.1s vs. 18.2s). Similarly, a change in the
page loading state within the last 30s was associated with increasing Frequency as well
(1.71 for no change and 2.23 for change). Instruction to hurry or to wait had little effect on
time-sharing. For example, while the difference between the hurry condition and the wait
condition was statistically significant (p < 0.0l in a post hoc LSD test), in practice the
difference remained small, about 3% for Total.

Finally, variables describing the user’s familiarity with the city were associated with the
time-sharing variables, more experienced participants being able to better concentrate on
the interaction task (e.g., Frequency being 2.32 for those who had lived in Helsinki under
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Syears, and 1.97 for those with 5 or more years). On the other hand, these variables coincided
with the age of the participant.

5 Constructing the predictive models

At this stage, we are concerned with preliminary assessment of the feasibility of predicting
time-sharing. Some of the inputs from the simulated sensors are different in nature from the
information that would be obtained from real sensors, and the models therefore do not address
the full set of issues involved in creating a working system. On the other hand, we examined
the potential usefulness of a wide variety of sensors and several complementary formulations
of the prediction task, attempting to identify fruitful directions for further efforts. A simple
and straightforward approach was appropriate.

The task of the predictive models was formulated as a classification problem: computing
the value or posterior distribution of a binary time-sharing variable on the basis of the observed
values of the sensor variables. The procedure used for defining the classes is described in
Sect. 5.4. There were three main reasons to use classification models, although the original
time-sharing variables are numeric:

— Almost all of the adaptations presented in Sect. 1.2 are discrete. The only exceptions are
the adjustment of timing and the provision of social awareness cues, in which the level
of interruptability or availability could be represented by either a discrete or a continuous
variable. Applications would typically choose between a small number of alternative
courses of action based on the prediction supplied by the model. This means that classifi-
cation accuracy is the appropriate performance criterion, although the relevant distinctions
may vary from one application to another.

— The results are intuitively understandable. The meaning of classification accuracy is
obvious and relatively easy to relate to the needs of an application. This would not have
been the case for mean square error or other metrics used for evaluating the performance
of regression models. On the other hand, it should be noted that we assume the costs of
all misclassifications to be equal. Using explicit cost matrices would have complicated the
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Fig. 3 The relationship between place and three indicators of time-sharing in the original human-coded data.
The vertical bars represent 95% confidence intervals
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Fig. 4 Graphical representation of the structure of the model

interpretation of the results, but it may be appropriate in more specific work on individual
applications.

— Choosing a suitable model was easier in classification. The kind of classifier discussed
in the next section is widely understood and known to perform reasonably well on a
wide variety of data sets. Since many of the conceptual issues involved in defining the
problem itself are non-trivial, it seemed appropriate to keep the technical aspects of the
work simple and focus on assessing the overall predictability of time-sharing from multiple
perspectives.

5.1 General approach and procedure

As a generic model structure, we used the type of Bayesian network classifier illustrated in
Fig. 4. For each time window, the model computes the posterior probability distribution of
the time-sharing variable on the basis of the previous distribution and the current values of the
sensor variables.? The result could consist of the most probable value, the most probable value
together with its probability, or the entire distribution. The ability to associate probabilities
with the predictions could be useful for applications, enabling e.g., a utility-based approach
to adaptation (Horvitz 1999a).

The model relies on a number of assumptions reflecting both practical considerations and
our understanding of the underlying phenomenon. The temporal dynamics of time-sharing
were modeled as a first-order Markov process, in which the current state depends only on
the immediately preceding state, and the possible effect of the more distant past is ignored
(for arguments see Sect. 2). We also assumed the underlying process to be stationary, which
means that possible changes in the process itself were not considered. It is conceivable that
some users may have learned better strategies for time-sharing during the course of the
experiment, or it may have simply taken them some time to become familiar with the mobile
device. To account for the possibility of such effects, the stage within the experiment was
included as a sensor variable. Finally, we assumed the sensor variables to be conditionally
independent, given the value of the time-sharing variable. Despite being unrealistic, this
assumption is very common in Bayesian classifiers, because it simplifies the model, lowers
the computational demands, and often gives excellent performance with real-world data sets.
The resulting model is sufficiently simple for real-time prediction in modern mobile devices
like smartphones and PDAs.

The original data matrix was coded from video by adding a new row of values whenever
one or more changes were observed (Sect. 4). In the preprocessing of the data, the resulting
sequence was mapped to fixed-duration time windows, and the entries contained in each
time window were passed on to feature extraction to create the data vectors used for training
and testing the classifier. We ended up programming the feature extractors by hand, relying
heavily on our understanding of the semantics of the underlying variables (see Sect. 5.2).

3 See e.g., Russell and Norvig (2003) for a technical description of the relevant computations.
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Learning a Bayesian classifier from data involves estimating the statistical dependencies
between the class variable and the predictor variables. All of the values, including those of
the time-sharing variable, were present in the training data, and the standard algorithm for
calculating the maximum-likelihood parameters was applied. During validation, however,
the actual value of the time-sharing variable was not made available to the model, and the
temporal dependency between successive time windows was taken into account by margi-
nalizing over the possible values. In other words, more information was obtained from the
experiment (with additional equipment and human labor) than would be available to the
mobile device in real use. In Sect. 6.4, we examine a variation, in which an eye-movement
camera is assumed make past time-sharing directly observable.

The choice of predictor variables has a significant effect on the performance of a Bayesian
classifier (Guyon and Elisseeff 2003). We applied a wrapper method (Kohavi and John
1997), which involved searching the space of possible sensor combinations and evaluating
the models by means of cross-validation. With 179 candidate sensors, the space was far
too large to be searched exhaustively, and we employed simulated annealing and greedy
algorithms in an attempt to find good (but not necessarily optimal) classifiers efficiently.*

During the search, models with different sensors had to be compared to each other some-
how. The most straightforward way to do this was to observe the predictive accuracy directly.
The procedure, known as cross-validation, is based on splitting the available data repeatedly
into two independent samples. One of the samples is used for training the classifier, and the
other for validation. In the case of time series data, random splits often lead to overoptimis-
tic estimates of performance because of spurious dependencies between the samples (Hjorth
1994). Furthermore, the structure of the model required the data to be presented in the original
temporal order during prediction. For these reasons, we used the individual tasks performed
by the subjects as the basis for creating the splits. Each task in turn was used as validation
data for a model trained on the remaining tasks, and the performance was measured in terms
of the overall classification accuracy. The results reported in Sect. 6 are based on the same
procedure.

5.2 Information sources

Our assortment of simulated sensors can be characterized in terms of two dimensions. On
the one hand, we relied on certain information sources, which included aspects of the envi-
ronment, actions and characteristics of the user, and properties of the task that the user was
performing. These were basically determined by the design of the experiment, the contents of
the resulting videos, and the procedure used for coding the raw data from the videos (see Sect.
4.1.4). On the other hand, we employed four different sensor types, each of which processed
the available information in a different way. Significant effort was put into capturing the rela-
tive timing of events and actions: Indicators focused on the present, EventTrackers
and HistoryTrackers on the past, and FuturePeekers anticipated things that would
happen in the near future.’ The general idea was to provide a wide variety of potentially use-
ful sensors to the learning algorithm and identify good subsets by means of search in the
space of sensor combinations.

4 Each sensor can be either included in the model or left out, which means that the number of possible models
(with the given model structure) is 2179 An exhaustive search is clearly infeasible, and even very large amounts
of processing time would not change the nature of the problem.

5 Implementing FuturePeekers in a working system would involve constructing additional predictive
models, but in this wizard-of-oz feasibility study we take them as given.
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In the human-made coding of the data, the environment was represented by 13 variables.
One of the variables identified the place where the user had been located at a particular mo-
ment, and 10 others provided information about the characteristics of the place. Distinctions
were made e.g., between indoors and outdoors, vehicles and buildings, and whether or not
there were cars and other pedestrians present. The overall level of crowdedness was rated on
a scale from 1 to 4. Furthermore, the time of day was also included as an environment related
variable, as it could e.g. provide information about lighting conditions.

The posture and movement of the user was encoded in a single variable with values
for sitting, standing still, walking slowly, and walking at a normal speed. Another variable
indicated whether or not interaction with the mobile device was happening at a particular
moment, and the state of the page in the browser was classified as fully loaded, loaded except
for images, or unreadable.

Certain aspects of the user background were also included in the data. The users represen-
ted two different age groups, approximately half of them being 20-30 years old and the rest
40-50years old. The background information also included the gender of the user, as well as
his or her experience (in years) of using the Web. Finally, the number of years the person had
been living in the city and using public transportation served as rough indications of overall
familiarity with the environment.

The general properties of the rasks were included in the data in an attempt to capture
the goal-oriented nature of time-sharing. Each task was performed under one of three dif-
ferent kinds of Instructed Time Pressure (see Sect. 4.1.2). The difficulty of the navigation
required for finding the desired piece of information was represented by a binary variable
(easy/demanding), and the number of criteria for identifying the information varied between
1 and 4. The tasks also differed in terms of the type of input required from the user. About 17
of the 25 tasks were based on navigation along hyperlinks, five on scrolling and searching
on a longer page, and the remaining three involved defining a query to a search engine. Fur-
thermore, the size of the Web site and its presumed familiarity to the user were rated on a
three-point scale.

5.3 Sensor types and feature extraction

Figure 5 illustrates the temporal relationships among the sensor types. The current moment
is denoted by ¢, and the time-sharing variable being predicted extends from ¢ to ¢ + 30s.
An Indicator simply reports the state of a particular variable, telling e.g., that the user is
currently sitting. An EventTracker, in contrast, is triggered by a certain event (e.g., the
start of interaction), and uses it as a reference point for computing a relational feature (e.g.,
the elapsed duration of the current interaction segment). HistoryTrackers summarize
the recent past, telling e.g., the proportion of the time window taken by the browser to load
a new page. Three versions of each HistoryTracker were made, with time spans of 15,
30 and 60s. FuturePeekers are the complement of EventTrackers, computing a
relational feature with respect to a future event (e.g. the amount of time left before the user
needs to step out of a metro car).

Appendix C provides a comprehensive listing of the sensors. The EventTrackers
were triggered either by any change in the value of a certain variable (e.g., movement) or a
particular kind of change (e.g., a change from walking or standing to sitting). In both cases,
the computed feature was the amount of time since the change, discretized into seven classes
(0s,1-5s,6-10s, 11-30s,31-60 s, more than 60, no change observed since the beginning of
the task) reflecting the assumption that there is a nonlinear relationship between time and the
user’s time-sharing. The FuturePeekers were based on the same principles (including
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the discretization), except that they detected changes that would happen in the near future.
In addition to the absolute time difference, the FuturePeekers related to interaction, page
loading and the ongoing task also computed the stage (as a percentage) within the relevant
time period (see rows 56, 64 and 81 in Appendix C). The HistoryTrackers produced
the largest variety of features. The majority of them computed a binary feature indicating
whether or not a change (or a particular kind of change) was observed within the time window.
Other HistoryTrackers reported the proportion of the time window spent in a crowded
environment (row 25 in Appendix C), in a particular posture (rows 28-30), interacting with
the device (row 53) or waiting for a new page to become available in the browser (row 63). In
addition, the number of changes in crowdedness (row 20) and walking speed (row 40), and
the number of separate segments of interaction with the device (row 54) were observed. The
ranges of these two kinds of numeric values were discretized to 3—4 equal width intervals with
the extremes (e.g., 0% and 100%) separate. Finally, the Hi storyTrackers monitoring
movement also reported the average walking speed (row 38) and detected the presence or
absense of accelerating and slowing speed (rows 46 and 50).

There were 179 sensors in total (see Table 2 and Appendix C). The purpose of the sensors
associated with the environment was to provide information about the overall demands of the
mobility tasks affecting the user’s time-sharing, and to account for the user’s cognitive stra-
tegies (including calibration and brief sampling) for coping with changes in the environment
(see Table 1).

There were 13 Indicators monitoring the environment, which just replicated the
manual codings of the variables in the original data (rows 1-11, 18 and 26 in Appendix C). For
each variable except for the time of day, the time from the last change and the time to the next
change were reported by an EventTracker and a FuturePeeker, respectively (rows
13-14, 16-17, 21-22). 33 of the HistoryTrackers monitored changes in the variables
related to place (rows 12, 15). Three of them indicated whether or not the place had changed
within the observed time window (15, 30 or 60 s), and the rest reported particular kinds of
changes (e.g. a move from indoors to outdoors or vice versa) in each of the 10 characteristics
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Table 2 The distribution of the sensors by information source and sensor type
Source Indicators EventTrackers HistoryTrackers FuturePeekers Total
Environment 13 12 48 12 85
Movement 2 5 36 5 48
Interaction 1 1 9 2 13
Page state 1 2 12 3 18
User 5 0 0 0 5
Task 7 1 0 2 10
Total 29 21 105 24 179
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of the place. The remaining 15 HistoryTrackers monitored crowdedness (rows 19-20,
23-25). In addition to detecting the presence or absence of a change, they indicated the
frequency of changes, increases and decreases in crowdedness, and the proportion of the
time window with a high level of crowdedness.

The actions of the user were also assumed to provide information about the division of
resources between mobility and interaction tasks. It seems plausible that more resources
might be available for interaction when the user is sitting or standing rather than walking,
and changes in walking speed could indicate resource withdrawal from one or the other of the
tasks (see Sect. 2). Furthermore, past interactions provide direct evidence of past allocation
of resources towards the mobile device, and the state of the page visible in the browser affects
the timing of the interactions.

The momentary posture and movement of the user was reported by an Indicator that
just replicated the manual encoding (row 27 in Appendix C), and another Indicator
represented the associated speed of movement (row 37). The timing of specific changes was
monitored by pairs of EventTrackers and FuturePeekers, which were triggered
either by any change in speed, an increase or a decrease in speed, or a switch from a standing
to a sitting position or vice versa (rows 32-33, 35-36, 41-42, 48-49). The same set of
changes was also monitored by HistoryTrackers indicating the presence or absence of
the change in a specific time window (rows 31, 34, 39, 43, 47). Other HistoryTrackers
computed the frequency of changes in speed, the average speed, and the proportion of the
time window that the user had spent sitting, standing still or walking (rows 28-30, 38, 40).
Slowing and accelerating speed, defined in terms of the difference between the end points of
the time window, were also detected (rows 46, 50).

Interactions with the mobile device were monitored by 13 sensors. Once again, an
Indicator replicated the manual encoding of the data, telling whether the user was in-
teracting at a particular moment (row 51). An EventTracker and a FuturePeeker
computed the time from the end of the last interaction segment and the time to the start of the
next segment (rows 55, 57). Another FuturePeeker indicated the stage within an ongoing
interaction segment as the percentage completed (row 56). The remaining nine sensors were
HistoryTrackers observing sequences of past interactions (rows 52—55). They reported
the presence or absence of interaction, the relative proportion of interaction, and the number
of separate interaction segments.

Due to the relatively slow Internet connection of the mobile device, the loading of new
pages in the browser also seemed likely to affect the sharing of time between mobility and
interaction tasks. An Indicator reported the state of the page at a particular moment, and
an EventTracker and a FuturePeeker computed the time difference relative to the
closest change in the past or the future (rows 58, 60—61). In case the page was loaded, another
EventTracker reported the amount of time that it had been available (row 67). Similarly,
apair FuturePeekers anticipated the amount of time left before an unloaded page would
become available (rows 64—65). One of them gave the result in absolute terms and the other
as the stage in the loading process. HistoryTrackers also monitored several closely
related, but somewhat different aspects of page loading (rows 59, 62-63, 66). They checked
if the state of the page had changed during the time window, and more specifically, whether
or not a new page had become available. A complementary set of HistoryTrackers
indicated if the observed time window contained page loading, and computed its relative
proportion.

The variables describing user background remained stable throughout the experiment.
They were represented by Indicators that just replicated the original encoding of the
data (rows 68-72).
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The properties of the assigned information retrieval tasks were assumed to reflect the
overall demands of the interaction. In addition, tracking progress within a task seemed crucial
for capturing the cognitive strategies of the user (see Sect. 2). At the beginning of a task,
calibration might increase the relative amount of resources allocated to interaction tasks, and
task finalization might have the same effect in the end.

The properties of the tasks were represented by Indicators (rows 73-78 in Appendix C).
An EventTracker computed the time from the start of the task, and FuturePeekers
gave the remaining time both in absolute terms and as the proportion completed (rows 79-81).
In addition, the stage within the experiment was tracked by an Indicator in order to
account for the possibility that the users developed better strategies during the course of the
experiment (row 82).

5.4 Thresholds of the time-sharing variables

Each of the original time-sharing variables was discretized into two classes. As described
above, we were interested primarily in the overall feasibility of predicting time-sharing,
and wanted to compare the predictability of the four variables to each other. The thresholds
defining the boundary between the two classes were chosen in such a way that as little as
possible was known a priori about the value of the variable. In other words, the frequencies
of the two classes were made (roughly) equal. Defining the classes in this way gave a better
indication of the overall predictive power of the models than working with a strongly biased
prior distribution would have given, and applying the same principle consistently across all
of the variables enabled direct comparisons.

The thresholds resulting from this procedure were Total<29s, Longest<22s,
Average<l4sand Frequency<2s. These thresholds reflect the fact that the data contai-
ned mostly concentrated interaction with the mobile device. The participants seemed to prefer
performing the tasks in a focused manner, as also indicated by the small effect of Instructed
Time Pressure (see Sect. 4.2). The observed willingness to allocate as much time to interac-
tion as the other demands of the situation permitted supports the idea of conceptualizing the
user’s time as a limited resource, the availability of which varies over time.

6 Validation results

In this section we report the predictive performance that was achieved under various assump-
tions about the available sensors and the prediction task itself. We start by presenting the
best performing model for each time-sharing variable. The results give a general indication
of the predictability of time-sharing and the feasibility of the adaptations. After that, we ana-
lyze in more detail the contributions of the sensors to predictive accuracy in order to assess
the relative importance of the various factors affecting time-sharing. The proposed sensors
differ significantly in terms of the amount of effort that would be required for implementing
them, and the results therefore provide a basis for preliminary assessment of the potential
costs and benefits. Finally, we experiment with a number of modifications to the prediction
task. We assume that past time-sharing is observable to a hypothetical device equipped with
an eye-movement camera, and change the size of the predicted time window as well as its
temporal location with respect to the sensors.
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Table 3 Overall predictive

performance for cach of the Time-sharing variable Accuracy Gain No. of sensors
time-sharing variables
Total 722 22.0 22
Longest 69.6 19.2 30
Average 72.3 17.2 36
Frequency 69.7 17.1 23

6.1 Overall predictive performance

Table 3 presents the overall performance of our best classifier for each time-sharing va-
riable. The selection of the sensors was based on the cross-validation procedure described
in Sect. 5.1. All sensors were available to the learning algorithm, and the number of sensors
chosen in the model was not constrained explicitly. In addition to looking at the classification
accuracy as an absolute number, it is useful to compare it to the proportion of the largest class
(which is often called the default). We refer to the difference between the two numbers as
gain, because it represents the benefit of relying on the model as opposed to a simple guess
that ignores all sensor data.

The absolute classification accuracy is around 70% for all of the variables. In terms of
gain, the result for Total (22%) is somewhat better than the others. All of the models rely
on a fairly large and varied collection of sensors. In the case of Total, for example, 11 of
the 22 sensors are related to the environment, three to the posture and movement of the user,
two to interaction, two to the state of the page, one to the background of the user, and three
to the ongoing task. The importance of the various kinds of sensors is examined in detail in
the next two sections.

Table 4 shows the confusion matrices of the best models. For Total, Longest and
Average the distribution of the errors is very similar. In about 60% of the misclassified
instances the user allocated less time towards the mobile device than predicted, and in the
remaining 40% the error is the reverse. In the case of Frequency, the errors are distributed
evenly between the two classes. However, the total number of situations where the user’s time-
sharing was fragmented (Frequency > 2) is somewhat higher, and the relative proportion
of errors is therefore about 4% points lower.

The ROC curves of the models summarize the trade-off between the coverage in predicting
particular kind of time-sharing and the associated error rate (see Fig. 6). The curves were
produced by combining the predictions from all the test folds used in the cross-validation
and ordering the resulting list on the basis of the probability of the predicted value. The
certainty of the model about the correctness of the predictions decreases from left to right.
Therefore, each point on the curve is associated with a threshold, which would result in a
certain coverage of the true positives at the cost of a certain error rate. The shape of the curve
is affected by both the inherent uncertainty involved in the prediction task and the quality of
the model as an approximation. In particular, “easy” instances that are predicted correctly
move the curve towards the upper left-hand corner and increase the area under the curve,
which is denoted by A’.

An application in which the cost of inappropriate adaptations is significant could require
a higher probability threshold for the positive class. However, errors could not be avoided
with any threshold. In the case of Total, for example, requiring at least 75% probability
(instead of 50%) would reduce the number of false positives only to 51.3%, while decreasing
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Table 4 Confusion matrices of the best models

Predicted
Total<29s Total>29s
Actual Total<29s 965 485
Total>29s 317 1119
Predicted
Longest < 22s Longest>22s
Actual Longest<22s 885 546
Longest>22s 331 1124
Predicted
Average<l4s Average>14s
Actual Average<l14s 818 478
Average>14s 321 1269
Predicted
Frequency<?2 Frequency>2
Actual Frequency<?2 928 439
Frequency>2 435 1084
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Table 5 Predictive performance with each sensor group

Sensor group Variable

Total Longest Average Frequency

User background (5): Accuracy 59.7 57.8 60.7 57.6
age + gender + experience with  Gain 9.5 7.4 5.6 5.0
web + familiarity with city No. of sensors 4 3 3 2

Activity (79): movement + inter-  Accuracy 67.3 66.1 68.6 65.3
action + browser state Gain 17.1 15.7 13.5 12.7

No. of sensors 15 8 12 10

Environment (84): place + crow-  Accuracy 67.7 66.4 68.0 64.7

dedness Gain 17.5 16.0 12.9 12.1
No. of sensors 14 15 13 22

Level 1 (27): interaction + browser ~ Accuracy 58.2 57.7 60.5 60.8
state + time of day — Gain 8.0 7.3 54 8.2
FuturePeekers No. of sensors 7 9 8 9

Level 2 (87): Level 1 + user back-  Accuracy 68.1 654 67.8 65.6
ground + place — Gain 17.9 15.0 12.7 13.0
FuturePeekers No. of sensors 18 16 11 17

Level 3 (169): Level 2 + Accuracy 71.6 69.3 72.0 69.6
movement + crowdedness + Gain 21.4 18.9 16.9 17.0
FuturePeekers No. of sensors 18 21 31 23

No. FuturePeekers (155): Accuracy 69.5 66.7 69.5 66.4
Level 3 + task — Gain 19.3 16.3 14.4 13.8
FuturePeekers No. of sensors 26 26 25 19

All (179): Level 3 + task Accuracy 72.2 69.6 72.3 69.7

Gain 22.0 19.2 17.2 17.1
No. of sensors 22 30 36 23

The number of sensors in the group appears in parentheses

the coverage of true positives to 64.4%. The situation is essentially the same with the other
variables, despite minor variations in the shape of the curve.

6.2 Importance of the sensor groups

In order to evaluate the usefulness of the various kinds of sensors, we divided them into
groups and computed the classification accuracy achievable within each group. Firstly, a
distinction was made between the sensors related to the background of the user, the actions
of the user, and the environment. We were primarily interested in the relative importance of
these complementary information sources, and seeing if any of them would alone be sufficient
for predicting time-sharing. The results are shown on the first three rows of Table 5. Secondly,
we divided the sensors into five groups on the basis of the challenges that would be involved
in implementing them. If particular kind of information was available, it would in most cases
be relatively easy to create a variety of sensors computing different features based on the
same information. Therefore, the nature of the underlying information source is more crucial
for the difficulty of implementation than the specific computations performed by the sensors.

The first group, which we named Level 1, would require only stand-alone software without
external infrastructure or data that might be difficult to acquire (see Table 5). These sensors
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would provide information about the time of the day, the state of the page in the browser, and
the user’s interaction with the browser. FuturePeekers are not included, as implementing
them would require prediction in itself. Level 2 extends the first group with user background
and place. The provision of these two information sources would require voluntary input from
the user, relatively fine-grained location estimation, and a database about the characteristics
of the locations. Level 3 includes the sensors for tracking the movements of the user and the
crowdedness of the place. The former would require additional hardware and the latter either a
historical database or an infrastructure for real-time monitoring. Level 3 is also the first group
containing FuturePeekers. Finally, the last two groups include the sensors associated
with the task being performed by the user. Acquiring such information automatically would
involve both conceptual and technical difficulties. As the names suggest, No FuturePeekers
excludes the sensors anticipating the future and A/l represents the entire collection.

The results are summarized in Table 5. Relying only on the background information about
the user limits the gain within the range 5.0-9.5%. Monitoring either the activities of the user
or the characteristics of the environment enables significantly better results. For all of the
variables the achieved classification accuracies are 5% points or less below the best models,
which appear on the last row.

The simple software sensors of Level 1 give modest results with gains of 5.4-8.2%.
A substantial improvement is achieved by adding the sensors for user background and place.
For Level 2, the gains are within 13.0-17.9%, which is again less than 5% points below
the best models. Further improvement results from adding the sensors for movement and
crowdedness along with the FuturePeekers. The performance with this collection of
sensors, labeled Level 3, is within one percentage point of the best models. Adding the task
related sensors and removing all FuturePeekers lowers the gain to 13.8-19.3%. The
FuturePeekers do not seem to be critically important, however, as the performance is
still only about 3% points below the best models.

The predictability of the time-sharing variables decreases from left to right in Table 5.
With every sensor group except for Level 1, the largest gain is achieved for Total. The gain
for Longest is consistently better than for Average, and also better than for Frequency
with the exception of Level 1 sensors. The differences between Average and Frequency
are relatively small, but on five of the eight rows Average has the larger gain.

Increases in the number and sophistication of the candidate sensors consistently result in
better performance. Despite the general trend, the numbers do not fully correspond to our
expectations. In particular, the sensors related to the ongoing task improve the performance
by less than 1% point. It seems that taking the users’ task-related strategies (associated
with e.g., the beginning or the end of a task, as described in Table 1) into account is either
not crucial or our sensors do not capture them adequately. As pointed out in Sect. 4.1.3,
the relationship between locations and tasks is not fully random in the data, and therefore
the place-related sensors could in principle dominate the task-related ones by providing
information about both places and tasks. However, additional experimentation indicates that
the contribution of the task-related sensors remains small even when no place-related sensors
are present. Another surprising and possibly related result is that the FuturePeekers
improve the performance by only about 3% points. While the time-sharing strategies of
the users are likely to be anticipatory in the sense of reflecting expectations of the near
future, such effects may not be so pervasive that foresight on part of the model would be
necessary.
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Table 6 The effect of removing

.o Variable Sensor Decrease
an individual sensor from the
model in accuracy
Total Speed of movement 3.6
Years living in the city 3.4
Stage in ongoing interaction segment 2.9
Place: indoors/outdoors 2.4

Time to start of next interaction segment 1.4

Longest Speed of movement 4.9
Years living in the city 2.8
Stage in ongoing interaction segment 1.7
Place: indoors/outdoors 1.4
Size of the web site 1.1
Average Proportion of time walking (605s) 3.8
Years living in the city 2.3
Stage in ongoing interaction segment 1.8
Place: pedestrians passing by? 1.5
Proportion of “crowded” (155s) 14
Frequency Stage in ongoing interaction segment 4.0
Place: pedestrians passing by? 2.8
Proportion of “crowded” (155s) 2.5
Time to next change in page state 24
Time of day 2.1

6.3 Importance of individual sensors

One way to evaluate the importance of an individual sensor is to remove it from the model
and observe the decrease in classification accuracy. Table 6 shows the five most impor-
tant sensors for each time-sharing variable, as determined by this procedure. The models
used were the ones with the best predictive performance (see Sect. 6.1 and the last row of
Table 5).

As can be seen from Table 6, there is significant overlap between the top five sensors
of each time-sharing variable, and the sensors represent the full diversity of the available
information sources. Six of the 11 different sensors on the list appear two or more times.
The most frequent ones are stage in ongoing interaction segment and years living in the
city. The most frequent information sources are environment (seven sensors) and interaction
(five sensors). Posture and movement and user background are each represented by three
sensors, and page state and task by 1 sensor. In terms of sensor types, Table 6 is dominated
by Indicators (11 sensors) and FuturePeekers (six sensors). There are only three
HistoryTrackers and no EventTrackers at all.

A complementary way to assess the importance of individual sensors is to start from an
“empty” model and add sensors one by one, observing the effect on classification accuracy. We
used a greedy algorithm, which at each step added the sensor that gave the largest increase in
performance. It should be noted that this method does not in general produce the best classifier
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Fig. 7 Improvement in classification accuracy as the number of sensors is increased

with a given number of sensors, but despite that the results are illuminating—especially for
small classifiers with only a few sensors.

The results are illustrated in Fig. 7. In each graph, the lower curve shows the performance
achieved by the greedy algorithm, and the upper curve the performance of the best models
that we were able to find in the absence of the restriction that previously added sensors could
not be changed. With Longest and Frequency, the difference between the curves at the
end of the range is less than one percentage point, whereas with Total and Average the
greedy algorithm gets stuck in a local optimum much earlier and ends up 2-3% points lower.
A clear trend in all of the graphs is that the performance improves rapidly as the first sensors
are added, and levels off gradually. With 10 sensors, the upper curve is already within 1-3%
points of the best results.

Table 7 shows for each time-sharing variable the first five sensors added by the greedy
algorithm. Again, the list is well-balanced in the sense of representing all information
sources except for fask. The most frequent sensor types are FuturePeeker (nine sen-
sors), Indicator (five sensors) and HistoryTracker (five sensors).

For Total, Longest and Average, the best model with only one sensor relies on a
HistoryTracker or an Indicator monitoring the posture and movement of the user,
and the first five sensors also include a FuturePeeker anticipating a particular kind of
change in posture or movement. For Average, the fourth sensor is a HistoryTracker
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Table 7 The effect of adding

. . Variable Sensor Increase
sensors incrementally in the .
in accuracy
model
Total Proportion of time sitting (60s) 12.6
Years living in the city 1.8
Stage in ongoing interaction segment 2.3
Time from last change in crowdedness 1.2

Time to next switch from sitting to standing 0.5

Longest  Proportion of time walking (15s) 11.3
Years living in the city 32
Time to next increase in speed 1.3
Place: pedestrians passing by? 0.5
Time to start of next interaction segment 0.3
Average  Speed of movement 9.3
Time to next increase in speed 2.6

Time to next change in character of place 0.5

Stage in ongoing page loading 0.3
Switched from sitting to standing? (60's) 0.2
Frequency Place ID 8.0
Time to next change in page state 32
Time to start of next interaction segment 1.4
Accelerating speed? (30s) 0.9
Moved on/off a vehicle? (155) 0.1

that recognizes accelerating walking speed. All of the sequences also contain at least one sen-
sor related to the environment. In the case of Total, it reports the time from the last change
in crowdedness, and is the only EventTracker appearing in the table. The Indicator
that identifies the place is the best individual sensor for predicting Average, and three other
sensors in the table provide information about the characteristics of the place. Interaction is
represented by three sensors and page state by two sensors, all of which are FuturePeekers.
The number of years the person has been living in the city, an Indicator related to user
background, appears as the second sensor for Total and Longest.

6.4 Variations to the prediction task

The results presented above are based on the assumption that time-sharing cannot be ob-
served directly during prediction. However, if the mobile device was equipped with a crude
eye-movement camera, past time-sharing would become at least partially observable. The
output of the eye-movement camera would enable an additional sensor, which would tell
the correct value of the time-sharing variable in the previous time window. This turns the
model structure presented in Fig. 4 into a Naive Bayes classifier, in which the values of all
sensor variables affecting the time-sharing variable are known. The results of this variation
are shown on the second row of Table 8. For every time-sharing variable, the classification
accuracy improves, but not dramatically. (The results for the original version of the prediction
task are repeated on the first row for convenience.) The largest improvement, 5.2% points,
is achieved for Frequency, and the improvements for Total, Longest and Average
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Table 8 Results for modified versions of the prediction task

Variation Variable

Total Longest Average Frequency

Original formulation Accuracy 72.2 69.6 72.3 69.7
Gain 22.0 19.2 17.2 17.1
No. of sensors 22 30 36 23
Eye-movement camera available ~ Accuracy 75.8 72.3 74.9 74.9
Gain 25.6 21.9 19.8 223
No. of sensors 17 19 29 25
Detection of past time-sharing Accuracy 72.5 71.3 72.7 69.4
Gain 222 204 17.3 16.9
No. of sensors 14 27 25 20
Detection of present time-sharing ~ Accuracy 71.3 70.9 72.3 69.3
Gain 20.9 20.6 17.2 16.5
No. of sensors 18 26 42 17
15 s time window Accuracy 69.0 - - 69.6
Gain 18.3 5.5
No. of sensors 36 18
60s time window Accuracy 74.0 72.2 73.2 71.6
Gain 21.9 21.7 229 213
No. of sensors 21 25 19 25

are 3.6, 2.7 and 2.6% points, respectively. All of the models have fewer sensors than the
ones appearing on the first row, but also in this respect the effect of the variation is relatively
modest.

The next two variations concern the temporal location of the time-sharing variable with
respect to the sensors. For some applications it might be relevant to know the past ( —30:7) or
the present (f — 15:7 + 15) time-sharing rather than the immediate future (¢:z +30). Intuitively,
the more direct evidence provided by the sensors should make the problem easier, but this
turns out not to be the case. The results are practically the same as in the original formulation,
with only the three largest deviations (in gain) within 1.0-1.5%.

Finally, we changed the duration of the predicted time window from 30s to 15 and 60s.
New thresholds were determined with the procedure discussed in Sect. 5.4. In the case of 15s
time window, Total, Longest and Average all got a threshold of 15 s, which means that
all three models would predict whether or not the user would be looking at the mobile device
for the entire duration of the time window. The results are reported in the column labeled
Total in Table 8. For Frequency, the threshold with 15s time window is 2. Applying
the procedure to 60 s time window gave thresholds of 57, 34 and 19s for Total, Longest
and Average, and 3 for Frequency.

The results appear on the last two rows of Table 8. With 15s time window, the achieved
performance is in both cases lower than in the original formulation. Although the absolute
classification accuracy for Frequency is almost the same, the gain is much smaller due
to higher default. Doubling the duration of the time window to 60s improves the gains for
Longest, Average and Frequency by 2.5, 5.7 and 4.2% points, respectively. As a
result, the differences between the time-sharing variables are smaller than in the original
formulation.
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7 Summary and conclusions

We were set out to assess the feasibility of sensor-based prediction of the time-sharing of
mobile users. The situations in which mobile devices are used constitute a complex and
dynamic task environment, and the presence or absence of systematic dependencies in the
data was of significant theoretical and practical interest as such.

Drawing from the literature on time-sharing in cognitive psychology and human factors,
we constructed 179 simulated sensors providing information about the environment, posture
and movement, interaction with the mobile device, state of the page in the browser, user
background, and task. One important aspect of our work was to operationalize time-sharing
as a phenomenon taking place over a period of time. Rather than asking whether or not the
user is looking at the device at a particular moment, we characterized time-sharing in terms
of behavioral patterns long enough to reflect regularities arising from the top-down control
of attention. The patterns were defined in terms of the number of glances (Frequency), the
duration of the longest glance (Longest), and the total (Total) and average (Average)
durations of glances to the interaction task within 30-s time windows. Momentary tracking
of gaze deployment would be straightforward with an eye-movement camera, and difficult
or impossible without it.

With this approach, the absolute classification accuracy was found to be around 70% for
all of the variables, with the best variable, Total, reaching 72% with 22 sensors (22%
gain). In about 60% of the misclassified instances the user allocated less time to interaction
with the mobile device than predicted, and in the remaining 40% the error was the reverse.
We also explored a number of variations to the prediction task. Even if the mobile device
was equipped with an eye-movement camera observing the past time-sharing directly, the
accuracy of the predictions would increase only by 3-5% points. It was also surprising to
discover that moving the time window of the time-sharing variable from the future (z:¢ + 30)
to the past (#+ — 30:7) did not make the problem easier, but the results were practically the
same as in the original formulation. Decreasing the size of the time window to 15s gave
lower performance, and doubling it to 60 s somewhat higher performance.

Our explorations with the various sensor groups give an indication of the effort and infra-
structure that would be required for a working implementation of the adaptations. Relying
only on the background information about the user or the simplest software sensors did not
give satisfactory results, but with all the other sensor groups the achieved performance was
within 5% points of the best models (see Table 5). Information about either the activities of
the user or the characteristics of the environment enabled 3—-5% points lower performance
compared to the best models. Similar results were achieved when relying on the combination
of the simplest software sensors, the background information about the user and the charac-
teristics of the place, all without the FuturePeekers (Level 2 in Table 5). Adding the
sensors for movement and crowdedness along with the FuturePeekers improved the per-
formance to a range within one percentage point of the best models. The FuturePeekers
would be particularly difficult to implement, but they did not seem critically important, as
omitting them decreased the performance by only about 3% points. Another interesting and
somewhat surprising finding was that the sensors related to the ongoing task, arguably the
most difficult ones to implement, improved the performance by less than 1% point.

Application developers are also interested in identifying the individual sensors that give
the largest improvements in prediction accuracy. When sensors were added one by one using
a greedy algorithm, the improvement in performance was surprisingly rapid with the first
few sensors. Only 2—4 sensors were needed to get within 5% points of the best results (see
Table 7). These sensors provided information about posture and movement (4 occurrences),
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environment (3), interaction (2), user background (2), and page state (1). While getting rea-
sonably close to the best achievable performance with just a few sensors seems encouraging
on the one hand, it should be noted that almost all of the various kinds of information were
needed. Furthermore, 5 of the 12 sensors were FuturePeekers, which would require
another level prediction in a working application.

Predicting the time-sharing of mobile users seems like a hard problem. The most obvious
explanation for this is that the relevant factors are only partially observable. In particular, the
cognitive processes responsible for the top—down control of time-sharing are inaccessible to
sensors and likely to remain so in the foreseeable future. Furthermore, most of the information
about the environment that we assumed to be available is statistical by nature, and does not
include the specific events that may draw the user’s attention. Comprehensive monitoring of
the surroundings and automatic real-time interpretation of the resulting data streams is way
beyond the reach of the current technology. Due to these limitations, we believe that dramatic
improvements in the predictive performance are not achievable, even though larger data sets
would enable the construction of more sophisticated models.

Accepting this seemingly pessimistic view bears implications for further efforts in the
area of user modeling. Adaptations that do not tolerate a substantial number of erroneous
predictions are probably not realistic, and the efforts should therefore focus on ideas that
can be implemented in a “forgiving” form. In order to maximize the performance of such
adaptations, the collection of sensors that we relied on could be extended to several direc-
tions. The number of years that the user had lived in the city turned out to be one of the most
useful sensors we had, and the acquisition of more fine-grained information about the user’s
familiarity with particular city districts, as well as other kinds of knowledge and skills, might
well be worthwhile. Some of the information might be possible to acquire automatically by
monitoring the user’s activities and mobility patterns for an extended period of time. Access
to personal information such as the user’s calendar might facilitate the recognition of certain
kinds of social events, like meetings and lectures. As mentioned above, it is probably not
realistic to expect mobile devices to acquire the kind of comprehensive awareness of the envi-
ronment that humans have, but this does not preclude the possibility that some fairly specific
events and situations might be possible to recognize on the basis of audio and video streams
or explicit signals received from ubiquitous computing devices. The benefits of adapting to
the time-sharing of mobile users may not be large enough to motivate the development of
a complex technological infrastructure, but even a single “killer application” with similar
needs could expand the possibilities significantly.
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Appendix A: List of information retrieval tasks used in the experiment

Report the latest news heading from Iltalehti [a newspaper].

Report the hours of today’s spinning lessons at Helsinki Fitness Center.

Report today’s special flight offer from Finnair [an airline].

Report the time of departure for the next train to Lappeenranta [a city].

Report any library that carries the movie Pahat Pojat in DVD.

Report today’s menu at the Unicafe restaurant in Porthania [a building on the university
campus].

7. Report the current song playing on GrooveFM [a radio channel].

ANk W=
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*

10.
11.
12.
13.
14.

15.

16.

17.
18.

19.
20.
21.
22.
23.

24.
25.

Report the latest culture news from Helsingin Sanomat [a newspaper].

Report the TV shows shown on MTV3 and Nelonen [TV channels] today at 20.30.
Navigate through Google to the Web site of the University of Art and Design Helsinki.
Report the opening hours of the Arabianranta [a city district] library.

Report the current value of the HEX [Helsinki stock exchange] index.

Report the weather forecast for Helsinki from Foreca [a meteorological service].
Report the quickest route from the Parliament to Otaniemi [a city district] using Reit-
tiopas [a journey planner].

Report the time and price of the next Pikku G [a band] concert from Lippupalvelu [a
ticket seller].

Report the description of the movie Pirates of the Caribbean from Makuuni [a video
rental company] and the average rating from the viewers.

Report today’s menu at the Otaniemi [a city district] student restaurant.

Report the ticket price to the first night club event in Helsinki listed on Klubitus.org [a
Web site].

Report the wish list created on the Sokos [a department store] Web site by your friend
who is getting married.

Report the cross-country skiing routes available at the moment in Helsinki.

Report the next time and place for seeing the movie Under the Tuscan Sun.

Report the open jobs in the field of marketing from the Web site of the Ministry of
Labour.

Report the movie theater that shows Levottomat 3 [a movie] and the showing times
today.

Report how long Kiasma [a modern arts museum] is open today.

Acquire the Estonian-English dictionary to your phone.

Appendix B: An example of the progression of an experiment

The table below shows a time-annotated listing of the tasks and places included in an indi-
vidual experiment. The subject was a 47-year-old female secretary working for a marketing
company. Please note that the time between the tasks was not effective, and the durations of
the tasks cannot therefore be calculated directly from the first column. Moreover, because
the subject in question could not perform all of the tasks within the given time, only 17 tasks

out of the 25 were tried out.
Time IR Task ITP condition Place Mobility task
0:00 24 Wait Long quiet street Walk to the end of the street
to the metro station
12:52 2 Implied deadline Metro station Walk to the escalator
13:51 2 Implied deadline Escalator Go to the metro platform
15:22 2 Implied deadline Metro platform Wait for the metro
18:04 4 Wait Metro car Get off at the Sornidinen
station
21:56 7 Wait Metro car Get off at the Sornidinen
station
24:07 7 Wait Metro platform (at des- Go upstairs
tination)
25:02 7 Wait Escalator Go upstairs
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Appendix B: continued

Time IR Task ITP condition Place Mobility task
25:48 7 Wait Metro station (upstairs) Walk to the cafeteria out-
side
31:50 5 Wait Cafeteria Eat a bun and drink coffee
36:56 6 Wait Cafeteria Eat a bun and drink coffee
46:19 9 Hurry Busy street Walk outside to the bus
stop
56:41 10 Implied deadline Bus stop / Bus Get off at the central rail-
way station
64:58 10 Implied deadline Railway station square Walk to the ticket vending
machines
65:44 11 Hurry Railway station hall Stand in the middle of the
hall
71:00 13 Wait Metro station Sitdown and wait a few mi-
nutes for the metro
75:50 15 Hurry Metro station Catch the next metro back
76:04 15 Hurry Escalator Catch the next metro back
76:56 15 Hurry Metro platform Catch the next metro back
81:06 17 Implied deadline Metro car Get off at the last station
83:51 18 Hurry Metro platform (at des- Go upstairs
tination)
84:04 18 Hurry Escalator Go upstairs
86:04 18 Hurry Metro station (upstairs) Walk back to the starting
place
87:12 18 Hurry Long quiet street Walk back to the starting
place
96:44 21 Hurry Laboratory Sit down in front of a table
97:38 22 Hurry Laboratory Sit down in front of a table
102:42 23 Hurry Laboratory Sit down in front of a table
104:21 1 Hurry Laboratory Sit down in front of a table
Appendix C: List of sensors
Row Information source Sensor Sensor type
1 Environment Place ID (10 values) Indicator
2 Environment Place: urban/suburban Indicator
3 Environment Place: indoors/outdoors Indicator
4 Environment Place: vehicle? Indicator
5 Environment Place: open place (i.e. no surrounding buil- Indicator
dings nearby)?
6 Environment Place: heated/cold Indicator
7 Environment Place: public / semipublic / private Indicator
8 Environment Place: for passage/stay Indicator
9 Environment Place: cars passing by? Indicator
10 Environment Place: pedestrians passing by? Indicator
11 Environment Place: cars or pedestrians passing by? Indicator
12 Environment Place changed? HistoryTracker?
13 Environment Time from last place change EventTracker
14 Environment Time to next place change FuturePeeker
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Appendix C: continued

Row Information source Sensor Sensor type

15 Environment Characteristic of place changed? HistoryTracker?

16 Environment Time from last change in place characteristic EventTracker

17 Environment Time to next change in place characteristic FuturePeeker

18 Environment Crowdedness (1-4) Indicator

19 Environment Crowdedness changed? HistoryTracker

20 Environment Number of changes in crowdedness HistoryTracker

21 Environment Time from last change in crowdedness EventTracker

22 Environment Time to next change in crowdedness FuturePeeker

23 Environment Crowdedness increased? HistoryTracker

24 Environment Crowdedness decreased? HistoryTracker

25 Environment Proportion of “crowded” HistoryTracker
(crowdedness > 3)

26 Environment Time of day (9-11/11-14/14-16/16—-18) Indicator

27 Posture/movement Sitting/standing/walking slowly/walking Indicator
normally

28 Posture/movement Proportion of time sitting HistoryTracker

29 Posture/movement Proportion of time standing HistoryTracker

30 Posture/movement Proportion of time walking HistoryTracker

31 Posture/movement Switched from sitting to standing? HistoryTracker

32 Posture/movement Time from last switch from sitting to standing EventTracker

33 Posture/movement Time to next switch from sitting to standing FuturePeeker

34 Posture/movement Switched from standing to sitting? HistoryTracker

35 Posture/movement Time from last switch from standing to sitting EventTracker

36 Posture/movement Time to next switch from standing to sitting FuturePeeker

37 Posture/movement Speed of movement (0-2) Indicator

38 Posture/movement Average speed HistoryTracker

39 Posture/movement Speed changed? HistoryTracker

40 Posture/movement Number of changes in speed HistoryTracker

41 Posture/movement Time from last change in speed EventTracker

42 Posture/movement Time to next change in speed FuturePeeker

43 Posture/movement Increase (temporary or permanent) in speed HistoryTracker
observed?

44 Posture/movement Time from last increase in speed EventTracker

45 Posture/movement Time to next increase in speed FuturePeeker

46 Posture/movement Accelerating speed (speed (start) < HistoryTracker
speed(end))?

47 Posture/movement Decrease (temporary or permanent) in speed HistoryTracker
observed?

48 Posture/movement Time from last decrease in speed EventTracker

49 Posture/movement Time to next decrease in speed FuturePeeker

50 Posture/movement Slowing speed (speed(start) > HistoryTracker
speed(end))?

51 Interaction Interacting currently? Indicator

52 Interaction Interaction observed? HistoryTracker

53 Interaction Proportion of interaction HistoryTracker

54 Interaction Number of interaction segments HistoryTracker

55 Interaction Time from start of ongoing interaction seg- EventTracker
ment

56 Interaction Stage in ongoing interaction segment FuturePeeker
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Appendix C: continued

Row Information source Sensor Sensor type
57 Interaction Time to start of next interaction segment FuturePeeker
58 Page state Page state  (loading/loaded  without Indicator
images/fully loaded)
59 Page state Page state changed? HistoryTracker
60 Page state Time from last change in page state EventTracker
61 Page state Time to next change in page state FuturePeeker
62 Page state Page loading observed? HistoryTracker
63 Page state Proportion of page loading HistoryTracker
64 Page state Stage in ongoing page loading FuturePeeker
65 Page state Time before page being loaded FuturePeeker
becomes available
66 Page state New page became available? HistoryTracker
67 Page state Time current page has been available EventTracker
68 User Age group (20-30/40-50) Indicator
69 User Gender Indicator
70 User Experience of web browsing Indicator
(1-4 years/more)
71 User Years living in the city Indicator
(14 years/more)
72 User Years using public transportation Indicator
(none/1—4 years/more)
73 Task Difficulty of navigation (easy/difficult) Indicator
74 Task Number of criteria identifying the informa- Indicator
tion (1-4)
75 Task Type of input required Indicator
(navigation/scrolling/query)
76 Task Size of the web site (1-3) Indicator
77 Task Familiarity of the web site (1-3) Indicator
78 Task Instructed time pressure Indicator
(hurry/baseline/waiting)
79 Task Time from start of task EventTracker
80 Task Time to end of task FuturePeeker
81 Task Stage in ongoing task FuturePeeker
82 Task Running number of ongoing task set (1-5) Indicator

4 There were three instances of each HistoryTracker, with time spans of 15, 30 and 60s.
b There were 10 instances of this and the following two sensors, one for each of the 10 characteristics

(urban/suburban, indoors/outdoors,...) listed above.
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