
Impact of Interruption Style on End-User Debugging
T. J. Robertson, Shrinu Prabhakararao, Margaret Burnett,

Curtis Cook, Joseph R. Ruthruff, Laura Beckwith, and Amit Phalgune
Oregon State University

Corvallis, OR 97331
{robertth, prabhash, burnett, cook, ruthruff, beckwith, phalgune}@cs.orst.edu

ABSTRACT
Although researchers have begun to explicitly support end-
user programmers’ debugging by providing information to
help them find bugs, there is little research addressing the
proper mechanism to alert the user to this information. The
choice of alerting mechanism can be important, because as
previous research has shown, different interruption styles
have different potential advantages and disadvantages. To
explore impacts of interruptions in the end-user debugging
domain, this paper describes an empirical comparison of two
interruption styles that have been used to alert end-user
programmers to debugging information. Our results show
that negotiated-style interruptions were superior to
immediate-style interruptions in several issues of importance
to end-user debugging, and further suggest that a reason for
this superiority may be that immediate-style interruptions
encourage different debugging strategies.
Categories & Subject Descriptors: D.1.7 [Programming
Techniques]: Visual Programming; D.2.4 [Software
Engineering]: Software/Program Verification—Validation;
D.2.6 [Software Engineering]: Programming Environments-
Interactive environments; H.1.2 [Information Systems]:
User/Machine Systems—Software psychology; H.4.1
[Information Systems Applications]: Office Automation—
Spreadsheets; H.5.2 [Information Interfaces and
Presentation) —User Interfaces (D.2.2, H.1.2, I.3.6)
General Terms: Human Factors, Languages
Author Keywords: End-user programming, end-user
software engineering, debugging, interruptions, Surprise-
Explain-Reward.

INTRODUCTION
Research on end-user programming has, in the past, concen-
trated primarily on supporting end users’ creation of new
programs. But recently, researchers have begun to consider
assisting end users in debugging these programs. Research on

how to support debugging by end users generally involves
the system performing some kind of reasoning relevant to
program bugs or program structure, followed by
communication of the results to the user (e.g., [11, 15, 17,
19]). But, how should this communication be done?
Such communication, when initiated by the system, involves
some form of interruption. Research has shown that
interruptions can have detrimental effects on the user’s
concentration and productivity, but can be helpful in calling
important facts to the user’s attention. Since previous
research has most often concentrated on interruptions in
relatively simple tasks, it is not clear whether and how these
findings apply to the complex domain of interest here:
debugging, done by a population without much experience in
debugging.
In our work on supporting debugging by end-user
programmers, interruptions are a vehicle for attempting to
surprise the user as part of our Surprise-Explain-Reward
strategy [20]. The element of surprise is used to arouse users’
curiosity about two types of things: (1) features in the
environment that might help them debug, and (2) locations in
the program where the system believes bugs are lurking. In
previous empirical work [4, 20], Surprise-Explain-Reward,
supporting the debugging device used in the experiment
reported here, succeeded on both these counts.
Surprises in the Surprise-Explain-Reward strategy can be
communicated via negotiated-style interruptions, which,
following McFarlane’s classification of interruptions [14],
are interruptions that inform the user of a pending message
but do not force them to acknowledge it immediately. This is
the style that we have used in our prototype so far. An
example of a negotiated-style interruption in word processing
software is the red underline that can appear under
misspelled words.
In contrast to negotiated-style interruptions, a style used in
some software is immediate-style interruptions, which are
interruptions that require user action. A widespread example
is pop-up dialog boxes that the user must move or close in
order to resume the interrupted task.
In this paper we consider the impacts of negotiated- and
immediate-style interruptions on end users’ debugging
efforts. We focus specifically on end-user programmers. For
that population, we consider impacts in the dimensions of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004…$5.00.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

287

learning, productivity, and ability of end-user programmers
to self-assess their debugging performance:
RQ1: Which interruption style is more effective in helping
end users learn debugging devices?
RQ2: Which interruption style is more effective in helping
end users fix bugs?

RQ3: With which interruption style can end users best
predict when all the bugs are gone?

RELATED WORK
McFarlane identified four ways of interrupting users [14]. (In
addition to the negotiated and immediate styles, he
considered two others. Mediated interruptions present
information when the system decides it is an appropriate time
to interrupt the user. Scheduled interruptions present
information at fixed time intervals.) McFarlane found that no
one style was a clear winner, but rather that different styles
were appropriate for different goals.

Based on the results of his study, McFarlane suggested
design guidelines for when to use each style. The guidelines
recommend negotiated-style interruptions when the goal is
efficiency on either the primary task or the interruption’s
task—i.e., the task to which the interruption is trying to bring
attention. Negotiated-style interruptions are also
recommended over immediate-style when accuracy on the
primary task, accuracy on the interruption’s task, or judgment
of accuracy is important. The guidelines recommend
immediate-style interruptions when the goal is completeness
or promptness on the interruption’s task.

McFarlane’s guidelines, however, were created based on the
results of a study in which users were being interrupted
during a speed-critical, but cognitively simple, video game
task, in order to perform a completely irrelevant matching
task. Thus, these guidelines may not apply to interruptions
relevant to the complex task of debugging.

Regarding complex tasks (such as tasks that require the user
to hold many things in their short-term memory), interrupting
the user during the task can harm their performance because
they must re-orient themselves when returning to the primary
task [1, 2]. Although choosing appropriate times to interrupt
them [7, 10] can reduce the reorientation penalty, overall this
body of research suggests that immediate-style interruptions
will slow down users’ debugging.

Yet, it has been found that interruptions highly relevant to the
task at hand are less disrupting than non-relevant interrup-
tions [7, 18]. In fact, one project found that interruptions that
provided users with hints on how to complete their task could
be more helpful than harmful to the user [16].

Relevant interruptions often aim, at least in part, to help users
learn to employ useful techniques. This aspect is particularly
pertinent for end-user debugging, because many end users
have never learned effective debugging. Immediate-style
interruptions are a successful vehicle in on-line learning
systems (e.g., as in [6, 13]). When the interruption’s goal is

to help users learn, the practices of such learning systems are
consistent with McFarlane’s recommendation to use
immediate-style interruptions for completeness and
promptness on the interruption’s task. Since effective support
for learning of new debugging features seems necessary to
users’ debugging productivity, immediate-style interruptions’
successful track record with that aspect could be predicted to
have a cascading advantage for debugging: first for learning,
and as a result for productivity.

EXPERIMENT
To investigate the research questions enumerated in the
introduction, we conducted a controlled laboratory
experiment with two groups of end-user participants.

Design, Procedures, and Tasks
The experiment replicated the design reported in [20] except
for the treatment of interruptions. Interruption style was
manipulated for one debugging device: assertions (described
below). For the negotiated-style group, assertions were
supported by the Surprise-Explain-Reward strategy via
negotiated-style interruptions only. For the immediate-style
group, these negotiated-style interruptions were
supplemented by immediate-style interruptions.

The participants were 38 business majors with spreadsheet
experience. We used the data from the 16 participants of our
earlier experiment [20] as the negotiated-style group, and
recruited 22 additional participants for the immediate-style
group. To ascertain whether the participants in the two
groups had similar backgrounds, we administered a
background questionnaire and analyzed the data. There was
no significant difference between the background
information of the two groups. Subsequent analysis
combining each background item with treatment type
confirmed that differences between negotiated-style versus
immediate-style groups’ backgrounds did not affect results.

Replicating our previous experiment, after a tutorial, the
participants were asked to debug two spreadsheets, Grades
and Weekly Pay, with time limits of 35 and 22 minutes,
respectively; see [4, 20] for details of these spreadsheets.
(The debugging tasks necessarily involved time limits to
ensure participants worked on both spreadsheets, and to
remove possible peer influence of some participants leaving
early.) The experiment was counterbalanced with respect to
problem order so as to distribute learning effects evenly.

The problem descriptions given to the participants included
details of what the spreadsheet was to accomplish. The
participants were instructed to “test the spreadsheet
thoroughly to ensure that it does not contain errors and works
according to the spreadsheet description. Also, if you
encounter any errors in the spreadsheet, fix them.”

Electronic transcripts recorded all on-line activity for later
analysis. After each debugging problem, participants
answered questionnaires in which they rated how well they
thought they had debugged the spreadsheet. After the second

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

288

problem, the participants answered questions testing their
understanding of assertions, the debugging device for which
we manipulated interruption style.

The Environment for Interruptions
One of the most widely used programming paradigms by
end-user programmers is the spreadsheet paradigm. Thus, the
prototype environment for Surprise-Explain-Reward is the
research spreadsheet language Forms/3 [3]. One of the end-
user debugging devices supported by Surprise-Explain-
Reward is assertions on spreadsheet cells, which past
empirical work has shown that end users can use effectively
[4, 20]. For this experiment, assertions were the vehicle for
investigating interruption style.

Assertions are represented as allowable ranges for a cell’s
value. When the user creates an assertion (termed a user-
entered assertion), it is propagated through the dataflow
chain of the spreadsheet (creating system-generated
assertions), so that cells have assertion ranges if the cells that
they reference have assertion ranges. When an assertion
range is violated, a red circle is drawn around the cell’s
value; such a violation is termed a value violation. When a
system-generated assertion conflicts with a user-entered
assertion, a red circle is drawn around the two conflicting
assertions; such a conflict is termed an assertion conflict.

For example, in Figure 1, the user has entered an assertion for
cell input_temp, which propagated through output_temp’s

formula to create a system-generated assertion. Since the
values “200” and “33.3333” do not fulfill their cells’
assertions, they are circled. Finally, the user also entered an
assertion “0 to 100” for output_temp; since it disagrees with
the cell’s other assertion, they are both circled.

Besides assertions, participants had other debugging devices
available. If they decided a cell’s value was correct, they
could check it off in the corner of each cell (e.g., the
checkbox in Figure 1’s output_temp cell). This was rewarded
by incrementing “testedness” indicators in the environment,
such as changing the cell’s border color toward blue along a
red-blue continuum to indicate increased testedness. If they
wanted help conjuring up more test inputs, participants could
push a Help-Me-Test button to automatically generate more
values [8]. Help-Me-Test’s role in our experiment was in its
use as a springboard by the Surprise-Explain-Reward
strategy for introducing users to assertions.

Here is how this springboard works: When a user invokes
Help-Me-Test, the system not only generates values for input
cells, but also creates a (usually incorrect) “guessed”
assertion to place on these cells. These guessed assertions,
termed HMT assertions (because they are generated by Help-
Me-Test), are intended to surprise the user into becoming
curious about assertions. They can satisfy their curiosity
using tool tips, which will inform them of the benefits and
syntax of assertions. If the user follows up by accepting an
HMT assertion (either as guessed or after editing it), the
resulting assertion will be propagated as in Figure 1. As a
result, value violations or assertion conflicts may occur; if so,
red circles will appear as in Figure 1, which are often another
surprise. All of these attempted surprises are communicated
via interruptions.

Negotiated-Style Interruptions
The communications as just described come in the form of
negotiated-style interruptions. For example, the red circles
around potentially incorrect cell values are negotiated-style
interruptions. They are interruptions because they request
attention from the user; they are negotiated-style because the
user decides when and if they want to see the content of the
message, which they can do via tool tips at the time of their
choice.

user-entered assertion
value violation

assertion conflict

system-generated assertion

Figure 1: Assertion examples.

 Instances when users are interrupted:
 1 when users indicate interest in assertions
 2 when there are value violations
 3 when HMT generates assertion(s)
 4 when there is an assertion conflict
 5 when system-generated assertion(s) are created

Figure 2: Instances of immediate-style interruptions in the experiment.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

289

Mapping Negotiated-Style Interruptions to Immediate-Style
Interruptions
For the immediate-style group, we did a one-to-one mapping
of each negotiated-style interruption to an immediate-style
interruption. (In addition, to eliminate memorization as a
factor, the tool tips remained available, and to eliminate
directness differences as a factor, the negotiated-style output
devices, such as red circles around offending values, also
remained present.) The immediate-style interruptions took
the form of a modal pop-up dialog box containing exactly the
same message as the tool tips, as in Figure 2.

Tutorial
We began with a 25-minute hands-on tutorial on the
environment just described. To ensure that no influences
would arise from tutorial differences, we presented exactly
the same tutorial (with negotiated-style interruptions only) to
both groups.

The tutorial taught use of the checkbox for checking off cells
and Help-Me-Test at the GUI level, but did not include any
debugging or testing strategy content. Most importantly, we
did not present assertions—in fact, they were never even
mentioned. (This was to support our investigation of RQ1,
the system’s ability to promote learning.) Instead,
participants were simply introduced to the use of tool tips and
given time to explore via a practice task.

RESULTS AND DISCUSSION
When McFarlane introduced the concept of negotiated- and
immediate-style interruptions he provided guidelines
suggesting how these interruption styles would affect
performance on the primary task, judgment of performance
on the primary task, and performance on the task to which
the interruptions are drawing the user. However, as stated in
the related work section, McFarlane’s guidelines are based
on a study in which users were being interrupted during a
cognitively simple video game task, in order to perform a
completely irrelevant matching task. Throughout our results
section, we will compare our results to McFarlane’s
predictions. In this way, we will test the applicability of his
guidelines to relevant interruptions during the cognitively
challenging task of debugging.

RQ1: Learning Results
Research in debugging for end-user programmers has
focused on trying to guide end users to new behaviors,
supported by the system, that will result in productive
debugging. For example, much of this work attempts to guide
users in narrowing down the locations of bugs (e.g.,
emerging work from Ko and Myers [12], work by Wagner
and Lieberman [19] and by our own group [17]). Such
guidance invariably is accompanied by new features
(colorings, diagrams, and new interaction devices), which
users must master. Thus, the system must include devices to
help the users achieve this mastery. In this section, we
consider which interruption style best facilitates helping end
users learn to use such debugging features.

Interest “Draw”
If the user has a choice about whether to attend to or ignore a
new device, the system may, as its first task, need to draw the
user’s attention to the device being introduced. Our statistical
vehicle for considering which interruption style best draws
users’ interest to learning assertions, the debugging device to
which interruptions are trying to draw attention, is the
following (null) hypothesis:

H1: There will be no difference in the elapsed time until the
negotiated- and immediate-style participants are enticed to
enter assertions.

We will denote whichever spreadsheet problem a participant
worked first or second as “Task 1” or “Task 2,” respectively.
As Table 1 shows, on the participants’ first task, the
negotiated-style participants placed their first assertions
somewhat later than did the immediate-style participants.
(This trend would agree with McFarlane’s prediction that
immediate-style interruptions will lead to promptness on the
interruptions task.) By the second task, however, the
differences disappeared; in fact, they were reversed. None of
these differences were significant at the .05 level (Mann
Whitney: Task 1 p=0.1153, Task 2 p=0.0952), and
furthermore they oppose each other; thus H1 cannot be
rejected.

Comprehension Scores
Given that participants were enticed to enter assertions at
somewhat comparable times, was there a difference in how
well they ultimately comprehended them? We measured each
participant’s comprehension of assertions using seven
comprehension questions on the post-session questionnaire.

H2: There will be no difference in the negotiated- and
immediate-style participants’ comprehension of assertions.

We expected that the immediate-style interruptions would
facilitate learning, just as tutoring mechanisms introduce
educational information at the very moment that information
can be used to help solve a problem. However, our
expectation was wrong. Instead, participants with negotiated-
style interruptions answered an average of 67% of the
comprehension questions correctly, significantly
outperforming participants with immediate-style
interruptions, who averaged 46% correct (Mann-Whitney,
p=0.0153). Therefore, we reject H2.

Digging deeper into this result, Figure 3 shows the
percentages of participants who answered each question
correctly, grouped by interruption style. As the figure and
accompanying Table 2 show, the entry-level features, such as

Interruption style 1st Task 2nd Task

Negotiated (n=16) 13:26 3:40
Immediate (n=22) 8:34 4:49

Table 1: Mean number of minutes:seconds before participants
entered their first assertion in each task.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

290

entering assertions and understanding value violations, were
understood approximately the same by both groups, but the
propagation features—which are key in automatically
identifying a formula’s bugs—were not understood very well
by the immediate-style participants.

The negotiated-style participants’ superior comprehension of
assertions is surprising, because the immediate-style
participants had all the opportunities for learning given to the
negotiated group—the immediate-style interruptions (an
average of 46 per participant during the experiment) were in
addition to the negotiated-style interruptions and tool tips. In
fact, both groups looked at approximately the same number
of tool tips: the negotiated-style group averaged 149 per user
and the immediate-style group averaged 154 per user during
the experiment. Due to the increased exposure, it would have
been reasonable to expect participants with immediate-style
interruptions to have a better comprehension of assertions.

A possible explanation for the difference in comprehension
can be found in minimalist learning theory, which states that
learning is enhanced when self-initiated [5]. The negotiated-
style interruptions have this property: if the user does not
understand the interruption notification and wants
information about it, they must actively seek an explanation
through tool tips. The immediate-style interruptions,

however, deviate from this property by forcing explanations
on the user without their requesting them.

Conjuring Up Accurate Assertions
The aim of helping users learn any new debugging device is,
obviously, to enable the participants to use the new device
accurately. A measure corresponding to this aim in our study
is a participant’s ability to conjure up accurate assertions:

H3: There will be no difference in the accuracy of assertions
entered by the negotiated- and immediate-style participants.

Interestingly, despite the differences in comprehension
demonstrated above, the two groups were identical in their
accuracy. Participants with negotiated-style interruptions
created correct assertions 95% of the time—exactly the same
percentage as the immediate-style participants. Clearly, we
do not reject H3. Note that this result does not agree with
McFarlane’s prediction that using negotiated-style
interruptions would be better for the accuracy of the
interruption’s task (here, assertions).

To summarize, both groups entered assertions with equal
accuracy. However, assertion accuracy may or may not be
“good enough” to support productive debugging—the
comprehension difference may play a critical role. Hence, we
now investigate productivity directly.

RQ2: Debugging Productivity
Most previous research has found that immediate-style
interruptions have a negative impact on performance [1, 2, 7,
14, 16, 18], although generally, relevant interruptions do less
harm than irrelevant ones. But prior work has not addressed
how relevant interruptions affect performance when
attempting to support cognitively complex tasks such as
debugging.

Bugs Fixed
To evaluate participants’ debugging performance, we
measured productivity by counting the average number of
bugs fixed per minute during each task. (This measure is
used so as to normalize the number of bugs fixed, because
different spreadsheets had different numbers of bugs and
time limits, and the order spreadsheets were encountered as
participants’ first/second task was varied).

H4: There will be no difference in the negotiated- and
immediate-style participants’ debugging productivity on the
first task.

H5: There will be no difference in the negotiated- and
immediate-style participants’ debugging productivity on the
second task.

Table 3 presents the productivity of the negotiated- and
immediate-style interruption groups. For Task 1, in which the
learning curve was still a major factor, there was no
significant difference (Mann Whitney, p=0.5059). We
therefore cannot reject H4.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

q1 q2 q3 q4 q5 q6 q7
Questions

Figure 3: Participants who answered each comprehension

question correctly: negotiated-style participants (dark bars) and
immediate-style participants (light bars).

Question
number

Question content

q1, q2 Ability to recognize user-entered assertions and
values being outside these ranges (shown as
red circles in the environment).

q5, q6 Comprehension of the computer-guessed HMT
assertions.

q3, q4, q7 Comprehension of assertions’ propagation
through the dataflow chains formed by
formulas, including conflicts between user-
entered and system-generated assertions that
could arise.

Table 2: Categorizations of the comprehension questions.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

291

However, by the second task, the participants with negoti-
ated-style interruptions were significantly more productive
than the participants with immediate-style interruptions
(Mann Whitney, p<0.0001). Therefore, H5 is rejected.

A critical goal of the surprise aspect to which the
interruptions are tied is to entice users to explore portions of
the program likely to contain bugs. McFarlane’s guidelines
suggest that negotiated-style interruptions should result in the
greatest efficiency and accuracy on the primary task (here,
debugging). Our results agree. This can be clearly seen in
Task 2 (i.e., after much of the initial learning curve has been
overcome). Thus, the message for developers of end-user
programming environments is that negotiated-style
interruptions will result in the greatest efficiency on
debugging.

How the Participants Spent Their Time
As previously mentioned, other researchers have established
that there is a reorientation period after an immediate-style
interruption [1, 2], and this should hold true in the case of
debugging as well. But, is that the only reason for the
productivity difference? A detailed look at the transcripts of
participant activity showed some revealing behavior
differences.

In particular, we examined the frequency with which
participants performed the following four actions (which are
the ones associated with debugging progress in our
environment): editing formulas (to improve the “source
code” or to manually enter different test values), entering
assertions, using Help-Me-Test to automatically generate
new test values, and checking off correct cell values.

Table 4 lists the average number of each type of action, as
well as the number of total actions done by participants, on
the first and second tasks. The first surprise is that the total
number of actions done by the two groups was not
significantly different. This is in contradiction with what we
expected based on prior interruptions research [1, 2], from
which we predicted that the cumulative effect of the
reorientation penalties should have led to a decrease in the
total number of debugging-related actions.

There were, however, significant differences in the
participants’ choices of activities. By the second task, the
negotiated-style participants were editing significantly more
formulas than the immediate style participants were (Mann
Whitney: p=0.0597 for Task 1 and p=0.0231 for Task 2).
Also, although both groups performed testing activities using
Help-Me-Test with approximately the same frequency on
Task 1, by Task 2, the immediate-style participants used it
significantly more (Mann Whitney, p=0.0406). These results
suggest fundamental differences in participants’ strategies, a
point we will pursue in the section discussing debugging
strategies.

RQ3: Debugging Self-assessment
 “Am I done debugging yet?” In the practice of software
development, it is often this question that is used to decide
whether a spreadsheet or other type of program is ready to
use. Helping users make reasonable judgments to answer this
question can be important in preventing software from going
into use prematurely.

Using post-problem questionnaires, we asked participants to
rate on a 1 (“not confident”) to 5 (“very confident”) scale, for
each spreadsheet, how confident they were that they had
corrected all the bugs. The issue relevant to debugging is to
what extent these self-ratings were related to correctness of
the spreadsheets. To investigate this, we compared self-
ratings to actual performance.

H6: There will be no difference between the negotiated- and
immediate-style participants’ self-ratings as predictors of
correctness (number of bugs in the spreadsheets at the end of
the task).

The regression analyses of the participants’ ability to predict
how well they corrected the bugs are shown in Table 5. The

Interruption
style

Total
bugs
fixed

1st Task
(Bugs per
minute)

2nd Task
(Bugs per
minute)

Negotiated
(n=16)

13
(3.24)

0.202
(0.079)

0.264
(0.061)

Immediate
(n=22)

11.18
(3.56)

0.210
(0.066)

0.163
(0.069)

Table 3. The mean (standard deviation) productivity. Significant
differences (p<.05) are shaded.

1st Task 2nd Task Interruption

style Edit
formula

Edit
assertion

Use
HMT

Check off
value

Avg.
total

Edit
formula

Edit
assertion

Use
HMT

Check off
value

Avg.
total

Negotiated
(n=16)

17.81 11.19 18.00 30.31 77.31 16.13 10.75 10.94 23.69

61.50

Immediate
(n=22)

12.73 12.68 17.50 23.86 66.77 10.00 10.91 27.82 65.18

 p=0.0597 p=0.0231

16.45

p=0.0406

Table 4: Average number of each type of activity engaged in by the participants. Significant differences (p<.05) are shaded.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

292

regression coefficient is the slope of the least squares fitting
of the ratings against the bugs that were corrected.

As Table 5 shows, the negotiated-style participants’ self-
ratings were statistically significant predictors of actual
performance in fixing bugs for both problems (regression
analysis, p<0.05). The immediate-style participants’ self-
ratings, on the other hand, were ineffective as predictors, and
their regression coefficients were not significantly different
from zero.

This result supports McFarlane’s prediction that immediate-
style interruptions would harm users’ assessment of accuracy
on the primary task. It also implies that immediate-style
interruptions in an end-user programming environment will
interfere with users’ judgment of when they have found all
the bugs.

Discussion – Impacts on Debugging Strategies
Recall from Table 4 that there were significant differences in
the ways the participants spent their time. These differences
strongly suggest different debugging strategies.

Indeed, there is precedent for interruption style impacting
users’ strategies. Both Hess and Detweiler [9] and McFarlane
[14] found that users with different interruption styles
developed different strategies for engaging in their primary
task. But, in what directions might different interruption
styles steer debugging strategies?

Immediate-style interruptions have been found to have a
disruptive effect on users’ short-term memory [1, 2], which
could impact users’ strategy choices. There is research
establishing the importance of short-term memory to
debugging. For example, in Ko and Myers’s recent empirical
work, 30% of their participants’ debugging breakdowns were
tied to attentional problems such as loss of situational
awareness or working memory strain [11].

In light of this background, it appears likely that the
immediate-style participants were subjected to frequent
losses of the short-term memory contents they had built up.
Our theory is that, because of these losses, the participants
avoided debugging strategies that had high short-term
memory requirements.

Consider the data. What immediate-style participants did
significantly less of was editing formulas. Editing a non-

constant formula is generally a sign that a user believes they
have found a bug. Although finding a bug can occasionally
be done by looking at just one cell, often users must consider
multiple related cells in the dataflow chain. Editing a
constant formula is the way users set up a test. To make
“testedness” progress, this requires considering dataflow
relationships in subexpressions to figure out a value that will
help increase a partially tested cell’s testedness. Thus, the
users’ considerations for both non-constant and constant
formula edits can require extensive use of short-term
memory.

Compared to participants with negotiated-style interruptions,
participants with immediate-style interruptions made
significantly more use of Help-Me-Test, ultimately checked
off more values (but not to a significant extent), and made
equal use of assertions. All of these operations are highly
local. To invoke Help-Me-Test, one simply pushes a button
and waits for new test values; to check off a value, one
considers that value and the original inputs and makes a
decision; placing an assertion involves reasoning about only
one cell. Thus, these three devices do not require users to
keep much in their short-term memory.

If our theory is correct, then the implications for using
immediate-style interruptions in end-user debugging are
profound: namely, they will promote over-reliance on local,
shallow, problem-solving strategies.

CONCLUSION
In investigating the effects of interruptions on helping end-
user programmers debug, we expected to find advantages
from each style of interruption. For example, we expected to
see better productivity at bug finding with negotiated-style
interruptions but better learning with immediate-style
interruptions (because of its common ground with on-line
tutoring). Instead, we found advantages for only the
negotiated style.

In particular, the following results were unexpected:

• Immediate-style interruptions did not promote learning as
well as the negotiated style, as seen by the participants’
comprehension scores. This was despite the fact that
immediate-style participants received more explanations,
which were timed to arrive at a pertinent moment.

• Examination of users’ activities suggests that immediate-
style interruptions may have promoted over-reliance on
shallow, local strategies that have low short-term memory
loads.

The results that agreed with those of interruptions research in
simpler domains boil down to these two points:

• The negotiated-style participants were significantly more
productive at debugging after the initial learning curve
climb (i.e., by the second task).

Interruption style Regression
coefficient

T-value Signif.

Grades:
Negotiated (n=16) 1.214 2.251 0.0410
Immediate (n=22) 0.240 0.590 0.9534

Weekly Pay:
Negotiated (n=16) 0.683 2.650 0.0190
Immediate (n=22) 0.301 1.420 0.1711

Table 5: Regression analyses of actual bugs corrected vs.
perceived bugs corrected.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

293

• The negotiated-style participants were reasonably effective
at assessing how well they had succeeded at fixing all the
bugs, whereas the immediate-style participants were not.

What do these results say to designers of end-user
programming environments? Negotiated-style interruptions
were more effective than immediate-style interruptions
regardless of whether the aim was to alert the user to the
presence of program errors or to introduce the user to new
debugging features. The participants were more effective
even given that the debugging strategy in the experiment was
based on using the element of surprise to attract the user’s
attention! Such strong results send a clear message to
designers of end-user programming environments: resist the
temptation to use immediate-style interruptions to “help”
users find bugs. We found no reasons to use immediate-style
interruptions, and several reasons not to.

ACKNOWLEDGMENTS
We thank Douglas Derryberry for helpful insights into this
work. This work was supported in part by NSF under ITR-
0082265 and in part by the EUSES Consortium via NSF’s
ITR-0325273.

REFERENCES
1. Bailey, B.P., Konstan, J.A., and Carlis, J.V. Measuring

the effects of interruptions on task performance in the
user interface. IEEE Proc. Conf. Systems, Man, and
Cybernetics (2000), 757-762.

2. Burmistrov, I. and Leonova, A. Do interrupted users
work faster or slower? The micro-analysis of
computerized text editing task. Human-Computer
Interaction: Theory and Practice (Part I) – Proc. HCI
International 2003, Vol. 1. (J. Jacko and C. Stephanidis,
eds.) Lawrence Erlbaum Associates, Mahwah, NJ, 2003,
621-625.

3. Burnett, M., Atwood, J., Djang, R., Gottfried, H.,
Reichwein, J., and Yang, S. Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm. J. Functional Programming 11, 2 (2001), 155-
206.

4. Burnett, M., Cook, C., Pendse, O., Rothermel, G.,
Summet, J., Wallace, C. End-user software engineering
with assertions in the spreadsheet paradigm. Proc. 25th
Int. Conf. Soft. Eng. (2003), 93-103.

5. Carroll, J. The Nurnberg Funnel: Designing Minimalist
Instruction for Practical Computer Skill. MIT Press,
Cambridge, MA, 1990.

6. Corbett, A. and Anderson, J. Locus of feedback control
in computer-based tutoring: Impact on learning rate,
achievement and attitudes. Proc. CHI 2001, 245-252.

7. Czerwinski, M., Cutrell, E., and Horvitz, E. Instant
messaging: Effects of relevance and time. People and
Computers XIV: Proc. HCI 2000, Vol. 2 (S. Turner and
P. Turner, eds.), British Computer Society, 2000, 71-76.

8. Fisher, M., Cao, M., Rothermel, G., Cook, C., and
Burnett, M. Automated test generation for spreadsheets.
Proc. 24th Int. Conf. Soft. Eng. (2002), 141-151.

9. Hess, S., Detweiler, M. Training to reduce the disruptive
effects of interruptions. Proc. Human Factors and
Ergonomics Society Annual Mtg. (1994), 1173-1177.

10. Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J., and Yang, J. Predicting
human interruptibility with sensors: A Wizard of Oz
feasibility study. Proc. CHI 2003, 257-264.

11. Ko, A.J. and Myers, B.A. Development and evaluation of
a model of programming errors. Proc. IEEE Symp.
Human-Centric Computing Languages and
Environments (2003), 7-14.

12. Ko, A.J. and Myers, B.A. Designing the whyline: A
debugging interface for asking questions about program
failures. Proc. CHI 2004 (to appear).

13. Mathan, S. and Koedinger, K. Recasting the feedback
debate: Benefits of tutoring error detecting and correction
skill. Int. Conf. Artificial Intell. Education (2003).

14. McFarlane, D.C. Comparison of four primary methods
for coordinating the interruption of people in human-
computer interaction. Human-Computer Interaction 17, 1
(2002), 63-139.

15. Miller, R. and Myers B. Outlier finding: Focusing user
attention on possible errors. Proc. User Interface Soft.
and Technology (2001), ACM Press, 81-90.

16. Pongched, P. A More Complex Model of Relevancy in
Interruptions. Human-Computer Interaction Capstone,
School of Computer Science, DePaul University,
Chicago, IL (2003). http://www.spong.org/~pechluck/
HCI/content-of-interruptions.pdf

17. Ruthruff, J., Creswick, E., Burnett, M., Cook, C.,
Prabhakararao, S., Fisher II, M., and Main, M. End-user
software visualizations for fault localization. Proc. ACM
Symp. Soft. Visualization (2003), 123-132.

18. Speier, C., Valacich, J., and Vessey, I. The effects of task
interruption and information presentation on individual
decision making. Proc. 18th Int. Conf. Information
Systems (1997), 21-36.

19. Wagner, E. and Lieberman, H. An end-user tool for e-
commerce debugging. Proc. Int. Conf. Intelligent User
Interfaces (2003), 331-331.

20. Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,
Casburn, L., Cook, C., Durham, M., and Rothermel, G.
Harnessing curiosity to increase correctness in end-user
programming. Proc. CHI 2003, 305-312.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

294

