
12 1541-1672/06/$20.00 © 2006 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Polite Personal Agents
Silvia Schiaffino and Analía Amandi, ISISTAN Research Institute, Universidad Nacional del
Centro de la Provincia de Buenos Aires, and Comisión Nacional de Investigaciones Científicas
y Técnicas, Argentina

P ersonal agents are computer programs that learn users’ interests, preferences, and

habits and give them proactive, personalized assistance with a computer appli-

cation. Such agents are analogous to personal assistants in the real-world work envi-

ronment.1 Both agents and assistants gradually learn a target individual’s preferences

and habits to enhance collaboration and productivity.
Although personal agents have been used in various
application domains,1 problems have emerged with
their use, including poor guessing about users’goals
and needs, inadequate consideration of an action’s
costs and benefits, poorly timed actions, and a fail-
ure to optimize opportunities for users to better guide
agent services and refine suboptimal results.2

Existing personal agents have concentrated on
obtaining user preferences with respect to a computer
application. However, as the sidebar, “Related Work
on Human-Computer Interaction,” briefly describes,
they’ve yet to learn how to properly interact with users
so as not to hinder their work. Just as people have
unique interactions with their personal assistants,
users’ interaction with personal agents also varies.
Users differ as to the kind of assistant they want and
expect, the agent errors they will tolerate, and how
they want an agent to provide assistance. Some users,
for example, don’t object to their personal assistant
interrupting them with notifications and suggestions,
so they probably won’t object to a personal agent
doing this. For other users, such behavior would be
intolerable in either case. Personal agents who fail to
meet user expectations are unlikely to last. For exam-
ple, Microsoft product managers decided to “kill”
Clippit, the Microsoft Office Assistant, because of
widespread developer scorn (www.cnn.com/TECH/
computing/9810/16/clipdeath.idg). Consequently,
learning how to best assist and interact with users is
a crucial issue in personal-agent development.

We developed a user-profiling approach that per-
sonalizes and enhances the interaction between a

user and his or her personal agent. Our goal is to
design agents that can provide context-aware assis-
tance and make context-aware interruptions. To
achieve this, we capture and model contextual infor-
mation so the agent can learn how to behave and inter-
act in different situations. To test our approach, we
compared it with the more common confidence-based
approach in the calendar management domain.

User-agent interaction issues
We empirically studied a set of user-agent inter-

action issues that might require personalization.3

Through this study, we discovered several issues that
agent developers must address to personalize and
improve user-agent interactions:

• the particular assistance required for different
contexts,

• when (and when not) to interrupt the user,
• the type of assistant the user wants,
• the user’s tolerance for agent errors, and
• the amount of control the user will delegate to the

agent.

Developers must also provide a way for users to give
the agent simple, useful, and explicit feedback, and
control and inspect agent behavior. The agents must
also capture as much implicit feedback from users
as possible.

Our research tackles the first two problems above:
discovering what assistance a user requires in a given
context and how to provide this assistance—that is,
whether an agent should interrupt the user. To

To succeed, agents

must be aware of both

the user’s current

context and the

complexities of

human behavior. In

this design approach,

agents exploit user

profiles to provide

personalized, context-

aware assistance.

A I , A g e n t s , a n d t h e W e b

achieve this goal, agents must be able to
observe and understand user behavior dur-
ing their interactions. Given the complexi-
ties of human behavior, this is a difficult task.
Furthermore, agents must be aware of the
user’s current context before offering assis-
tance. Unfortunately, capturing and model-
ing context in user-agent interaction is also
challenging.4 Among the factors agents must
detect and account for are the user’s current
task and its priority, and the user’s schedule,
interests, goals, preferences, habits, personal
contacts, and emotional state. Finally, the
agent must be able to detect when any of
these factors change.

To study different aspects of user-agent
interaction that might require personalization,
we conducted a survey of 42 users (29 male
and 13 female) ranging in age from 21 to 50.
All participants had some agent experience,
ranging from those people in our research
group, who had developed and actively used
personal agents in several application
domains, to people who had interacted only
with agents found in Microsoft Word or Excel.

We gave each participant a survey con-
taining questions about user-agent interac-
tion and user assistance. We asked them to
answer the questions in as much detail as
possible. Participants from our research
group answered the questions in terms of
their personal experience with the agents we
developed. Users whose only experience was
with Microsoft Office assistants answered
the questions based both on their experience
with the assistants and their expectations
about an interface agent’s behavior in those
cases where they had no practical experience.
(More detailed information about our exper-
iments is available elsewhere.3)

Context-specific assistance
To illustrate the issue of context, we’ll con-

sider an agent helping a user, John Smith,
organize his calendar. Smith’s current task is
to schedule a meeting with several partici-
pants for the following Saturday in a free
time slot. From past experience, the agent
knows that one participant will disagree with
the meeting date, because he never attends
Saturday meetings. As figure 1 shows, the
agent can

• warn the user about this problem,
• suggest another meeting date that consid-

ers all participant preferences and priori-
ties, or

• do nothing.

In this situation, some users would prefer the
simple warning, while others would want
suggestions as to an alternative meeting date.

In our experiment, 60 percent of the 42
participants identified some situations in
which they would clearly prefer one assis-
tance action over another (see figure 2a).
However, 40 percent of the participants
couldn’t identify such situations. With users
in the first group, the agent must learn to
provide different context-sensitive assis-
tance based on different user preferences.
Typically, the users who couldn’t identify
their preferences were inexperienced with
personal agents. Most likely, inexperience—
rather than an actual lack of preferences—
prevented them from stating their prefer-

ences. So, the agent will have to discover
the preferences.

Context and interruption tolerance
As figure 1 shows, when providing user

assistance, agents can either interrupt the
user’s work or not. As some studies have
shown, interruptions can be disruptive, both
frustrating users and decreasing the efficiency
with which they perform ongoing tasks.5

As Figure 2b shows, 10 percent of the par-
ticipants didn’t object to agent interruptions,
while 14 percent wouldn’t tolerate interrup-
tion under any circumstances. Most people
(76 percent) didn’t object to interruption if
the underlying reason was both important
and personally relevant. The big problem is

JANUARY/FEBRUARY 2006 www.computer.org/intelligent 13

1 0 0 1 0 0
0 0 1 0 1 0 1 1
1 0 0 1 0 0 0 1
0 0 1 1 0 1 0 0
1 1 0 1 0 0 0 1
0 0 1 0 1 0 1 1

Suggestion?
Interruption?

Calendar application
Warning?

User

Assistance

Notification?or
or

Personal agent

Figure 1. Agent assistance options in helping the user organize a meeting date.
Different users will prefer different alternatives.

10%

14%

76%

Tolerate interruptions

Don't tolerate interruptions

Tolerate interruptions only
if relevant underlying situation

60%

40%

Can identify situations

Can't identify situations

(b)(a)

Figure 2. Results of a survey regarding users’ (a) ability to identify situations where
users need assistance and (b) tolerance of interruptions.

therefore to discover which situations are rel-
evant or urgent for each user.

Discussion
As we expected, different users have dif-

ferent preferences with respect to our three
assistance actions (warning, suggestion, and
acting on the user’s behalf). Even individual
users prefer different actions depending on
the problem and context. On the other hand,
to avoid hindering a user’s work, agents must
discover whether the user objects to being
interrupted or not, and in what context (if
any). So, our main problem is to detect con-
text-specific factors from a user’s behavior
and yield to different user preferences with
respect to the agent’s assistance actions and
modalities.

Solution: Designing a user profile
To achieve our goals, personal agents must

know users in the same way that personal
assistants know them. Such knowledge typ-
ically resides in the user profile, which is a
description containing the most important or
interesting facts about the user. To personal-
ize user-agent interactions, we need new user
profile components that represent a user’s
assistance and interruption requirements. We
therefore propose a definition for a user inter-
action profile that models a user’s interaction
preferences, requirements, and habits.

Personal agents can use this user interac-
tion profile to personalize interactions with
each user and adapt their behavior accord-
ingly. Our profiling algorithm builds the user
interaction profile using association rules

based on the user’s interaction with the agent,
and the implicit and explicit feedback the
agent obtains from this interaction.

User interaction profile
A user profile typically contains two types

of user information. Application-independent
information is mainly personal information
about the user. Application-dependent infor-
mation includes a user’s interests, prefer-
ences, goals, working habits, behavioral pat-
terns, knowledge, needs, priorities, and
commitments regarding a particular domain.

However, such information isn’t enough
to personalize interaction with a user. In our
approach, a user profile also needs informa-
tion about user-agent interactions. We there-
fore add to the user profile information about
the situations or contexts in which the user

• requires a suggestion to deal with a problem,
• needs only a warning about a problem,
• accepts an interruption from the agent,
• expects an action on his or her behalf, or
• wants a notification rather than an inter-

ruption.

So, we define a user interaction profile as
a set of user-assistance requirements and a
set of user-interruption preferences:

User Interaction Profile =
User Assistance Requirements
� User Interruption Preferences

We define the assistance requirements as
a set of problem situations (or situations of

interest) with the required assistance action
and a parameter (certainty) indicating how
sure the agent is about the user wanting that
assistance action in that particular situation:

User Assistance Requirements =
{User Assistance Requirement}

User Assistance Requirement =
<Situation, Agent Action, Certainty>

We define the interruption preferences as a
set of situations with the preferred assistance
modality (interruption or no interruption). It
might also contain the current user task, the
notification’s relevance to the current task,
and the type of assistance action to execute.
A parameter indicates how certain the agent
is about this user preference:

User Interruption Preferences =
{User Interruption Preference}

User Interruption Preference =
<Situation, [User Task],
[Task Relevance],
[Assistance Action],
Assistance Modality,
Certainty>

Following are two examples of user inter-
action profile components in a calendar man-
agement application. The first indicates that,
when two events overlap and one of them is
a meeting organized by the user, the user
requires a warning about the problem:

assist-req(situation(type(event overlapping),
features(event-one((event-type, meeting), (host,

A I , A g e n t s , a n d t h e W e b

14 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Our work relates to research in two primary areas:

• human-computer relationship etiquette,1 which entails
learning when to interrupt users and how best to assist
them, and

• context-aware applications,2 which use context to provide
relevant information and services to users.

Our work is novel because we use context to personalize the
interaction between users and personal agents.

Several algorithms exist to help agents discover whether to
assist users in a particular situation and how to assist them
(that is, which action to execute). These algorithms use differ-
ent approaches to decide which action to execute—some use
decision and utility theory;3 others use confidence values at-
tached to different actions.4 However, they don’t consider a
user’s assistance needs and interaction requirements, different
types of assistance (warnings versus suggestions), and the par-
ticulars of a target situation.

Finally, interruptions have received considerable attention in
human-computer interaction research (see www.interruptions.
net/literature.htm for a bibliography), but research in personal
agent development hasn’t considered these studies.

References

1. C. Miller, “Human-Computer Etiquette: Managing Expectations with
Intentional Agents,” Comm. ACM, vol. 47, no. 4, 2004, pp. 31–34.

2. A.K. Dey, G.D. Adowd, and D. Salber, “A Conceptual Framework
and Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications,” Human-Computer Interaction, vol. 16, nos.
2–4, 2001, pp. 97–166.

3. E. Horvitz, “Principles of Mixed-Initiative User Interfaces,” Proc.
ACM Conf. Human Factors in Computing Systems (CHI 99), ACM
Press, 1999, pp. 159–166.

4. P. Maes, “Agents That Reduce Work and Information Overload,”
Comm. ACM, vol. 37, no. 7, 1994, pp. 31–40.

Related Work on Human-Computer Interaction

user)), event-two, Monday 16th, 10am),
action(warning), certainty(0.7)))

The second one expresses that, when an
email arrives asking the user to attend a meet-
ing organized by the user’s boss, the user
wants to be interrupted:

int-pref(situation(type(new email),
features(sender(boss), topic(meeting))), task, rele-
vance, action(warning), modality(interruption), cer-
tainty(0.8))

Profiling approach
Personal agents typically gather informa-

tion by observing users and directly or indi-
rectly soliciting information from them. We
used these same methods to learn about a
user’s assistance requirements and interac-
tion preferences.

Specifically, agents build user profiles by
recording

• information about the actions a user
requests from the agent,

• assistance actions the agent performs, and
• feedback the user provides on these assis-

tance actions.

This feedback can be explicit or implicit, as
well as positive or negative. Explicit feed-
back comes when the user directly evaluates
the agent’s actions through some user inter-
face mechanism. The user can also offer
explicit feedback by selecting interaction and
interruption preferences. Implicit feedback
is gathered when the agent observes the
user’s actions following an assistance action.

We record the information obtained from
observation as a set of user-agent interaction
experiences. We describe an interaction
experience as Ex = <Sit, Act, Mod, Task, Rel, UF, E,
Date>, where

• Sit is a situation that originates an interac-
tion,

• Act is the assistance action the agent exe-
cuted to deal with the situation (warning,
suggestion, or action on the user’s behalf),

• Mod is the modality that indicates whether
the agent interrupted the user to provide
the assistance,

• Task is the task the user was carrying out,
• Rel is the interaction situation’s relevance to

the user’s task,
• UF is the user feedback obtained after

assisting the user,
• E is an evaluation of the assistance experi-

ence (success, failure, or undefined), and
• Date indicates when the interaction took

place.

Say, for example, that our agent is assist-
ing Smith with scheduling a new event: a
meeting with his employees (Johnson, Tay-
lor, and Dean) to discuss project A’s evolu-
tion. The event is being scheduled for Friday
at 5 p.m. in Smith’s office. By observing
Smith’s previous actions and schedules, the
agent has learned that Dean never schedules
Friday evening meetings and therefore will
likely disagree about the meeting date and
time. The agent thus decides to warn Smith
about the problem. In reply to this warning,
Smith asks the agent to suggest another date
for the event.

In this example, the assistance experience
comprises these parts:

• Sit = {(type, new-event), (event-type, business meet-
ing), (organizer, user), (participants, [Johnson,Tay-
lor,Dean]), (topic, project A evolution), (date, Friday),
(time, 5 p.m.), (place, user’s office)}

• Act = {(type, warning), (message, Dean does not like
meetings on Friday evenings)}

• Mod = {(type, notification)}
• Task = {(type, new-event)}
• Rel = relevant
• UF = {(type, explicit), (action, asks for a suggestion)}
• E = {(type, failure), (certainty, 1.00)} (suggestion

instead of warning)
• Date = 18/02/04

Our profiling approach takes as input the
set of user-agent interaction experiences and
from these learns when the user requires a
suggestion or warning about a situation and
when the user wants the agent to perform a

task on his or her behalf. This process also
determines when the agent can interrupt the
user’s work to provide assistance and when
it can send notifications without interrupting
the user.

The algorithm’s outputs constitute the user
interaction profile. The decision-making
algorithm uses user profile information to
decide which assistance action to execute and
how best to execute it to assist the user. As
with previous personal agents, our agent
obtains its assistance action’s content from
the user’s preferences and interests.

Building a profile
We use the WATSON (Warning, Action, Sug-

gestion, or Nothing) algorithm to build a user
interaction profile from the set of user-agent
interaction experiences. We use association
rules as our machine learning technique; fig-
ure 3 shows the main steps. Association rules
imply a relationship among a set of items in
a given domain.6 We use association rules to
discover the existing relationships between
problem situations or situations of interest
and the assistance actions a user requires to
deal with them, as well as the relationships
between situations, the primary user task, and
the assistance modality required.

Association rule mining is commonly
stated as, Let I = i1, …, in be a set of items and
D be a set of transactions, each consisting of
a subset X of items in I.6 An association rule
is an implication of the form X � Y, where
X � I, Y � I, and X � Y = �. X is the rule’s
antecedent and Y is the consequent. The rule
has support s in D if s percent of D’s transac-
tions contains X � Y. The rule X � Y holds in
D with confidence c if c percent of D’s trans-
actions that contain X also contain Y. Given a

JANUARY/FEBRUARY 2006 www.computer.org/intelligent 15

Figure 3. Algorithm 1 uses association rules to create the user interaction profile.

Input: A set Ex of user–agent interaction experiences
Output: A set F of facts representing the user interaction profile
1: AR � Call association rule mining algorithm (Apriori) with Ex, minsup, and minconf
2: AR1 � Filter out uninteresting rules from AR
3: AR2 � Eliminate redundant and insignificant rules from AR1
4: AR3 � Eliminate contradictory rules from AR2
5: H � Transform rules in AR3 into hypotheses
6: for i = 1 to size of H do
7: Find evidence for (E�) and against (E)Hi
8: Cer(Hi) � compute certainty degree of Hi considering E+ and E	

9: if Cer(Hi)
 � then
10: F � F � Hi
11: endif
12: endfor

A I , A g e n t s , a n d t h e W e b

16 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

transaction database D, the problem of min-
ing association rules is to find all association
rules that satisfy minimum support (minsup)
and minimum confidence (minconf).

We use the Apriori algorithm6 to generate
association rules from a set of user-agent
interaction experiences. We automatically
postprocess the rules Apriori generates so
that we can derive useful hypotheses from
them. Postprocessing includes detecting the
most interesting rules according to our goals,
eliminating redundant and insignificant rules,
eliminating contradictory weak rules, and
summarizing the information to formulate
the hypotheses more easily.

To filter rules, we use templates to express
and select relevant rules. For example, we are
interested in those association rules of the
forms situation, assistance action � user feedback, eval-
uation and situation, modality, [user task], [relevance],
[assistance action] � user feedback, evaluation (where
brackets mean that the attributes are optional).
To eliminate redundant rules, we use a sub-
set of the pruning rules that Devavrat Shah
and his colleagues proposed.7 We define a
contradictory rule as one indicating a differ-
ent assistance action (modality) for the same
situation and having a small confidence value
with respect to the rule being compared.

After pruning, we group rules by similar-
ity and generate a hypothesis that considers a
main rule, positive evidence (redundant rules
that couldn’t be eliminated), and negative evi-

dence (contradictory rules that couldn’t be
eliminated). Once we have a hypothesis, the
algorithm computes its certainty degree by
taking into account the main rule’s support
values and the positive and negative evidence.
To compute certainty degrees, we use this
function:

(1)

where �, �, and � are the weights of the equa-
tion’s terms, Sup(AR) is the main rule sup-
port, Sup(E+) is the positive evidence sup-
port, Sup(E) is the negative evidence
support, Sup(E) is the support of a rule taken
as evidence (positive or negative), r is the
amount of positive evidence, and t is the
amount of negative evidence. Finally, we
generate facts from the set of highly sup-
ported hypotheses (those with certainty
greater than �).

We set � = 0.7, � = 0.15, and � = 0.15
because we consider the positive and nega-
tive evidence to be equally important but con-
sider the main rule’s support to be more

important in the certainty calculus. We exper-
imentally set � to 0.2. Finally, our algorithm
is incremental—we generate a new profile
when a certain amount of new interaction
experiences have accumulated. To this end,
we use the FUP2 (Fast Update 2) incremen-
tal association-rule-mining algorithm and, to
determine when to update, the DELI (Dif-
ference Estimations for Large Item sets)
algorithm.8

An example profile build
As an example of profile building, let’s

assume Smith has the following interaction
preferences. First, if overlap exists between
a meeting Smith organizes and an event orga-
nized by his boss or the professor in charge
of object-oriented programming, Smith
wants the agent to interrupt him. In other
cases of scheduling conflicts, Smith wants
the agent to notify him without interrupting.

Our algorithm first generates association
rules from the user-agent interaction experi-
ences. Figure 4 shows a subset of these asso-
ciation rules, which the algorithm generated
from the data set of interactions between
Smith and his agent. We set minsup at 0.1 and
minconf at 0.8.

From all the association rules generated,
the algorithm filters out the irrelevant rules
(using the templates we described earlier).
The following rules survive (the number “1”
refers to the first event):

Cer H Sup AR

Sup E

Sup E

k

r

k

r t

() = ()

+
()
()

−

+
=

=

+
∑
∑

α

β 1

1

γγ
Sup E

Sup E

k

t

k

r t

−
=

=

+
()
()

∑
∑

1

1

Figure 4. The algorithm generated this subset of association rules using the data set of user-agent interactions. The minimum
support (minsup) value is 0.1 and the minimum confidence (minconf) value is 0.8.

JANUARY/FEBRUARY 2006 www.computer.org/intelligent 17

1. event type (1) = meeting, place (1) = office, agent
action = warning, modality = notification, primary
task = new event, primary task relevance = rele-
vant � user reaction = interrupt next time, eval-
uation = failure; sup(0.6), conf(1)

2. place (1) = office, agent action = warning, modal-
ity = notification, primary task = new event, pri-
mary task relevance = relevant, user reaction =
interrupt next time � evaluation = failure;
sup(0.6), conf(1)

3. event type (1) = meeting, agent action = warning,
modality = notification, primary task = new event,
primary task relevance = relevant � user reac-
tion = interrupt next time, evaluation = failure;
sup(0.6), conf(1)

4. event type (1) = meeting, place (1) = office, modal-
ity = notification, primary task = new event, pri-
mary task relevance = relevant � user reaction =
interrupt next time, evaluation = failure; sup(0.6),
conf(1)

5. event type (1) = meeting, place (1) = office, agent
action = warning, modality = notification, primary
task relevance = relevant � user reaction = inter-
rupt next time, evaluation = failure; sup(0.6),
conf(1)

6. event type (1) = meeting, place (1) = office,

agent action = warning, modality = notification,
primary task = new event � user reaction =
interrupt next time, evaluation = failure;
sup(0.6), conf(1)

In the next step, the algorithm eliminates
redundant rules.7 In this example, all the
rules survive this step. The algorithm then
searches for contradictory rules, and again
finds none. Given this, the algorithm con-
siders all the rules to build the hypotheses.
For example, one of our hypotheses has
these components:

Main Rule: event type (1) = meeting, place (1) =
office, agent action = warning, modality = notifica-
tion, primary task = new event � user reaction =
interrupt next time, evaluation = failure; sup(0.6),
conf(1).
Positive Evidence: event type (1) = meeting, place
(1) = office, agent action = warning, modality = noti-
fication, primary task = new event, primary task rel-
evance = relevant � user reaction = interrupt next
time, evaluation = failure; sup(0.6), conf(1).
Negative Evidence: none.
Certainty: 0.57

We compute the certainty degree of this
hypothesis as

After we summarize the information in this
hypothesis, the corresponding user interrup-
tion preference is

situation: event type = meeting, place = office,
agent action = warning; primary task = new event;
modality of assistance: interruption

This interruption preference directly reflects
one of Smith’s stated preferences. As for
decision making, if the target situation is the
one in the user profile, the agent will inter-
rupt Smith to provide assistance. If the tar-
get situation isn’t in the user profile, the agent
will choose the assistance action on the basis
of its confidence value (as with most stan-
dard personal agents).

Cer H() = ∗

+ ∗ − ∗

= +

0 7 0 6

0 15
0 60

0 60
0 15 0

0 42 0

. .

.
.

.
.

. .115 0 57= .

(b)(a)

(d)(c)

1 2 3 4 5 7 8 10 3 16 4 7 516 28

Pe
rc

en
ta

ge
 o

f c
or

re
ct

as
si

st
an

ce
 a

ct
io

ns
Pe

rc
en

ta
ge

 o
f c

or
re

ct
as

si
st

an
ce

 a
ct

io
ns

Pe
rc

en
ta

ge
 o

f c
or

re
ct

as
si

st
an

ce
 a

ct
io

ns
Pe

rc
en

ta
ge

 o
f c

or
re

ct
as

si
st

an
ce

 a
ct

io
ns

0

20

40

60

80

100

Avg. Avg.

3 1 7 5 16 28 8 2 1 4 72 3 5 16 3030 31 Avg. Avg.

User number User number

0

20

40

60

80

100

User number

0

20

40

60

80

100

User number

0

20

40

60

80

100

Precision with our approach Precision with confidence-based approach

Figure 5. Our approach’s precision versus that of the confidence-based approach for the (a) holiday, (b) new-event, (c) overlapping,
and (d) time data sets.

Experimental results
To test our approach against standard per-

sonal-agent approaches, we compared our
algorithm’s user assistance precision with
that of a confidence-based decision-making
algorithm.1 To do this, we used a precision
metric that measures a personal agent’s abil-
ity to accurately assist a user:9

(2)

We used this metric to evaluate the agent’s
performance in deciding between

• a warning, a suggestion, or an action on
the user’s behalf; and

• an interruption or a notification.

For each problem situation, we compared the
number of correct assistance actions against
the total number of assistance actions the
agent executed. (We considered an assistance
action correct if it was the action the user
expected in a given situation.)

To carry out the experiments, we used 39
data sets containing user-agent interaction
experiences in the calendar management
domain (the data sets are available at www.
exa.unicen.edu.ar/~sschia). Each database
record contains attributes that describe the
problem situation (or the situation originating
the interaction), the assistance action the agent
executed, the user feedback, and the user’s

evaluation of the interaction experience. We
built the data sets according to real user pro-
files—that is, using a set of interaction pref-
erences established by real users. We obtained
the profiles by interviewing 12 of the 42 users
who participated in our experiments. The data
sets contained anywhere from 30 to 125 user-
agent interaction experiences.

We analyzed four calendar-management
situations:

• New event: The user is scheduling a new
event, and the agent has information about
the event’s potential time, place, or duration.

• Overlapping: The user is scheduling an
event that overlaps with a previously
scheduled event.

• Time: Not enough time exists to travel
between the proposed event and the event
scheduled to follow it.

• Holiday: The user is scheduling a business
(or work-related) event for a holiday.

The attributes describing the overlapping
and time data sets are event type, host, topic,
participants, and place (for both events); agent
action; assistance modality; user task; task
relevance; user feedback; and evaluation. The
attributes involved in the new-event and hol-
iday data sets describe an event—namely,
event type, topic, participants, host, and place.

Figure 5 shows the two algorithms’preci-
sion for different data sets and users. Each
bar graph plots the percentage of correct
assistance actions with respect to the total
number of agent assistances. To determine
an assist’s correctness and modality, we con-

sulted the profile description containing a
user’s interruption preferences and assistance
requirements. The last pair of bars in each
graph plots the average precision for differ-
ent users on a given data set. For example,
the second pair of bars in figure 5b indicates
that for user 16, our approach correctly
assisted the user 50 percent of the time, while
the confidence-based approach was correct
37.5 percent of the time. (We used percent-
age values because the number of user-agent
interactions varied from one user to another.)

On average, as the figure shows, our
approach had a higher overall percentage of
correct assistance actions, assistance inter-
actions, or interactions (70 percent) than the
confidence-based algorithm (60 percent). A
10 percent increase in precision is an impor-
tant achievement. Enhancing an agent’s abil-
ity to learn what users want is even more
important. The difference between the two
algorithms is clear when, for example, the
user requires only warning about a frequent
problem. In such cases, the confidence-based
algorithm proposes a suggestion or an action.
Our algorithm issues only a warning, even
though the confidence on the assistance con-
tent is high. When the problem is infrequent
and warnings are required, the two algo-
rithms behave similarly.

Our work makes two main contribu-
tions to the areas of intelligent agents

and human-computer interaction. First, it
increases understanding of personalization
in user-agent interaction. Second, our ap-
proach enhances a personal agent’s actual
capabilities. Agent developers can use our
study’s results to build interface agents that
can adapt to users’ expectations and prefer-
ences regarding user-agent interaction. Our
approach enables agents to personalize their
user interactions by learning the type of assis-
tance users need in different contexts and by
learning how to provide this assistance with-
out annoying users.

Building on our promising results in the cal-
endar management task, we’re carrying out
further experiments in this and other domains.
In our future work, we plan to address the
other user-agent interaction issues that require
personalization. Also, we currently consider
only a subset of factors to characterize the
user context. In the future, we plan to enrich
the contextual information the agent consid-
ers when assisting the user.

Precision =
number of correct assistanceactions

nuumber of assistanceactions

A I , A g e n t s , a n d t h e W e b

18 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Silvia Schiaffino is a professor in the Computer Science Department at the
Universidad Nacional del Centro de la Provincia de Buenos Aires and a
research assistant at the university’s ISISTAN Research Institute. Her main
research interests are intelligent agents, personalization, and human-com-
puter interaction. She received her PhD in computer science from UNCPBA.
Contact her at ISISTAN Research Inst., Facultad de Ciencias Exactas, Univ.
Nacional del Centro de la Provincia de Buenos Aires, Campus Universi-
tario—Paraje Arroyo Seco, Tandil, 7000, Buenos Aires, Argentina;
sschia@exa.unicen.edu.ar.

Analía Amandi is a professor in the Computer Science Department at Uni-
versidad Nacional del Centro de la Provincia de Buenos Aires, where she
leads the ISISTAN Research Institute’s Intelligent Agents Group. Her research
interests include intelligent agents and knowledge management. She received
her PhD in computer science from the Universidad Federal do Rio Grande do
Sul. Contact her at the ISISTAN Research Inst., Facultad de Ciencias Exactas,
Univ. Nacional del Centro de la Provincia de Buenos Aires, Campus Uni-
versitario-Paraje Arroyo Seco, Tandil, 7000, Buenos Aires, Argentina;
amandi@exa.unicen.edu.ar.

T h e A u t h o r s

References

1. P. Maes, “Agents That Reduce Work and
Information Overload,” Comm. ACM, vol. 37,
no. 7, 1994, pp. 31–40.

2. E. Horvitz, “Principles of Mixed-Initiative
User Interfaces,” Proc. ACM Conf. Human
Factors in Computing Systems (CHI 99),
ACM Press, 1999, pp. 159–166.

3. S. Schiaffino and A. Amandi, “User-Interface
Agent Interaction: Personalization Issues,”
Int’l J. Human-Computer Studies, vol. 60, no.
1, 2004, pp. 129–148.

4. A.K. Dey, G.D. Adowd, and D. Salber, “A
Conceptual Framework and Toolkit for Sup-
porting the Rapid Prototyping of Context-
Aware Applications,” Human-Computer
Interaction, vol. 16, nos. 2–4, 2001, pp.
97–166.

5. D.C. McFarlane and K.A. Latorella, “The
Scope and Importance of Human Interruption
in Human-Computer Interaction Design,”
Human-Computer Interaction, vol. 17, no. 1,
2002, pp. 1–61.

6. R. Agrawal and R. Srikant, “Fast Algo-
rithms for Mining Association Rules,” Proc.
20th Int’l Conf. Very Large Data Bases
(VLDB 94), Morgan Kaufman, 1994, pp.
487–499.

7. D. Shah et al., “Interestingness and Pruning
of Mined Patterns,” Proc. Workshop Research
Issues in Data Mining and Knowledge Dis-
covery, ACM Press, 1999.

8. S.D. Lee and D. Cheung, “Maintenance of
Discovered Association Rules: When to
Update?” Proc. Workshop Research Issues in
Data Mining and Knowledge Discovery,
ACM Press, 1997.

9. S. Brown and E. Santos, “Using Explicit
Requirements and Metrics for Interface Agent
User Model Correction,” Proc. 2nd Int’l Conf.
Autonomous Agents, ACM Press, 1998, pp.
1–7.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

