
24 US Government Work Not Protected by US Copyright IEEE INTELLIGENT SYSTEMS

H C C a t N A S A

Intelligent Control of
Life Support for Space
Missions
Debra Schreckenghost, Carroll Thronesbery, Peter Bonasso, David Kortenkamp, and
Cheryl Martin, NASA Johnson Space Center

Future manned space operations will include a greater use of automation than we

currently see.1 For example, semiautonomous robots and software agents will per-

form difficult tasks while operating unattended most of the time. As these automated

agents become more prevalent, human contact with them will occur more often and

become more routine, so designing these automated
agents according to the principles of human-centered
computing is important.

In this article, we describe two cases of semiau-
tonomous control software developed and fielded
in test environments at the NASA Johnson Space
Center. This software operated continuously at the
JSC and interacted closely with humans for months
at a time.

Our approach
For the past seven years, we’ve worked on devel-

oping intelligent software for the control of advanced
life support systems. We fielded this control software
in an operational environment in which test engineers
manually controlled and continuously monitored all
life support systems from a console in a test control
room. Such operations required the engineers to spend
considerable time on routine data monitoring and low-
level commanding. Our biggest challenges initially
were to prove that automated control software was
reliable enough to be useful and that automating rou-
tine control tasks would be worthwhile.

Thus, from the beginning, we had the goal of using
automation to reduce the engineer’s workload. How-
ever, our objective was not to replace humans in
operations but to free them from routine tasks (such
as vigilant monitoring), thereby enabling them to
concentrate on activities that capitalize on human
strengths (such as supervisory monitoring). To per-
form these new tasks, humans still must interact with
the control automation. In fact, human interaction
becomes more challenging because the human is less

involved in routine day-to-day operations and, as a
result, might be less aware of the ongoing control
situation and could lose anomaly response skills
through lack of practice. This is a critical consider-
ation for the human centering of semi-autonomous
control systems.

We also recognized that the change in test opera-
tions resulting from the use of automated control
would be fundamental. The human role changes to
one of supervisory monitoring with occasional inter-
vention when operations cannot be automated or
when exceptional situations occur. During normal
operations, engineers supporting these tests will
spend most of their time doing activities unrelated
to control but will need to be on call should the
automation or life support hardware experience prob-
lems. In addition, humans will need to supervise and
command these continuously operating systems
from remote locations (such as their offices) with
only infrequent (and possibly asynchronous) inter-
action. For such operations, human supervisors must
be able to quickly form an integrated view of dis-
tributed control without having to continuously mon-
itor control data.

This concept of test operations, however, repre-
sented too radical a change to be quickly accepted,
so we took a gradual approach—first demonstrating
the viability of automating routine control in freeing
up test engineers before trying to support remote
operations from their offices. This slower approach
also gave us the opportunity to learn from our expe-
riences and incorporate these lessons in subsequent
systems and revised operations concepts.

NASA’s Johnson

Space Center

developed and field-

tested intelligent

control systems for

crew air regeneration

and water recovery.

These systems support

human intervention

when needed but

operate autonomously

most of the time.

Case studies in life support
control

The Crew and Thermal Systems Division
(CTSD) of JSC’s Engineering Directorate
develops advanced technology for regener-
ative life support systems. Regenerative life
support removes the waste products that bio-
logical systems generate (for example, car-
bon dioxide or waste water) and recovers any
consumables from those products (for exam-
ple, converting carbon dioxide to oxygen or
recovering potable water from waste water).
In 1997, we began developing a product gas
transfer (PGT) system for regenerating crew
cabin atmosphere as our first case study. We
built intelligent software that could control
the injection of the carbon dioxide the crew
produced into a plant growth chamber and
control the extraction of the oxygen these
plants produced for crew use and waste incin-
eration. We operated this control software 24
hours a day, seven days a week during a 90-
day manned ground test.

In 1999, as our second case study, we
began developing the advanced water recov-
ery system (AWRS) to recover potable water
for crew consumption. Twenty-four hours a
day for 12 months, we controlled a biologi-
cal water processor in the CTSD Advanced
Water Lab. In 2000, we began developing
control software for the remaining water sub-
systems, working toward an integrated water
recovery test to start in Spring 2001 (which
continued through Spring 2002).

The autonomous control
architecture

We developed the autonomous control
software for PGT2 and water recovery3 using
the three-tier (3T) control architecture,4

which consists of three concurrently operat-
ing tiers of control processing (see Figure 1).
We implemented the top, or planning, by
using a hierarchical task net planner—called
the Adversarial Planner (AP)—developed at
MITRE. This planner predicts the control tasks
required to achieve control objectives, given
an initial control situation. We implemented
the middle, or sequencing, tier by using
I/Net’s Reactive Action Package System
(RAPS). It reactively selects and orders pro-
cedures to accomplish the planned tasks
passed to it by the top tier. It accomplishes
this by decomposing high-level planned tasks
into low-level procedure steps (called primi-
tive actions) that are appropriate for the con-
trol situation. These primitive actions are
passed to the bottom tier—the skill man-

ager—for execution. Procedure steps consist
of primitive control actions that issue com-
mands (called skills) and monitoring actions
that confirm the effects of these commands
(called events). Control processing is closed
loop at all tiers, permitting execution moni-
toring and reactive replanning and reconfig-
uration in response to environmental changes.

The flow of control among these tiers pro-
ceeds as follows. Humans specify the con-
trol goals that initiate the building of a con-
trol plan, which consists of time-ordered
control tasks (Step 1 in Figure 1). Control
tasks in this plan are passed from the plan-
ning tier to the sequencing tier when it’s time
to execute them (Step 2). Each control task
from the planner maps to a top-level task in
the sequencer. When the sequencer receives
a high-level control task, it decomposes the
task into a sequence of primitive actions.
These actions then pass to the skill manager
for execution (Step 3). Each action from the
sequencer maps to a skill in the skill man-
ager. Because control processing is closed
loop at all tiers, the effects of actions pass
from skill manager events into states in the

sequencer memory (Step 4), and the effects
of control tasks pass from states in the
sequencer memory into states in the planner
memory (Step 5).

Case 1: The product gas transfer
system

The PGT control software semiau-
tonomously controls life support systems
designed for regenerating the air in space
habitats. Researchers used it during the Phase
III test of NASA’s Lunar–Mars Life Support
Test Program (see Figure 2). For this test,
four crew members lived in a closed habitat
for 91 days. Wheat was grown in a separate
closed chamber for air regeneration and food
and was planted and harvested in four stages
separated by 16 to 24 days. For the available
crop space in the plant chamber, this crop
staging resulted in enough oxygen (O2) for
one of the four crew members. Oxygen for
the remaining three crew members was
regenerated using more traditional physi-
cal–chemical techniques. Additionally, the
crew’s solid waste was incinerated every
four days, and effluent from this incinera-

SEPTEMBER/OCTOBER 2002 computer.org/intelligent 25

1

2

3
4

5

Planner

World
model

Goal

Subgoal

Planning/
monitoring

Subgoal

AGENDA

Task

Wait-for

Subtask

Interpreter

RAP
memory

Sequencer

Skill Skill Skill

Skill

Event

Event

Event

Skill manager

Control
goals

Control
goals

Human
interface

Monitor
events

Monitor
tasks
and

states

Activate
skills

Monitor
tasks
and

states

SkillSkill

SkillSkill

Primitive

Primitive

Primitive

Subtask

Subtask

Task Task

Subgoal

Task Task Task

Skill

Figure 1. The three-tier control architecture.

tion contained carbon dioxide (CO2) that
the plants regenerated into O2. Other
sources of CO2 included gas removed from
the air in the crew chamber and a pressur-
ized bottle.

The PGT system managed the transfer of
O2 and CO2 (called product gases) among gas
reservoirs, ensuring crew and crop health and
recycling gases produced during waste incin-
eration. These reservoirs included a crew
habitat, a plant chamber, an airlock, and sev-
eral pressurized tanks. The PGT system per-
formed the following tasks autonomously
during the test:

• Removal of O2 and injection of CO2 in the
plant chamber to maintain the setpoints
needed for plant growth

• Storage and transfer of O2 from the plant
chamber to the crew habitat for crew use

• Storage and transfer of O2 from the
plant chamber for use during solid waste
incineration

• Selection and configuration of the best
available source of CO2 for the plants

• Configuration of PGT for periodic activi-
ties—specifically, harvesting and replant-
ing crops every 16 to 24 days and inciner-
ating waste every four days

The PGT control software operated con-
tinuously from 6 October through 19 Decem-
ber 1997. In terms of human centering, we
changed the role of the human from vigilant
monitoring and control to supervisory moni-
toring, thereby reducing the amount of time

test engineers spent on the console. Operation
of the control software in previous tests was
manually intensive, requiring vigilant moni-
toring, frequent manual adjustment of control
parameters, and two eight-hour shifts manned
daily. In contrast, operating the PGT control
software typically required six to eight hours
per week of console support, with an addi-
tional six hours for each waste incineration
and three hours for each planting and harvest.

Although we recognized that providing
software for test engineers to remotely mon-
itor and control these systems (for example,
from their offices) would be useful, the sanc-
tioned test operations only permitted moni-
toring and controlling from the test control
room. Even so, we made several inroads into
supervisory monitoring by having the PGT
software detect off-nominal conditions
requiring human intervention and sound
alarms in the control room when these con-
ditions occurred.

Case 2: The advanced water
recovery system

The AWRS control software semiau-
tonomously controls the recovery of potable
water from wastewater. Researchers at JSC
used it continuously for more than a year in
the Advanced Water Lab. During this period,
they conducted a series of unmanned tests to
evaluate the AWRS hardware operating at
different waste loads and hours of operation.
The AWRS comprises four subsystems that
operate in tandem, each one designed to
remove a type of impurity from the water:

• Biological water processor. The BWP
removes organic compounds and ammo-
nia from incoming wastewater, using
microbes to remove both the bulk of the
total organic carbons as well as the ammo-
nium. The resulting N2 gas is vented, and
the resulting CO2 gas is sent to a CO2

reduction system.
• Reverse osmosis system. The RO system

removes inorganic compounds from the
BWP’s effluent, forcing the water to flow
at high pressure through a molecular sieve
that rejects inorganic compounds and con-
centrates them into brine.

• Air evaporation system. The AES recov-
ers additional water from the brine the RO
produces. It removes the concentrated salts
from the brine by depositing it on a wick,
evaporating the water by blowing heated
air through that wick, and then condens-
ing the water by cooling the air.

• Post-processing system. The PPS brings
the water product from the RO and the
AES to within potable limits. This “water
polisher” removes trace organics and
ammonium by a series of small beds of ion
exchange resins and the trace organic car-
bons through a series of ultraviolet lamps.
It also oxygenates the water with an O2

concentrator.

Figure 3 shows the flow of water products
through water recovery systems in the
Advanced Water Lab.

The AWRS control software operated con-
tinuously for 98.75 percent of the time
between Spring 2001 and Spring 2002. This
12-month test demonstrated our control
approach’s reliability for long-duration
operations and scalability to multiple subsys-
tems. We also demonstrated the viability of
remotely monitoring control operations from
engineers’offices. As expected, this capabil-
ity changed the human’s role in control oper-
ations to supervisory monitoring with occa-
sional human intervention. Each week, one
control engineer served as prime engineer to
supervise the control autonomy. The prime
engineer used the remote monitoring capa-
bility to check the health and status of both
the life support hardware and the control soft-
ware three to four times daily, including
weekends. He or she was also on call to go to
the Advanced Water Lab and handle occa-
sional control problems (such as network
performance or data acquisition anomalies).

Because of funding constraints, develop-
ing remote monitoring capability was a low-

26 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Figure 2. The control of product gases for the product gas transfer system’s Phase III test.

Product gas transfer
Plant chamber Crew chamber

O2

CO2

3T control

Incinerator Control center

level effort. However, the software resulting
from this limited effort proved quite popular
with the engineers, who quickly requested
more remote interaction capability than we
had the resources to create.

Case study results
In both the air regeneration and water

recovery cases, we reduced human workload
by automating routine control tasks. In both
cases, human participation was still neces-
sary, but as intended, the human’s role in con-
trol changed from vigilant monitoring with
frequent command intervention in previous
life support tests to supervisory monitoring
with infrequent intervention.

Some tasks are not easy to automate and
still require human intervention:

• Calibrating sensors. Because calibration
is a manual task and determining when it
should occur is not easy, a test engineer
must reconfigure sensors during calibration.

• Reconfiguring data interfaces. Waste
incineration occurred every four days dur-
ing portions of the Phase III test, with the
waste incineration control software shut
down between occurrences. To receive
data during an incineration, we had to
manually start incineration software and
reconfigure data interfaces.

• Transferring data logs to a centralized
computer. Custom interfaces between con-
trol computers with data logs and the cen-
tral archive computer required the logs to
be manually transferred three times a week.

• Tuning the control strategies. Because
these case studies were the first long-term
tests using biological air regeneration and
water recovery, we had to tune the control
strategies throughout the test. To do so, we
would temporarily suspend the automated
control strategy and manually enter revised
control actions.

Both case studies had infrequent anom-
alous situations occur that required human
intervention. Some of the problems encoun-
tered during these tests included computer
hardware failures, network performance
problems, and data acquisition anomalies.
We also discovered that biological regener-
ative systems are more sensitive to their envi-
ronment than physical–chemical systems and
were thus more likely to exhibit surprising
or unexpected behaviors requiring interven-
tion. For example, microbial clogs in the
BWP required a manual procedure to slough

a layer of the microbe colony; loss of wheat
crops due to nutrient leaching required plant-
ing extra crops and manually adjusting nutri-
ent balance.

Our approach to design automation for these
anomalous situations was to provide capabil-
ities for adjustable control autonomy.5,6

Temporary suspension of automated control
activities that interfere with manual activi-
ties. Test engineers suspended autonomous
control while issuing manual commands to
prevent conflicting or inconsistent com-
manding. The scope of this suspension ranged
from inhibiting the execution of single pro-
cedures to preventing autonomous com-
manding of entire subsystems. Examples of
activities requiring temporary suspension of
control automation include maintenance
activities (for example, sensor calibration)
and activities with human safety risks (for
example, not injecting CO2 when people are
in the plant chamber).

Monitoring control states autonomously
regardless of the level of autonomy. The
autonomous system actively monitored state
and control information about the life sup-
port system even during manual control. This
continuous monitoring permitted detection

of caution and warning states for all levels of
control autonomy and ensured the control
software was “cognizant” of state changes
caused by manual action.

Reconfiguring sensors and controllers for
maintenance. Either a human or the automa-
tion could take a sensor offline for calibra-
tion or repair (both of which we needed
during the course of these tests) without
impeding autonomous control.

Adjusting control setpoints and warning
thresholds without taking the control software
offline. Either the human or the automation
could modify these control parameters (for
example, the planner changed the gas set-
points in the airlock when incinerating waste).

For supervisory monitoring, we also found
it essential to provide data summarization
software to capture and present information
that could assist a human in quickly under-
standing the control situation.8 Because the
human was not monitoring most of the time,
this information had to be collected and
stored in data structures that retained all tran-
sient information relevant to describing the
situation. Information needed to describe the
control situation includes statistics and trends
in production and consumption of water and

SEPTEMBER/OCTOBER 2002 computer.org/intelligent 27

Figure 3. The control of water recovery in the Johnson Space Center’s Advanced
Water Lab.

Gray water

Waste water

Brine

Waste
water tank

Biological water processor

Post-processing system

Reverse osmosis Air evaporation system

Permeate Condensate

Potable
water

Potable
water tank

air (life support system performance), the
relationship of control actions with their
intended and actual effects on system state,
and system anomalies diagnosed with the
actions taken to resolve them.

Applying human-centered
computing to control
automation

We found that effective human interaction
with control automation requires defining a
new concept of operations that affects the
behavior of both humans and automated con-
trol agents. To do this, we had to develop new
protocols for interaction between humans
and automated agents. Existing protocols for
human–human interaction in space opera-
tions likewise must be adapted to account for
the change in human roles. To implement this
new concept of operations, we found it nec-
essary to modify the intelligent control
software as well as develop new interface
software. We added the ability to export
information about automated control actions
and control situation assessments to the con-
trol software. We also adapted autonomous
control strategies to permit adjustments to
the level of control autonomy for coordinated
human and automated commanding.

The new interface entails more than just dis-
play software: it requires software that imple-
ments the organizational policies and etiquette
protocols arising from this new concept of
operations. These policies ensure that the right
people are notified of significant events regard-
ing operations, including events indicating that
they might need to take manual action. These
policies also address consistent, reliable com-
manding among groups of human and soft-
ware agents. They can help determine if an
agent is authorized to issue commands and
determine how to allocate control authority to
avoid conflicts when more than one agent is
commanding. Both the specification of event
notification and the allocation of control
authority must consider the policies associated
with organizational roles as well as individual
agent preferences. Therefore, preferences must
be overlaid on organizational policy require-
ments to permit customization without com-
promising these policies.

This new type of interface software must
also assist the human in relating control infor-
mation as represented in the automation to
human mental models of control operations.
This assistance ensures that autonomous
actions are more predictable and human error
is less likely. It can include

• Associating automated control actions
with the environmental consequences the
human expects (both intended control
effects and side effects, such as that turn-
ing on a fan noticeably changes the crew’s
ambient noise level)

• Labeling a configuration of system states
as a human-recognizable operating mode
or phase

• Mapping from programmatic device refer-
ences to colloquial device names (for exam-
ple, v0102 is the same as the blower valve)

These information relationships should be
captured in the interface, not the control soft-
ware, because this information is needed to
support human collaboration, not automated
control. Using this information, we can build
user interfaces that communicate the beliefs
and intentions of the automated control soft-
ware more accurately, thus enabling a shared
“cognitive wavelength” between the software
and the human.7 This shared understanding
aids the human in conducting manual actions
or in issuing instructions to the software more
effectively.

Supervisory monitoring
Even when control automation operates

on its own, the human still must be able to
maintain or rapidly reacquire situational
awareness of control activities and their
effects. Locating humans remotely from the
control system can isolate them from infor-
mation acquired when working in close prox-
imity and can limit the information band-
width available to them. This constraint on
situational awareness is exacerbated by the
fact that humans can be temporarily out of
communication. Yet, the ability to maintain
ongoing situational awareness is beneficial
to inform humans even of “typical” perfor-
mance because this ability provides a shared
operational context that is essential when
responding to anomalies.7 During both the
Phase III test and the water test, control engi-
neers maintained situational awareness by
checking on the system three to four times a
day. Thus, automation supervision requires
the human to occasionally monitor the sys-
tem remotely and to be notified when a need
for manual action arises or when interesting
or unusual events occur.

Data summarization and visualization
techniques assist humans in assessing the
control situation status at a glance. This
becomes particularly important when con-
trolling multiple, distributed life support sys-

tems whose functions are coupled. Summa-
rization and visualization software should
provide an operational overview that inte-
grates control information along multiple
dimensions.8 From the temporal perspective,
it should integrate information about pre-
dicted control activities with information
about control activities as executed. From the
state perspective, it should associate control
activities with the intended consequences of
these activities on the environment and the
system configuration. From the data per-
spective, it should provide an integrated view
of a heterogeneous set of information char-
acterizing system control, such as planned
control activities, activity histories, system
performance, anomaly summaries, and
archived data and statistics. Taken as a whole,
these different perspectives afford insight
into both the current operational situation as
well as typical system performance.

Implementing these data summarization
designs required us to build a model in the
interface that associates control knowledge
from multiple components in the autonomous
software into an understandable, unified
model of control tasks and their intended con-
sequences. It also required detecting and
labeling sets of state changes as operating
modes that had meaning to the test engineers
but no use in automated control.

Event detection and notification are
needed to inform humans who are working
remotely about important operational events
and control actions. In lieu of such notifica-
tion software, humans during both the Phase
III test and the water lab support had to inter-
rupt their regular tasks and periodically
check on the system. In structured environ-
ments such as space operations, event notifi-
cation must be implemented to guarantee that
the right information gets to the right people
in a timely manner. Thus, the implementa-
tion of event notification includes defining
the conditions that indicate an event has
occurred as well as encoding the organiza-
tional policies for determining who to inform
of an event and how. Determining who to
inform about events should be based on
assigned roles. Determining how to inform
will depend on the event’s importance and
urgency and the accessibility and availability
of receivers.

An important aspect of event notification is
knowing when and how intrusively to inter-
rupt the human. When possible, human task
priorities and notification preferences should
be considered to prevent annoying or dis-

28 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

H C C a t N A S A

tracting autonomous actions.9 When situations
arise requiring human intervention, humans
need support not only in coping with the new
tasks but also in handling interruptions to their
ongoing tasks that are unrelated to the arising
control situation. This includes assistance in
managing multiple ongoing tasks, notification
of task deadlines, aid in returning to inter-
rupted tasks, and assistance in revising their
schedules when interruptions impede their
ability to complete assigned tasks.

Remote commanding and group
situation awareness

When situations arise that automated con-
trol cannot address, it is necessary to support
some level of human intervention in system
control. During the life support tests, cir-
cumstances requiring human intervention
included both nominal manual activities such
as calibrating sensors or replacing filters and
off-nominal manual activities such as system
repair. In such circumstances, other members
of the control team must maintain awareness
of manual actions taken. During the water
test, it was common for members of the con-
trol team to share such information using
phone calls and email. Thus, notification ser-
vices should include detecting and commu-
nicating information about human interven-
tion in control.

Our approach for human intervention in
control is to provide for the interactive adjust-
ment of autonomy. Techniques for such
adjustment include reallocating tasks from
the automated control software to humans,
temporarily adapting automated control pro-
cedures for unique situations, and manually
overriding automated control actions. Apply-
ing these techniques when people are located
away from the life support hardware requires
the ability to remotely command life support
systems. This command capability includes
reconfiguring automation to support manual
actions, manual activation of automated pro-
cedures, and, less frequently, low-level man-
ual control of life support hardware (such as
turning on a pump). It also requires the capa-
bility to coordinate commands when multi-
ple agents (human and software) might be
commanding at the same time.

The interface between the human and the
automation can implement policies for
coordinating distributed, remote com-
manding. Such interface software must also
support dynamic allocation and authenti-
cation of control authority according to
organizational roles and situational needs.

It must detect and prevent command autho-
rization conflicts when more than one agent
is commanding at a time. Such prevention
includes reconfiguring the automated control
system to temporarily suspend automated
tasks that conflict with manual tasks. When
such commanding is mediated through the
interface software, it’s possible to track man-
ual activities and coordinate them with au-
tonomous activities (a form of notifying the
automation of manual actions).

A new architecture
We have designed an architecture for

human interaction with control automation
that supports human supervisory monitoring,
group situational awareness, and remote, dis-
tributed commanding. The basis of this archi-
tecture is personalized software agents that
assist humans in remotely interacting with
automated control agents such as the AWRS
and PGT systems described earlier. The Elec-
tric Elves system is one successful example
of using software agents to aid human inter-
action.10 In this system, proxy agents for each
person perform tasks for their users includ-
ing (among other things) monitoring each
user’s location, keeping other users in the
organization informed, and rescheduling
meetings if one or more users is absent or
unable to arrive on time. Although the Elec-
tric Elves system incorporates multiple
humans and software agents, each human
interacts primarily with the capabilities of his
or her own proxy (or with nonautomated
software accessed through the proxy) to aid
human–human interaction. Thus, the Elec-
tric Elves architecture does not address the
need for support agents (proxies) to act as
mediators or enablers for interaction between
humans and a third class of agents: semiau-
tonomous software agents that perform com-
plex tasks such as control.

We are developing proxy agents for
humans that mediate and assist interaction
among humans and automated control agents.
They can fulfill several roles by acting as a
representative or stand-in for the human, an
aid or assistant for the human, or a regulator
or critic of human actions. Each human in the
operational group has a proxy agent to rep-
resent his or her interests and concerns. We
are implementing a proxy as the following
set of customizable coordinated services for
individual humans:

• Notification service. Uses information
about human presence (location combined

with whether the human is online), human
roles, and user-specified preferences to
determine if an operational event is of
interest to a human and, if so, how to
inform him or her.

• Task status service. Provides activity
tracking and plan management capabili-
ties for use by both the humans and the
autonomous control agents affected by
human activities.

• Location service. Provides human loca-
tion information for the task status service
to use in tracking the completion status of
human activities and by the notification
service in determining how to notify the
human of events. We’re also investigating
the usefulness of customizing information
presentation using location information.

• Command and authorization service. Sup-
ports the human in remotely interacting
with and controlling the life support sys-
tems by determining if the human is autho-
rized to command, resolving authorization
conflicts when more than one human is
interacting with the life support systems,
and reconfiguring both the automation and
user interface when making a transition
between automated and manual com-
manding.

• Interactive event service. Assists the
human in interactively defining temporary,
new operational events and controlling
automated monitoring conditions indicat-
ing these events have occurred.

• Interactive procedure service. Assists the
human in temporarily modifying standard
operating procedures executed by the
automated control software.

• Interruption handling. Provides a set of
capabilities including an extension to the
notification service to determine if the
crew should be interrupted (and how intru-
sive the interruption modality should be),
an extension to the task status service to
mark the completion status of interrupted
activities and add new activities in response
to the interruption, and new interruption
handling services that aid a human in man-
aging concurrent activities.

Figure 4 illustrates the interaction among
two proxy agents and two control software
agents. Although each proxy agent in this
diagram appears to be identical, the human
associated with each agent can customize
and configure the agent according to his or
her preferences and organizational roles.

Our architecture for human interaction with

SEPTEMBER/OCTOBER 2002 computer.org/intelligent 29

control automation also includes control assis-
tants that aid the human in interacting with
automated control agents. These assistants per-
mit integration with agent software developed
outside of our architecture, where our archi-
tecture is associated with a specific set of
knowledge models and communication proto-
cols. To date, we have defined two types of con-
trol assistants that are needed for human inter-
action with automated control agents. The event
detection assistant detects and broadcasts oper-
ational events that are significant to humans
interacting with automated life support control,
including anomalies that occur in the life sup-
port systems. The human error detection assis-
tant detects conditions indicating the human
has taken an action with potentially adverse
effects on the life support environment.

We have developed an initial prototype of
this architecture and have demonstrated its
utility in supporting control engineers for the
Advanced Water Lab. This prototype imple-
ments the proxy with three services (notifi-
cation, task status, and location) and a control
assistant for detecting events in the AWRS.

We are currently implementing a design for
the specification and enforcement of both
organizational policies and individual pref-
erences for notification interaction. Prelimi-
nary results from our investigation of notifi-
cation interaction indicate that developing
and maintaining domain ontologies are
essential when specifying which roles
require a notice and what presentation
modalities are most effective for issuing that
notice. We have also done preliminary work
on designing software to implement policies
for coordinating distributed commanding.
Such software must support dynamic alloca-
tion and authentication of control authority
according to organizational roles and situa-
tional needs. It must also detect and prevent
command authorization conflicts when more
than one agent is commanding at a time.
Once we have implemented both designs, we
will define candidate models of human–soft-
ware interaction for remote space operations
and use the proxy agent prototype to evalu-
ate how well these policies support these dif-
ferent models.

The use of automated control software
changes the nature of the human’s role

in control operations. New protocols for
interaction between humans and control
agents must still be developed, and existing
protocols for human–human interaction must
be adapted, to account for these changed
human roles. The resulting new tasks and
changed protocols require new types of soft-
ware to assist humans in performing them.
Based on our experience with advanced life
support control, we believe that such new
software requires more than just good dis-
play design. It involves substantial chal-
lenges in the development of human-cen-
tered interaction support software to aid
people in interacting and cooperating with
automation as well as challenges in the
design of the control systems themselves.
Such challenges include

• Supporting humans in maintaining aware-
ness of control situations

• Defining the circumstances and methods by
which the control system notifies humans of

30 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

to robot control

IPC

Life support control

Crew activity
plannerEmulated

ARS
hardware

Emulated
location
sensor

ARS event
detect

assistant

to life support control

Procedure
modify
service

Emulated
location
sensor

PSA control

Emulated
PSA

hardware

Crew 1
proxy

Task Mgmt.
GUI

Collaborate
GUI

Command/
authorize
service

Procedure
modify
service

Command
GUI

Monitoring
GUI

Chat
service

Interactive
event

service

Location
service

Command
GUI

Monitoring
GUI

Task Mgmt.
GUI

Collaborate
GUI

Chat
service

Interupt
handle service

Command/
authorize
service

Location
service

Crew 2
proxy

Task status
service

Interactive
event

service

Situation
GUI

WRS event
detect

assistant

Interupt
handle service

Shared models Shared models

Task status
service

Notification
service

Notification
service

Corba/Java RMI
Existing domain
agents

Comply
arch standards

Comply
I/F standards

Hardware/
Wetware

Crew 1 Crew 2

Figure 4. An architecture for human interaction with control automation.

environmental events (nominal or off-nom-
inal) and accepts task inputs from humans

• Considering human task priorities and
preferences when determining how intru-
sive an interruption can be

• Aiding humans in resuming tasks inter-
rupted by the demands of supervisory
monitoring and control

• Developing techniques for tracking the
completion of human activities for the pur-
poses of planning for human–software
agent teams

• Assisting the human in relating control
information as represented in the automa-
tion to human mental models of control
operations, to make autonomous actions
more predictable and to reduce the poten-
tial for human error

• Defining the circumstances and methods for
a human to adjust the level of autonomy or
change the allocation of roles and responsi-
bilities among the control agents and humans

• Developing strategies for preventing con-
flicting or confounding actions when mul-
tiple humans interact simultaneously with
distributed, autonomous control agents

• Building the automation to distinguish
between expected control situations requir-
ing no action and unexpected control sit-
uations where no action has been antici-
pated (software that recognizes when it is
outside the scope of its capabilities)

Although these lessons are based on our
experience in manned space operations, this
work is relevant to other complex, dynamic
domains where humans must work with
semiautonomous software agents. Other
domains where these lessons might apply
include robotic assistants, automation for the
care of the elderly, and automated process
control (including nuclear power).

Acknowledgments
We thank Michael Shafto, manager of the human-

centered computing topic in NASA’s Intelligent Sys-
tems Program, under which the work on proxy
agents is being performed. We also recognize a long-
term collaboration with David Woods at Ohio State
University and Jane Malin at the JSC on the subject
of human interaction with intelligent systems, which
has influenced the work described in this article.

References
1. D. Cooke and B. Hine, “NASA’s New Era in

Space Exploration,” IEEE Intelligent Systems,
vol. 17, no. 2, Mar./Apr. 2002, pp. 63–69.

2. D. Schreckenghost et al., “Intelligent Con-
trol of Life Support Systems for Space Habi-
tats,” AAAI Innovative Applications of AI,

AAAI Press, Menlo Park, Calif., 1998, pp.
1140–1145.

3. P. Bonasso, “Intelligent Control of a NASA
Advanced Water Recovery System,” Proc.
Int’l Symp. Artificial Intelligence Robotics
and Automation in Space, Canadian Space
Agency, Montreal, 2001.

4. P. Bonasso et al., “Experiences with an Archi-
tecture for Intelligent, Reactive Agents,” J.
Experimental Theory of AI, vol. 9, no. 2, 1997,
pp. 237–256.

5. D. Kortenkamp, D. Keirn-Schreckenghost,
and R.P. Bonasso, “Adjustable Control Auton-
omy for Manned Space Flight,” Proc. IEEE
Aerospace Conf., IEEE CS Press, Los Alami-
tos, Calif., 2000.

6. P. Scerri, D.V. Pynadath, and M. Tambe,
“Adjustable Autonomy in Real-World Multi-
Agent Environments,” Proc. Autonomous
Agents, ACM Press, New York, 2001, pp.
300–307.

7. G. Klein et al., Cognitive Wavelength: The

Role of Common Ground in Distributed
Replanning, tech. report, Air Force Research
Laboratory, Ohio, 2000.

8. D. Schreckenghost and C. Thronesbery, “Inte-
grated Display for Supervisory Control of
Space Operations,” Human Factors and
Ergonomics Society 42nd Ann. Meeting, Opti-
cal Archives, 1998, pp. 481–485.

9. D.D. Woods and E.S. Patterson, “How Unex-
pected Events Produce an Escalation of Cog-
nitive and Coordinative Demands,” Stress
Workload and Fatigue, P.A. Hancock and P.
Desmond, eds., Lawrence Erlbaum, Hillsdale,
N.J., 2002.

10. H. Chalupsky et al., “Electric Elves:Applying
Agent Technology to Support Human Orga-
nizations,” Proc. Innovative Applications of
Artificial Intelligence, AAAI Press, Menlo
Park, Calif., 2001, pp. 51–58.

For more information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

SEPTEMBER/OCTOBER 2002 computer.org/intelligent 31

T h e A u t h o r s
Debra Schreckenghost is a senior scientist with Metrica, supporting the
Automation, Robotics and Simulation Division at NASA Johnson Space Cen-
ter in Houston. Her research interests include automated monitoring and con-
trol, architectures for intelligent software agents, and human-computer inter-
action. She received a BS in electrical engineering from the University of
Houston and an MS in electrical engineering from Rice University. She is a
member of the IEEE,AAAI, and ACM. Contact her at NASA JSC Mail Code
ER2, Houston, TX 77058; d.schreckenghost@jsc.nasa.gov.

Carroll Thronesbery is a senior scientist at S&K Technologies at Johnson
Space Center/NASA. His research interests include human-computer inter-
action with intelligent systems issues such as situation awareness, nonvigi-
lant system monitoring, system safety, and design methodology. He received
a PhD in cognitive psychology from the University of Houston. He is a mem-
ber of the Human Factors and Ergonomics Society. Contact him at 1300 Her-
cules, Ste. 140, Houston, TX 77058; c.thronesbery@jsc.nasa.gov.

Peter Bonasso is a senior staff consultant for AI & Robotics at Metrica,
based at NASA’s Johnson Space Center. He currently supports the Automa-
tion, Robotics, and Simulation Division investigations of intelligent moni-
toring and control using layered architectures. He received his BS in engi-
neering from the US Military Academy at West Point and two MSs in
operation research and computer utilization from Stanford. He is a member
of the American Association for Artificial Intelligence. Contact him at NASA
JSC Mail Code ER2, Houston TX 77058; r.p.bonasso@jsc.nasa.gov.

David Kortenkamp is a senior scientist with Metrica, supporting the Automa-
tion, Robotics, and Simulation Division at NASA Johnson Space Center in
Houston. His research interests include software architectures for intelligent
agents, human-computer and human-robot interaction and integration of per-
ception and action. He received his BS from the University of Minnesota and
his MS and PhD in computer science and engineering from the University of
Michigan. He is a member of the IEEE and AAAI. Contact him at NASA JSC
Mail Code ER2, Houston TX 77058; kortenkamp@jsc.nasa.gov.

Cheryl Martin is a research scientist in the TRACLabs division of Metrica.
Her research focuses on multiagent systems and human-computer interac-
tion. She received her PhD and MS in software engineering from the Uni-
versity of Texas at Austin and her BS in electrical engineering from Virginia
Tech. She is a member of the IEEE and AAAI. Contact her at TRACLabs,
Metrica, 1012 Hercules, Houston, TX 77058; cmartin@traclabs.com.

