
Adding Flexibility to a Room Booking System Using Argumentation-Inspired
Negotiations as Mediated by Mobile Agents

Cheah Wai Shiang, Seng Wai Loke, Shonali Krishnaswamy, Sea Ling
School of Computer Science and Software Engineering, Monash University, Australia
wsche16@student.monash.edu, shonali.krishnaswamy@csse.monash.edu.au,

swloke@csse.monash.edu.au, chris.ling@csse.monash.edu.au

Abstract

Ideas from argumentation-based negotiation can be
incorporated into human-agent interaction (HAI) to
increase the flexibility of a system and allow greater user
control. However, this can increase the complexity of
system design and implementation. This paper discusses
the use of mobile agents in mediating the interaction
between people, and between people and a system,
including resolving conflicts through negotiation in a
flexible and user controllable manner. This paper also
discusses the issues and design principles for
argumentation-based negotiation in HAI in the context of
a Flexible Smart Room Booking System.

1. Introduction

Agent technology has brought a new dimension to the
global computing environment. It is a piece of software
that is autonomous, proactive, responsive, adaptive and
flexible [3]. This paper discusses the use of mobile agents
in mediating interaction between people including
resolving conflicts through negotiation in a flexible and
user controllable manner. The mobile agent paradigm is
used due to the ability to work with different protocols,
execute asynchronously, adapt dynamically, operate in
heterogeneous environments, and they are robust and
fault tolerant [3]. Argumentation-based negotiation
[1,6,8] and human agent interaction [2,4,5] have been
applied to achieve our objective above. It has indicated
that both techniques will enhance the flexibility and user
controllability of systems. An example system, the
Flexible Room Booking System, has been implemented.

The Flexible Room Booking System is a mobile agent
based booking system that handles user tasks such as hall
booking, service enquiring, booking confirmations,
allocation and change of negotiation strategies and
leaving messages for agents. In this case, the agent will
respond to the instruction that has been assigned and pro-
actively organize the strategy to handle conflicts that
occur. Furthermore, the agent can go back to its owner for
more information.

The rest of this paper is organized as follows. Section
2 describes the design of the flexible booking system.
This includes a discussion on the interaction protocol
towards argumentative conversation. Section 3 describes
the implementation of the system, using Grasshopper.1

The paper concludes in section 4.

2. Interaction Design

The main components of agent negotiation are
interaction protocol and negotiation strategy. Agent
negotiation consists of activities like finding the
information, matching the preferences, reviewing the
negotiation strategy, organizing the negotiation strategy
and exchanging messages until reaching the final
decision. The argumentation-based negotiation approach
consists of issues like locutions design, interaction
protocol design, intelligent mechanisms design, storage
handling design and argument management. Agents in
this case are aware of the information surrounding them
and attempt to analyze, influence and understand their
opponents.

Arguments can be categorized in terms of expression
and exploration. Expression is the activities for agents to
communicate their interests, needs and preferences. They
would like to notify the other party about their needs,
role(s), level of interest, make claims and make promises
to prevent any influences from other agents. Meanwhile,
exploration is the activities for agents to challenge other
agents’ interests, needs and preferences, which can be
done by asking different types of questions.

By combining the work from Sierra et al. [7], Rahwan
et al. [6] and Toda. et al. [8], we came up with a list of
locutions towards argumentative conversations. They are
propose, reward, refuse, accept, agree, inform, request,
accept-proposal, reject-proposal, notify or notification
(expression), promise (expression), clarify (expression)
and ask (exploration). New keywords are needed to
simulate the modes of expression and exploration. Notify,
promise, clarify and ask are used for argumentation and

1 http://www.grasshopper.de

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

form the basis for different types of communicative act
specializations such as notify_claim, promise_reward,
clarify_like, ask_more and so on. Meanwhile, the
interaction protocols for argumentative conversations are
required to determine agents’ conversations and ease of
implementation. We utilize the FIPA communicative acts
in the design of our interaction protocol for argumentative
conversations.

The focus of human agent interaction (HAI) is to
determine the agents’ autonomy and task delegation. The
design process involves several issues:
�� Who will decide the agent’s autonomy – agent or

user?
�� When should the agent be fully autonomous or semi

autonomous?
�� How to adjust the agent’s autonomy?

In our design, the user will decide the level of agents’
autonomy. The user will decide under what conditions or
in which situations the agents can become fully
autonomous or semi autonomous. Furthermore, the user is
fully responsible for assigning responsibilities to the
agents. The user can allocate the level of user disturbance
or interruption to the agents. The level of user
interruption will determine the degree of the agent’s
autonomy –e.g., agents will always refer to the user for
additional information and important decisions or not
disturb the user at all. The level of interruption also
influenced by information from the agents. During the
negotiation process, the user can adjust the level of
interruption by leaving notes to agents. The agents will
direct the incoming message to the user or refer to the
notes given by the user for further processing.

The important component of HAI is providing user
input to agents. A graphical user interface (GUI) can be
designed for such a purpose. The details of the interaction
protocols that have been used for argumentative
conversation are described below.

Interaction Protocol. Interaction protocols (IPs) have
been developed to handle the argumentative conversation
between agents. An interaction protocol is a set of rules
that governs the communication or conversation between
software entities (e.g. agents). It determines the
communication pattern and message sequence during
agent conversation. Also, it will reduce the complexity of
software implementation (FIPA2, 2000). Different IPs can
be utilized for various conversations with different
agents.

Figure 1 shows the interaction between the roles of
initiator and participant, which can be represented by
different agents. The initiator starts the whole protocol.
The protocol starts when there is an enquiry for service

2 http://www.fipa.org/specs/fipa00037/SC00037J.html

by an initiator. In this situation, the participant will either
reply with an agreement to process the enquiry or a
refusal. An unsuccessful activity will lead to the
following activities such as creating a new request,
terminating the service, or arguing against the refusal.
This will lead to a looping process of argument, counter
argument, proposal and counter proposal from both
agents until satisfaction with the negotiation results or
there is failure of the negotiation process. An accept
message will result in the success of the entire request
with a physical or mental outcome. The physical outcome
is categorized as a result that has physical world practical
implications for the user such as a successful hall
booking, a successful reservation, a successful ticket
purchase and so on. The mental outcome is categorized as
users’ experience such as accepting the fact from a
resulting argument.

agree

refuse [reason]

request
Initiator Participant

inform-done

x
propose

terminate:inform

clarify

promise

ask-statement'x'

xterminate:inform
clarify

lgnore
notify-ask 'x'

accept

reject-proposal [reason]
propose

x
notify-new 'x'

clarify

propose

ask-statement'x'

accept
term inate:inform

reject-proposal [reason]

confirm:inform
Result:Inform

cancel

failure

refuse [reason]

refuse [reason]

promise

ask-statement'x '

request

agree & inform-done

Figure 1: The General Interaction Protocol for
Argumentative Conversation between agents

There are different elements for argumentation - both
parties can argue by clarifying the importance values of
the item, clarifying their preferences or limitations and
notifying their internal behavior such as expressing likes,
dislikes, usage history, purpose of event, owner’s role,
and changes of decision. Also, they can argue by
promising rewards, informing consequences, increasing
the rewards or reducing the negotiation component, and
exploring the opponent’s behavior like asking for

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

purpose, claiming a reward, reward offering, increasing
the variety of reward offers, increasing the value of a
reward offer, reducing the extent of negotiation and
declaring roles. During an argument, both parties can
decide to accept the argument, provide counter-argument,
ignore the argument, or terminate the entire conversation.
This termination process will result in an unsolved
conflict or negotiation failure. Meanwhile, the successful
request or argument enables the initiator to perform
cancellation or confirmation for the future.

The communicative acts used in our system are
divided into two categories. The first category is the FIPA
communicative acts that have been used throughout the
design. Meanwhile, the second category is the new
primitives that have been created for the argumentation-
based system. Argumentation is identified by keywords
like “notification”, “notify-statement”, “promise” and
“ask-statement”. “Notification” and “promise” are used
for expression and “ask-statement” is used for
exploration.

3. Implementation

As mentioned earlier, the Flexible Room Booking system
is an agent based room-booking system. The architecture
of the system consists of different types of agents with
different roles and functions, which is depicted in Figure
2. It can be described as a client-server system with login
agent, booking agent, query agent, negotiation agent at
the client side and lecture theatre agent and confirm agent
at the server side. The execution of the Flexible Room
Booking system involves the interaction among agents
and database processing. Some of the interactions among
the agents are described as below:
�� Instructing AgentGenerator for agent’s generation

from GUIAgent.
�� The interaction among the LoginAgent and lecture
 theatre agent (LTAAgent) for validation process.
�� The interaction between the QueryAgent and

LTAAgent for query process.
�� The interaction between the BookingAgent and

LTAAgent for booking process. In this case, both
agents will utilized the IP derived from Figure 1.

�� The interaction among the BookingAgent and
negotiation agent (NAAgent) for negotiation process.

�� The interaction among the GUIAgent with the
NAAgent, BookingAgent, QueryAgent and
LoginAgent for displaying purpose.

�� The interaction between the ConfirmAagent and
NAAgent for cancellation process.

�� The interaction between the ConfirmAgent and
LTAAgent for informing purpose.

�� The interaction among the LTAAgent with the
database for data management. The interaction

among the LTAAgent with NAAgent for negotiation
process. In this case, both agents will utilized the IP
derived from Figure 1.

GUI

GUIAgent

Agent
Generator

Login
Agent

Query
Agent

Booking
Agent

NAAgent

Database

LTAgent

Confirm
Agent

GUI

GUIAgent

Agent
Generator

Login
Agent

Query
Agent

Booking
Agent

Location for Client Side

Location for Server Side

Figure 2: The Architecture of the Flexible Room
Booking System

The functionalities of the agents are identified via their
names, which described below.
The AgentGenerator is the stationary agent that will
generate different types of task-oriented agents (login
agent, query agent, booking agent) for handling the
instruction from the user.
The LoginAgent is the mobile agent that will migrate to
the server side for the validation process.
The QueryAgent is a mobile agent that will perform the
query request after receiving the input from the user.
The BookingAgent is a mobile intelligent agent with the
capability to perform the activities listed below: (1) Make
booking or handle the booking process. (2) Negotiate for
the unavailable timeslot using the argumentation-based
negotiation process. (3) Refer to the user for additional
information and important decision. (4) Argue about the
proposal that has been given by the LTAAgent.
The negotiation agent (NAAgent) acts as a contact agent
for the user (interfaces the user to the negotiation
process). It is an intelligent agent with the capability to
perform the activities listed below: (1) Handle the
negotiation process by using argumentation-based
negotiation. (2) Pass the argument from the
BookingAgent to the GUIAgent for displaying purposes.
Some of the arguments are express like, dislike, reward
and so on. (3) Disturb the user when necessary for
decision-making. (4) Refer to the user for incomplete
information and important decisions. (5) Handle the
cancellation process upon the agreement to give up the
room for the other user.
The LTAAgent acts as the server for the System. It
handles the incoming requests from the agents and
provides the services to agents.

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

The ConfirmAgent is generated by LTAAgent to prevent
any illegal activities from the BookingAgent.

A workthrough example of the system. The booking
process enables the BookingAgent to make a booking for
a particular timeslot. Failure to do so, the BookingAgent
will provide a list of potential actions to its owner (the
user) for further activity. After selecting to negotiate by
the user, the BookingAgent will migrate to deliver the
negotiate request to LTAAgent. Meanwhile, the
LTAAgent will check the cancellation date and
confirmation record for this particular request and
propose an available timeslot to the BookingAgent. The
BookingAgent then asks the user if it should negotiate
further about the proposal, ignore the proposal or accept
the proposal. The acceptance of the proposal will lead to a
successful outcome.
Negotiation between user (represented by BookingAgent)
and the system (represented by LTAAgent): Negotiating
about the proposal means that the BookingAgent argues
autonomously with the LTAAgent (provided the user has
assigned full responsibility to the BookingAgent).
Negotiation between two users (one represented by
BookingAgent and the other by an NAAgent): Ignoring
the proposal will cause the BookingAgent to resend the
negotiate request to the LTAAgent. The LTAAgent will
then check the previous reply and respond with the
opponent’s (opponent refers to the person who has
booked the room for the slot being requested) details. The
BookingAgent will display the response to its owner
together with the collection of negotiation strategies
before proceeding to negotiate with the NAAgent
(representing the opponent). For the negotiation process,
the NAAgent will be assigned the level of interruption as
specified by its owner. This level of interruption will
determine the degree of autonomy for the NAAgent.
Furthermore, the opponent can adjust his/her NAAgent’s
autonomy by leaving messages for it. The NAAgent will
use the contents of the messages to modify its negotiation
strategy and adjust the level of interruption/interaction
with its owner. The BookingAgent might go back to its
owner for additional information during the negotiation
process.

4. Conclusion

Negotiation between users and between users and the
system as mediated by the mobile agents increases the
flexibility of the system. Typically, if a room is booked,
no one else can book it, but in this system, the user who
wants the room can initiate negotiation (with the help of
agents) with the user who holds the booking. We have
developed a system that permits flexibility in booking
rooms (in that negotiation in booking rooms is allowed)
and that users can configure their agents who are

negotiating on their behalf. Our argumentation-based
negotiation approach fits the problem since flexible
negotiation is facilitated and the richness of
argumentation-based negotiation enables modelling of the
complex interactions between users (and their agents)
such as in the booking system. By allowing users to
configure the behavior of their agents, the agents become
more controllable and increase the satisfaction value for
the user. We contend that our approach to adding
flexibility to resource management systems (e.g., room
bookings), where users competing for or sharing
resources can negotiate (with the help of agents) with the
system or with other users when resources they want are
not immediately available, is general, and can be applied
to a variety of such systems. Also, the use of mobile
agents means different user interfaces (encapsulated in
agents) can move into users’ devices (thereby without
requiring their a priori installation except for a general
agent hosting server), and when an agent moves to where
the other agent is, intensive interactions between agents
can take place locally without heavy network
communication, which is particularly useful for users
with mobile devices.

For future enhancement, we will look into the multi
issues negotiation using the argumentation-based
negotiation approach.

5. References

[1] Ashri, R., Rahwan, I., and Luck, M. (2003) Architectures for
negotiating agents, In Multi-Agent Systems and Applications
III, Proceedings of the 3rd International Central and Eastern
European Conference on Multi-Agent Systems (CEEMAS),
Prague, Czech Republic. Lecture Notes in Artificial Intelligence
2691, Springer-Verlag, pp. 136-146.
[2] Dickinson, I.(1998), Human-Agent Communication, HP
Labs Technical Report.
[3] Jennings, N. R. and Wooldridge, M. (1998) Application of
Intelligent Agents, Springer-Verlag.
[4] Lewis, M. (1998) Designing for Human-Agent Interaction,
AI Magazine, pp. 67-78.
[5] Myers, K. L., and Morley, D. N. (2001) Human Directability
of Agents In proceeding on K-CAP ’01, Victoria, British
Columbia, Canada.
[6] Rahwan, I., Sanerberg, L., and Dignum, F. (2003) Toward
Interest-Based Negotiation, Proceedings of the Second
International Conference on Autonomous Agents and Multi-
Agent System (AAMAS), Melbourne, Australia, ACM Press,
pp. 773-780.
[7] Sierra, C., Jennings, N. R., Noriega, P., and Parsons S.
(1997) A Framework for Argumentation-Based Negotiation,
Proceedings of Fourth International workshop on Agent
Theories, Architectures and Languages, pp 167-182.
[8] Toda, Y., Yamashita, M., and Sawamura, H. (2001) An
Argument-based Agent System with KQML as an Agent
Communication Language, 4th Pacific Rim International
Workshop on Multi-Agents, Taiwan.

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

