
0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 9 7

Feature
S of t ware deve lopment i s a h igh ly abst rac t
process that requi res in tense concentrat ion . The
authors show that in ter rupt ing th i s process can
s ign i f i cant ly reduce a deve lop er ’s e f f i c ienc y and
can even cont r ibute to pro jec t de lays.

oftware development consists of more than writing programming
code. Developers also participate in discussions, meetings, phone calls,
and activities undertaken to share knowledge and experience such as
consulting on previously released products, explaining technical de-

tails, and reviewing documents. Surprisingly, software engineering research hardly
addresses this issue, instead emphasizing software development methods and
techniques. If we assume that software developers spend more than half their time
communicating, we can legitimately question whether software engineering re-
search has the right focus.

Norman Fenton and Shari Pfleeger support this focus on human factors when
they state that “For many years, sociologists have studied personnel attributes, both
as individuals and teams, and their effect on productivity and products. These char-
acteristics include age, level and type of education, intelligence, gender, marital sta-
tus, type of remuneration, and more. Although we do not yet measure these as-
pects of software developers and their work habits, it is clear that when researchers
find them relevant to other professions, they are likely to be relevant to ours.”1

Rini van Solingen, Schlumberger Retail Petroleum Systems

Egon Berghout, Delft University of Technology

Frank van Latum, Dräger Medical Technology

Interrupts: Just a
Minute Never Is

S

.

Tom DeMarco and Tim Lister give further evi-
dence that human factors are important to software
engineering. They suggest several ways to improve
team interaction and trust, including nontraditional
events such as gathering to cook a spaghetti din-
ner.2 Bob Glass, noting software engineering’s cre-
ative and heuristic nature, asserts that informal
approaches might work better than formal bureau-
cratic ones.3 He warns against the bureaucratic and
noncreative effects that formal approaches and pro-
cedures tend to invoke. Even the highly process-ori-
ented Software Engineering Institute has initiated
a people-oriented approach to software engineer-
ing with the maturity reference model of human fac-
tors they’ve defined. The SEI applied their popular
five-level CMM model to describe the maturity with
which an organization addresses the importance
of people: the People-CMM (P-CMM).4 Watts
Humphrey recently developed an approach for in-
dividual improvement of software engineers, the
Personal Software Process, that also places greater
emphasis on human factors.5

Armed with the conviction that human factors
are an important contributor to software develop-
ers’ effectiveness, we researched one specific
human factor: the effects of interrupting develop-
ers during their work. The software development
literature contains little research on interrupts.
Dewayne Perry and colleagues report that software
developers spend, on average, 15 percent of their
daily effort on “unplanned interpersonal interac-
tion.”6 DeMarco and Lister describe the high im-
pact of phone calls in engineering environments:
developers routinely receive 15 telephone calls a
day, which can make the whole day nonproduc-
tive.2 This signals that interrupts are a relevant issue
for software development, and that they can be
quite expensive. For example, consider the pro-
ductivity loss implicit in an interrupt that occurs

during a meeting and puts a discussion of eight
people on hold for 15 minutes.

INTERRUPTS DEFINED

For our research, we define an interrupt as any
distraction that makes a developer stop his planned
activity to respond to the interrupt’s initiator. We fur-
ther divide an interrupt into three phases:

1. Occurrence. An interrupt occurrence makes a
developer stop his or her planned activities: the tele-
phone rings, an important e-mail arrives, or a man-
ager pays a visit. We include in this phase the effort
needed to fully understand the interrupt.

2. Handling. The developer handles the interrupt,
which implies that he or she works on the interrupt
until the initiator is satisfied with the result.
Developers usually handle interrupts immediately
after they occur, but can sometimes postpone han-
dling them until later.

3. Recovery. The developer resumes his or her
planned activities. Developers must spend some
time returning to the point in their work at which
they were interrupted. We refer to this as recovery
time. Although this time is spent on planned activ-
ities, it is an immediate interrupt effect.

Figure 1 shows these three phases. The boxed
text “An Interrupt Example” on page 99 describes a
typical interrupt in detail.

MEASURING INTERRUPTS: TWO CASES

We studied interrupts in two organizations that
develop embedded systems: Dräger Medical
Technology and Schlumberger Retail Petroleum
Systems. In both organizations, the development
groups experienced problems with interrupts and
commissioned a study to better understand them.
The companies expected that a basic understand-
ing of interrupts’ frequency and causes would pro-
vide the data for interrupt planning, causal analysis,
and corrective actions.

We encountered surprisingly similar results in
both organizations, and even more remarkably,
some results—such as interrupts taking 15-20 min-
utes each and 15-20 percent effort spent on inter-
rupts—are exactly similar to what little data is avail-
able in software development literature. Our study
on interrupts applies the generally accepted
Goal/Question/Metric method7,8 to address the in-

9 8 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

Feature

Recovery time

Planned
activities

Interrupt
occurence

Interrupt
handling

Planned
activities

Figure 1. The three phases of an interrupt show that not only do

the occurrence and handling of the interrupt subtract from the time

devoted to planned activities, but developers lose further time re-

covering their concentration.

.

terrupt problem and to structure our study. Using
GQM for this purpose is quite unusual, because we
apply what is generally regarded as a software mea-
surement method to the study of a non-software-
specific problem.

Our study asked eight main questions regarding
interrupts, which the following sections answer in
detail.

What is the workload of interrupts?
Examining the effort spent on interrupts, we

found that each requires approximately 20 minutes
for occurrence and handling combined and that the
average developer receives three to five interrupts
per day. Thus developers spend roughly 1 to 1.5
hours per day on interrupts, which consume 15–20
percent of their total time. This is similar to the per-
centage found by Perry and colleagues.6

One project manager who participated in our re-
search told us he always padded his planning esti-
mates by 20 percent to account for unexpected ac-
tivities such as organizational communication,
training, socializing, and interrupts. However, our
measurements showed him that this slack was al-
ready fully consumed by the interrupts occurring
within his own department. Realizing that this
might indicate a possible cause of planning delays,
he acted to increase interrupt awareness and de-
crease the number of interrupts.

Through which medium do
interrupts occur?

Figure 2 shows the distribution of interrupts
across the three possible delivery media: personal
visits, telephone calls, and e-mail. G1, G2, and G3 in-
dicate the groups in which the measurements were
performed. G1 and G2 are Dräger groups; G3 is the
Schlumberger group.

In both organizations, personal visits and tele-
phone calls caused 90 percent of all interrupts, and
e-mail caused the rest. Significantly, interrupts re-
sulting from personal visits or telephone calls au-
tomatically receive full attention, even though
only 25 percent of all interrupts are classified as
urgent. With face-to-face and telephone interrupts,
the initiator determines the moment of interrup-
tion and the developer must respond immedi-
ately. However, the developer responds to an e-
mail interrupt when it suits him or her. Further,
personal visits and telephone calls need more han-
dling than e-mail—apparently because e-mail in-
terrupts are usually better formulated.

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 9 9

A N I N T E R R U P T E X A M P L E
Bob is a software developer primarily concerned with writing test

applications. These test tools support a software package used to build

graphical user interfaces for embedded payment systems. The tools

that Bob develops help to automatically test a specific user interface by

simulating possible user actions. This week Bob has been assigned to

set up the design for a “record and playback” test tool to support re-

gression tests. This tool will reuse several parts of a tool Bob developed

last year. Bob has just accepted a cup of coffee from his colleague and

returned to his investigation of components that could be reused in

the new tool (Planned Activity).

The telephone rings (Interrupt Occurrence). Susan, one of the cus-

tomers’developers, has just finished testing a new ATM user interface

that makes it possible to charge banking accounts for fuel pumped at

gas stations in Germany. Susan encountered some error codes when

testing the user interface, but could not find these codes in the testing

tool’s manual.

Bob asks her for the specific error codes and explains to Susan which

type of error probably is still in the product (Interrupt Handling). He

promises to send her the latest version of the manual, because Susan

apparently has an expired version. She asks for four copies because her

colleagues are using the same outdated manual. She then thanks Bob

and hangs up. Bob sends an e-mail to the marketing department re-

questing that four manuals be sent to Susan. He also reminds the de-

partment that they should send the new version to all other users as

well, because he should not be disturbed to provide help with such is-

sues (also Interrupt Handling).

Bob gets more coffee for himself and his colleague, then returns to

his work (Planned Activities). It takes some time to regain his concen-

tration (Recovery Time), but after a quarter of an hour he is working

again at normal speed.

80

70

60

50

40

30

20

10

0

Person Telephone E-mail

Pe
rc

en
t

G1 G2 G3

Figure 2. Interrupt occurrences classified by the three media in

which they are delivered: personal visits, telephone calls, and e-mail.

.

Who causes interrupts?
Figure 3 shows the distribution of interrupts

over the types of initiators: members of the devel-
oper’s own R&D group, other R&D groups, and non-
R&D groups.

All R&D groups combined accounted for fully 70
percent of the recorded interrupts. The developers
found this remarkable, because they expected that
other departments would be the main source of
interrupts. This result suggests that interrupts are
an R&D-inherent issue, and that solutions to this
problem should be found primarily within those
departments.

What is the recovery time after interrupts?
We initially included a metric for interrupt recov-

ery time in our measurement programs. Unfor-
tunately, this variable proved too difficult to mea-
sure, so after the first measurement period we
omitted it from all programs. Nevertheless, we did
observe that recovery time is primarily a problem
when an interrupt occurs during actual program-
ming work, and less so when it occurs during doc-
umenting or meetings, for example. We assume that
the greater concentration required during pro-
gramming accounts for the increase.

DeMarco reports that the recovery time after a
phone call is at least 15 minutes.2 Even though we
could not measure recovery time exactly, we be-
lieve his estimate to be valid. If more than 10 in-
terrupts occur during a day, the time between the

interrupts becomes too short to accomplish prod-
uct development work. This agrees with related
work done by Perry and colleagues, who claim that
developers typically perform their work in blocks
of two hours.6

How are interrupts handled?
Figure 2 shows that fully 90 percent of interrupts

are difficult for developers to avoid. However, some
interrupts can be postponed, depending on type.
Most interrupts are small questions or requests that
developers prefer to handle immediately. Also, some
interrupts cannot be postponed because the initia-
tor considers them urgent. At Schlumberger we
measured whether interrupts were handled imme-
diately or postponed, and found that developers
handled 90 percent of the interrupts immediately.
However, the postponed interrupts needed three
times more effort to handle. This may well be why
they were postponed in the first place.

We suspect that lack of relevant details also
caused developers to postpone interrupt han-
dling. Both organizations assumed at the start of
the measurement program that 50 percent of all
interrupts have insufficient details. However, our
measurements showed that 90 percent of all in-
terrupts for both organizations were formulated
with sufficient information. At Dräger, however,
the 10 percent of interrupts that lacked sufficient
detail needed three times more effort than at
Schlumberger, where such interrupts took no
longer to handle than others. We could not de-
termine the cause of this disparity.

What are the underlying reasons for
interrupts?

Figure 4 shows the leading causes of interrupts,
including knowledge or experience exchange, so-
cial issues, documentation, organizational issues,
and other causes.

For both organizations, approximately 25 per-
cent of all interrupts were caused by issues related
to knowledge or experience, such as discussing pro-
gram structures or explaining technical details.
Further, 20 percent were caused by documentation
issues, such as documentation review and inade-
quate or nonexistent documentation. Both com-
panies also suffered from organizational short-
comings in that 10 percent of all interrupts were
caused by initiators who were unaware of the exact
responsibilities held by the particular developer
they approached.

1 0 0 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

70

60

50

40

30

20

10

0

Own R&D group Other R&D groups Non-R&D groups

Pe
rc

en
t

G1 G2 G3

Figure 3. Interrupt initiators classified by category: members of

the developer’s own R&D group, members of other R&D groups, and

members of non-R&D groups. The developers were surprised that

less than a third of all interrupts are initiated by departments out-

side R&D.

Feature

.

What actions can be taken to solve the
interrupt problem?

Developers in both organizations consider an in-
terrupt to be inappropriate if it is delivered to the
wrong person, or if the initiator himself could have
handled it. Approximately 30 percent of all interrupts
fell into this category, and an organization that wants
to improve its interrupt efficiency should probably
focus first on removing these. Given that unclear or-
ganizational responsibilities caused many interrupts,
employees’ individual responsibilities should be
communicated throughout the organization.

To influence interrupt initiators, both organiza-
tions focused on establishing a company-wide
awareness of interrupts’impact on productivity, ac-
tively communicating our measurement results via
presentations, posters, and online resources. This in-
terrupt awareness should contribute to initiators de-
livering—and developers handling—interrupts
more efficiently.

Because developers handle e-mail interrupts
more efficiently than those delivered by personal
visits or telephone calls, both organizations set up
and promoted an interrupt e-mail policy. The engi-
neers agreed that urgent interrupts could be deliv-
ered by telephone, but not, preferably, by personal
visits because these proved quite inefficient and
often distracted others besides the developer.

What are the positive and negative
aspects of interrupts?

Although many developers consider interrupts a
necessary and thus positive part of their development
work, they do consider them negative because some-
times concentration is disturbed. Also, as mentioned,
many interrupts fall outside the developer’s area of re-
sponsibility. Table 1 shows which aspects of interrupts
developers perceive as either positive or negative.

Some interrupts were considered either positive
or negative depending on context. For example, if
an interrupt concerned part of a developer’s task or
supported problem solving, it was considered posi-
tive; if it was not part of the developer’s task or did
not prevent problems, it was considered negative.
Developers consider the social element of interrupts
very positive—primarily because software develop-
ment is considered an interactive, social, and creative
discipline highly dependent on good cooperation.
Random interaction, therefore, appears to be neces-
sary for development work, and supports creating
an open culture even though it costs nonproductive
time and might delay projects.

COMPANY-SPECIFIC RESULTS

Our study answered the basic questions regard-
ing interrupts by focusing on the similarities in both
organizations’ measurement programs. However,
not all results were identical.

Dräger Medical Technology
At Dräger we measured the interrupts for two

groups: hardware developers and test engineers.
The hardware developers exhibited a negative atti-
tude toward interrupts because such distractions
disturb the main task, which requires high concen-
tration. Test engineers regarded the interrupts as
part of their job and useful.

Social visits and environmental noise caused 30
percent of all interrupts. Environmental noise was
caused by, for example, conversing colleagues,
operating machinery, and the cleaning staff. The
developers ascribed the high percentage of such

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 1 0 1

Feature

35

30

25

20

15

10

5

0

OtherKnow Social

Pe
rc

en
t

Doc Org

G1 G2 G3

Figure 4. The exchange of knowledge or experience, social in-

teraction, and documentation issues cause most interrupts.

Table 1
Interrupts’ Positive and

Negative Aspects

Positive Negative
Part of developer’s task Disturbs developers’concentration

Supports problem solving Requires additional interrupt effort

Stimulates social interaction Not part of developer’s task

Random communication Does not prevent problems

essential for development work

Provides overview of develop- Causes project delay

ment work’s current status

.

distractions to their currently crowded work envi-
ronment. A quieter workspace with more privacy
should decrease the interrupt percentage signifi-
cantly, so Dräger plans to rearrange its development
environment along the lines DeMarco and Lister
suggest in Peopleware.2

Finally, Dräger’s developers found especially un-
pleasant those interrupts caused by failure or insuf-
ficient knowledge of development tools. Even
though few such interrupts occurred, the develop-
ers spent much effort handling them. Therefore,
they suggested focusing special attention on keep-
ing the tool environment running and providing ad-
equate tool training.

Schlumberger Retail Petroleum Systems
At Schlumberger we measured interrupts within

a team consisting of two hardware developers, three
software developers, and their manager. While the
developers considered interrupts a positive element
in their work, the interrupt measurement program
increased awareness of interrupts’negative effects,
especially among the interrupt initiators. As a result,
interrupts decreased by 30 percent during the mea-
surement period alone.

We arrived at two practical conclusions from the
Schlumberger interrupt measurements.

First, normal project plans included 20 percent
slack for unexpected work. Yet it appears that this
cushion is already spent on interrupts, which could
explain planning delays. Obvious solutions are to
further pad planning estimates or to reduce the
number of interrupts.

Second, interrupts during meetings should be re-
duced to zero. Such interrupts prove very expensive
because they disturb discussions involving many
people.

Schlumberger achieved many improvements
with regard to minimizing interrupts. Straightfor-
ward examples include reducing the number and
duration of interrupts during meetings and a 50 per-
cent effort reduction when dealing with those meet-
ing interrupts that still occurred. The number of in-
terrupts caused by documentation issues dropped
by 80 percent thanks to improved documentation
update and distribution practices.

INTERRUPTS AND MATURITY LEVELS

Interrupts are necessary to solve development
problems. However, it would be better if the prob-
lems causing the interrupts had been prevented
by, for instance, improving software development

according to maturity models
such as the CMM.9 Established
processes prevent many prob-
lems, and result in proportion-
ately fewer interrupts. For exam-
ple, an improvement initiative

that strives to improve requirements management
will decrease many interrupts related to require-
ments changes or product nonconformance.

When we presented our first results on interrupt
measurement at a well-established conference, an
experienced assessor approached us afterward. He
told us that he had visited a large telecommunica-
tions organization only the day before. This organi-
zation had started a company-wide improvement
program to assess all software-producing units.
While visiting one software department to plan his
initial assessments, he noticed several groups of en-
gineers gathered around computers, mainly solving
urgent problems. The telephone rang constantly
and engineers interrupted one another repeatedly.
Yet this was not a help-desk department but rather
the main software-producing unit.

The assessor told us he advised the department
manager to postpone all initial assessments for at
least three months. He recommended the post-
ponement because the assessment he planned to
carry out would mainly assess the “established
process.” When engineers have no time to perform
that established process, the assessment is of little
value. The assessor further recommended that the
manager work on the interrupt problem first and,
once he solved it, the assessor would return and per-
form his assessments.

At this same conference we spoke with a man-
agement consultant who told us that, according to
his experience, our study’s measurement—that 20
percent of project effort is devoted to interrupts—
is too low. When we asked him for actual data, how-
ever, he admitted that the organizations he had in
mind did not perform any data collection.

Because earlier research concluded that GQM
measurement resembles organizational learn-

ing by development teams,10 we expected that GQM
is applicable to organizational problems such as in-

1 0 2 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

Feature

A quieter workspace with more privacy
should decrease interrupts significantly.

.

terrupt handling. Our research confirmed this.
The most important benefit of an interrupt mea-

surement program is the creation of interrupt aware-
ness. Both the interrupt initiator and the interrupted
developer must become more aware of interrupts’
negative effects. Although interrupts often result in
a positive exchange of information that moves the
project forward, when and how an interrupt occurs
can determine the extent of its negative impact.
Initiator awareness causes a more thorough assess-
ment of the interrupt, which results in more coher-
ent interrupts and combined interrupts. Developer
awareness causes a more proper response to inter-
rupts and the formulation of better plans for dealing
with interrupt-related activities. This, in turn, results
in increased interrupt-handling efficiency. Develop-
ers spend approximately one day a week handling
interrupts; active management of interrupt gener-
ation and handling can reduce this time by more
than 50 percent.

Both organizations performed their interrupt
measurement programs for only three months. We
realize that this gives us a limited data set, but our re-
sults look promising. We recommend further re-
search into the organization of software develop-
ment, because we expect that software research
might overlook the benefits that can be achieved
by improving non-software-specific processes. ❖

REFERENCES
1. N.E. Fenton and S.L. Pfleeger, Software Metrics, a Rigorous and

Practical Approach, Thomson Computer Press, London, 1996.

2. T. DeMarco and T. Lister, Peopleware: Productive Projects and
Teams, Dorset House, New York, 1987.

3. R.L. Glass, Software Creativity, Prentice Hall, Upper Saddle River,
N.J., 1995.

4. B. Curtis, W.E. Hefley, and S. Miller, People Capability Maturity
Model (P-CMM), CMU/SEI-95-MM-02, Software Eng. Inst.,
Carnegie Mellon Univ., Pittsburgh, 1995, http://www.sei.cmu.
edu/publications/documents/95.reports/95.mm.002.html.

5. W.S. Humphrey, A Discipline for Software Engineering, Addison
Wesley Longman, Reading, Mass., 1995.

6. D.E. Perry, N.A. Staudenmayer, and L.G. Votta, “People,
Organizations, and Process Improvement,” IEEE Software, July
1994, pp. 36-45.

7. V.R. Basili, C. Caldiera, and H.D. Rombach, “Goal/Question/
Metric Paradigm,” Encyclopaedia of Software Engineering, Vol. 1,
J.J. Marciniak, ed., John Wiley and Sons, New York, 1994,
pp. 528-532.

8. F. van Latum et al., “Adopting GQM-Based Measurement in an
Industrial Environment,” IEEE Software, Jan./Feb. 1998, pp. 78-86.

9. W.S. Humphrey, Managing the Software Process, Addison
Wesley Longman, Reading, Mass., 1989.

10. R. van Solingen, E. Berghout, and E. Kooiman, “Assessing
Feedback of Measurement Data: Practices at Schlumberger
RPS with Reflection to Theory,” Proc. 4th Int’l Software Metrics
Symposium, IEEE Computer Soc. Press, Los Alamitos, Calif.,
1997, pp. 152-164.

ACKNOWLEDGMENTS
We thank the Dräger Medical Technology (www.

draeger.com) and Schlumberger Retail Petroleum Systems
(www.slb.com/et/ms_petrol.html) project teams for their
participation in the measurement programs. We also thank
Hans Leliveld and Tom Dolan for their contributions.

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 1 0 3

Feature

Rini van Solingen is concurrently em-
ployed as a software quality engineer for
Schlumberger RPS and by the Faculty
Technology Management of Eindhoven
University of Technology in the Nether-
lands. His research focuses on software
process improvement for embedded
systems development.

Van Solingen received an MSc in computer science from
Delft University of Technology.

Egon Berghout is an assistant professor of
information strategy and management
of information systems at Delft University
of Technology in the Netherlands, and
associate of the M&I/Partners group of IT
strategy consultants. His research focuses
on problems with efficiency and
effectiveness in information systems.

Berghout received a BSc in industrial engineering from
Eindhoven Polytechnic, an MSc in information management
from Tilburg University, and a PhD in informatics from Delft
University of Technology. He is chairman of the Dutch
Information Economics Working Group, program chair of the
Fifth European Conference on the Evaluation of Information
Technology, and member of the Information Resource
Management Association.

Frank van Latum is R&D manager at
Dräger Medical Technology. His main
interests are the professional manage-
ment of embedded systems develop-
ment projects, with emphasis on prod-
uct and process improvement.

Van Latum received an MSc in mathe-
matics and an MSc in computer science

from the University of Nijmegen. He is a member of the IEEE
Computer Society.

About the Authors

Readers can contact the authors via van Solingen at
r.v.solingen@tm.tue.nl.

.

