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Abstract 
This study investigates the use of cognitive architectures for 
usability and software engineering of notification system 
user interfaces.  These interfaces, which are special in that 
they are used in a divided-attention situation, require 
careful study of multi-tasking support of the information 
design.  Cognitive architectures appear promising for this 
type of research, since they attempt to model human 
information processing characteristics related to system 
events.  Three versions of cognitive architectures are 
compared according to criteria that would support 
research of notification systems.  Data is gathered from 
empirical observation and is used to draw conclusions 
about suitability for modeling notification interfaces (and 
thus reducing the expense of user testing).  The findings 
show that no system is ideal, but a combination of features 
from each of the three systems may be an ideal future 
solution. 

Keywords: human-computer interaction, ACT-R, Soar, 
EPIC, dual-task, information display, empirical study 

 

 

1. Introduction 
 

Although there have been many challenges, usability 
testing continues to dominate interface evaluation. The 
typical setup calls for gathering data and feedback from 
participants as they interact with interfaces in a controlled 
computing environment. However, testing sufficient 
numbers of the appropriate kinds of participants 
bottlenecks the software development process. Because of 
this, challenges, work-arounds, or modifications to pure 
usability testing are not rare [10, 14]. A recently maturing 
sector of cognitive science, cognitive architectures, could 
fulfill the role of usurper once-and-for-all. Cognitive 
architectures such as ACT-R, Soar, and EPIC, much like 
computer architectures, specify the mechanisms and 
constraints of human information processing, including 
theories of memory, attention, perception, and action. 
Implementations contain perceptual-motor systems 
designed specifically for interaction with graphical user 

interfaces, potentially giving interface evaluators cheap, 
instantaneous methods of extracting volumes of data about 
usability in a completely managed environment. Modeling 
the human side of human-computer interaction could 
partially or completely eliminate the need for human 
participants in usability evaluation. 

A specific set of tools, notification systems, provides an 
interesting challenge for the “cognitive architecture 
methodology.” Notification systems are a special type of 
human-computer interface attempting to deliver current, 
important information to the user in an efficient and 
effective manner [8, 9]. Examples include stock tickers, 
instant messengers, and email tool-bar notifications. 
Notification system designers build systems with a user’s 
complete task environment in mind. For example, a 
designer could argue that users of a notification system 
would feel annoyed, if while immersed in an important 
task, they are notified with a “pop up” window. On the 
other hand if the notification is very important, and the user 
is not occupied perhaps a pop-up window would be 
appropriate. Many methods alerting users of information, 
including pop-up windows, sound, secondary displays and 
real-world interfaces are deployed as appropriate based on 
the expected or specified task-environment of the user. 

Task environments encase an enormous variety of tasks. 
Tasks can be described as “primary,” the main focus of a 
user’s attention, or “secondary,” tasks that demand 
occasional or no attention. A distinction also exists 
originating with Norman between complex tasks, described 
with a deep and wide decision tree, and shallow tasks, 
described with a narrower and shallower tree [11]. 
Notification systems exist as complex, simple, primary, or  
secondary tasks, and everything in between. A well 
designed notification system allows itself to become 
secondary while still alerting the user of needed 
information in a manner conducive with its complexity and 
secondary status. Therefore, for cognitive architectures of 
be effective, user behavior cannot simply progress linearly 
with a single task, but must be prepared for sudden or 
subtle shifts of cognitive resources to a set of tasks as 
simple as closing a “pop-up” and as complex as playing an 
engaging chess match. 
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As the study of Notification Systems becomes an 
increasingly important topic within HCI, it is important to 
assess the suitability of current cognitive architectures. It is 
hoped that such results can help steer the development of 
these architectures so that they can positively impact 
notification system research. This study proceeds along two 
paths. First we inquire about the practicality of applying 
cognitive architectures to any Human-Computer Interaction 
domain. Architectures must be easy to install and learn. A 
brief survey of HCI literature is done to examine 
precedents for using cognitive architectures.  

 
2. Research Questions 
 

Three questions provide a test to establish whether task 
interaction is properly modeled by the architectures. These 
questions can be thought to probe the cognitive 
architecture’s ability to handle the spectrum of notification 
system assertiveness.  

First, the most assertive: Does the architecture properly 
handle forcible interruptions of one task by another? An 
example of this phenomenon is seen when a pop-up 
window appears in foveal vision, forcibly diverting 
attention to itself.  

Second: How much attention must a cognitive 
architecture apply to a peripheral stimulus to perceive and 
choose to react to it? A secondary task that gently asserts 
itself peripherally gives users a choice to ignore or attend to 
the secondary task. An email tool-bar notification allows 
users to choose whether to divert attention to their email 
client, or continue with their ongoing task.  

Third: Can the architecture comprehend and learn 
information occurring pre-attentively? Ambient displays 
and many real-world interfaces maintain a constant 
peripheral stream of information. The goal is to maintain a 
level of comprehension over a period of time that leaves, at 
the least, a “feel” for ongoing events on in long-term 
memory. Architectures must allow memory to be pre-
attentively altered at a perceptual level while gradually 
establishing links between stimulus and meaning on a 
higher, long-term level of understanding.  

Next, we discuss the methodology used to asses the 
ACT-R, Soar and EPIC systems with respect to these 
questions. 

 

3. Methodology 
 

These questions, combined with the aforementioned 
practical concerns of installation, learnability, and HCI 
literature presence correspond to six criteria that are 
considered. In considering each criteria, we assign 
acceptability points on a five point scale: five being 
completely acceptable and one being completely 
unacceptable. Using this scale is clearly subjective, it 

should be considered as both our educated opinions as well 
as extensive user feedback. The real substance of this study 
lies not in the ratings but in the experienced chronicled 
here—giving both architecture designers and HCI 
practitioners guidance on the practical and theoretical 
capabilities of cognitive architectures. 

The basic methods for approaching each criteria were 
the same. Installations were generally given a two-hour 
time limit. However, if we felt progress could still be made 
after two hours, installation continued until success or until 
all avenues had been exhausted. We also judged the 
learnability of a system by what could be learned within a 
two hour period by an advanced HCI student with a strong 
computer science background. Resources obtained from the 
architecture’s websites1 formed the focus of the learning 
sources. Reviewing the HCI literature revolved around 
analyzing the results from the ACM® Web Portal using the 
keywords <cognitive architecture> AND HCI (e.g. ACT-R 
and HCI). Beneficial results either evaluate an interface or 
extend HCI theory with a cognitive architecture. To answer 
the aforementioned concerns about modeling complex task 
interaction, documentation by the system’s authors referred 
to as “primary literature” is queried first, with secondary 
sources being called upon when the primary literature fails 
to provide answers. 

 

4. Observations and Results 
 

This section presents the details related to the empirical 
observations achieved using each cognitive architecture.  
Most discussion and conclusions are saved for the next 
section. 

 

4.1. Cognitive Architectures in HCI Literature 

 
HCI practitioners use ACT-R and Soar similarly. Both 

architectures are used to explore how users reason through 
interfaces. Typically both are used together to confirm one-
another. Rieman et al implement ACT-R and Soar models 
to support consistency in interface design [13]. Peck and 
John account for 90% of user browsing behavior in an “on-
line help browser” [12]. These results, however, were scant. 
Out of a combined twenty-one results for ACT-R and 
twenty-nine for Soar (with much overlap) only four 
involved the use of ACT-R and Soar for theory extension. 
Many of the other results were workshops of studies 
promoting the use of cognitive architectures in HCI. The 
results, while not prolific, point to a small precedent of 
using ACT-R and Soar to make theoretical points. 

                                                        
1 Architecture websites: ACT-R: http://act-r.psy.cmu.edu/,; 

EPIC: http://www.eecs.umich.edu/~kieras/epic.html, 
Soar: http://ai.eecs.umich.edu/soar/) 



Kieras and Meyer dominate EPIC’s literature. Each of their 
papers develops the capabilities of EPIC further—always 
with the disclaimer that EPIC remains a research system [6, 
7]. Extending HCI theory is no the goal of these works. 
Hornof and Kieras use EPIC to show how users anticipate 
the location of items in a menu [4]. The authors themselves 
admit that menus have been heavily studied in the field, 
hence they merely demonstrate EPIC’s ability to function 
within an established framework. Other studies include an 
attempt to model the multi-modal behavior of telephone 
operators. Out of the twenty-five results, none of the 
studies involve expansion of HCI theory. The results are 
more scant than the ACT-R and Soar results.  

 

4.2. System Installation and Learnability 
 

Installation ease varied drastically from architecture to 
architecture. ACT-R came packaged as a “zip” file 
containing a win32 installation executable. On execution, 
an easy to follow “wizard” interface guided installation. An 
ACT-R environment was up and running in no less than 
twenty minutes after beginning the download. Installing 
Soar, however was much more trouble. We exhausted the 
two hours attempting to install Soar. After going down 
several blind alleys and being forced to back-track, we 
discovered that Soar’s installation depends heavily on the 
installed Tcl/Tk version (a prerequisite for Soar). After 
upgrading to Tcl/Tk 8.4, installation was successful. EPIC 
was only partially installable. EPIC comes packaged as 
LISP source code. The authors have yet to document an 
installation procedure and do not provide any method for 
testing installation. 

Similarly, ACT-R and Soar provided extensive tutorials 
on their websites, while EPIC had none whatsoever. ACT-
R’s installation includes a trainer environment and example 
modules which correspond to examples in one of nine 
tutorial units. The first unit prints to approximately twenty 
pages, and took the entire two hours to complete. The 
tutorials target an audience in psychology, which can be a 
hindrance for computing professionals. For example, the 
first tutorial spent considerable space explaining a concept 
akin to “scope.” The tutorial instructs based on an earlier 
version of the environment, meaning some instructions are 
faulty. Overall, ACT-R’s tutorials come in easy to swallow 
packages which fruitfully combine theory with practice. 

Soar’s tutorials come in four parts, each prints to about 
sixty to eighty pages. Two hours was spent to the first third 
of the first tutorial. Each tutorial focuses on a specific 
problem. In the first tutorial the student must devise simple 
strategies for a “pac-man®” style game called “Eaters.” To 
work with Eaters examples, the tutorial requires an 
additional piece of software called Visual Soar. The 
experience, however, was very fun, engaging and easy. 

 

 

 

4.3. Examining Architecture Characteristics 
 

ACT-R, EPIC, and Soar share several cognitive 
structures. Cognitive architectures divide elements of 
human memory between declarative memory, descriptive 
memory about things (what a bike is) and procedural 
memory, methods for doing things (how to ride a bike).  
While the names assigned to units of declarative memory 
change per architecture, elements of procedural memory 
are almost always referred to as production rules or as 
abbreviated productions. Production rules take their name 
from their syntax which is of the form: If some declarative 
memory precondition is met, then alter declarative 
memory. Cognitive architectures execute by repeatedly 
selecting production rule(s) whose preconditions are met 
then executing the selected rule(s). 

To develop models of cognitive phenomena, a modeler 
specifies the production rules, the structures of declarative 
memory, and declarative memory’s initial state. Models are 
tested against empirical data on the phenomena and refined. 
Recall the three criteria: (1) Does the architecture properly 
handle forcible interruptions of one task by another? (2) 
How much attention must a cognitive architecture apply to 
a peripheral stimulus to perceive and choose to react to it? 
and (3) Can the architecture comprehend and learn 
information occurring pre-attentively? Understanding the 
specific constraints of each architecture allows a closer 
examination of its ability to capture user behavior within 
the task environment. 

 

4.3.1. ACT-R. In addition to production rules and chunks, 
ACT-R’s unit of declarative memory, ACT-R implements 
goals – chunks that encapsulate an end-state of declarative 
memory. Since goals are chunks, production rules may 
create subgoals to establish a prerequisite state of 
declarative memory. For example, if ACT-R aims to obtain 
a college degree, a natural subgoal might be to pass 
freshman calculus. ACT-R maintains goal-subgoal 
relationships using a goal stack. That is, ACT-R pushes 
new subgoals on top of their parent goals much like a 
computer program’s run-time stack pushes called 
procedures on top. ACT-R stands out by enforcing the 
serial execution of production rules. Productions are 
strategically selected based on past experience using that 
production rule with the current goal [1]. 

 

Does the architecture properly handle forcible 
interruptions of one task by another? ACT-R’s goal stack 
setup obviates concern about whether a secondary, 
unrelated goal can interrupt the ongoing goal-stack. 
Anderson and Lebiere address this problem. A production 
rule could create a subgoal or change the current goal to 
reflect interruptions of one task by another. The example 
they give involves escaping a fire:  



 

 IF the goal is to do any task 

 AND one hears “FIRE! 

 Then escape the fire. 

However, this solution comes with a warning: 

 Cognitive Psychology has tended not to be in the 
 business of creating such emergency interrupts 
 and studying the cognition that results. Therefore, 
 we cannot say that ACT-R’s attention mechanism 
 is the right mechanism for modeling such 
 interrupt handling because there is no data with 
 which to assess it. All we can say is that there is 
 no inherit contradiction between such interrupt 
 handling and ACT-R goal structures [1]. 

Nevertheless, Gray and Altman present an alternate 
argument. Gray and Altman discuss cognitive strategies of 
memory management during task switches and develop an 
ACT-R model that strategically coordinates the activation 
of task-specific memory [2]. This study, unfortunately, 
stands alone in the literature. Moreover, Gray and Altman’s 
study sticks to two related and simple tasks. More research 
is needed before it can be said whether or not ACT-R can 
handle abrupt and forced task-switching—an essential 
characteristic for investigating usability questions of 
notification systems. 

 

How much attention must a cognitive architecture 
apply to a peripheral stimulus to perceive and choose to 
react to it?  In order to respond to a stimulus pre-
attentively, ACT-R must be able to select a production rule 
based on knowledge about the periphery pre-attentively.  
Production rules only test chunks from declarative memory. 
Therefore any stimulus must arrive in declarative memory 
for it to be testable. To get to declarative memory, attention 
must be directed to objects in visual or auditory memory 
via commands in a production rule’s execution side. For 
example, an approaching fire would prompt the mind to 
react, yet ACT-R would completely ignore the fire unless 
attention was focused on it [1]. 

In addition, it is highly unlikely that ACT-R would 
select production rules unrelated to the current goal. In 
ACT-R, any production rule has an associated expected 
gain relative to the current goal. The probability a 
production rule will be selected is high when its expected 
gain .is high ACT-R performs a cost-benefit analysis based 
on the production rules past progress toward the goal [6]. In 
short, there is a small probability that an unrelated 
production, such as the “FIRE!” example above, would get 
chosen when other productions remain. ACT-R stays 
preoccupied with a good book instead of escaping a fire. 

ACT-R completely ignores a secondary task prompting 
reaction if the task is unrelated to the current goal. 
Unfortunately this also severely limits this cognitive 

architecture’s ability to represent many notification 
systems. 

Can the architecture comprehend and learn 
information occurring pre-attentively?  ACT-R creates a 
distinction between chunks received about the world— “the 
characters ‘3 + 4 = ?’ “—and chunks resulting from goal 
completion— “the result of adding 3 and 4 was 7.” As the 
same productions process the former type into the latter 
type, the result becomes reinforced. Hence, when “3 + 4 = 
?” are seen, ACT-R begins to respond with a result of “7” 
quicker on each successful addition. In notification 
systems, expert users comprehend visualizations similarly. 
Immediate mappings between stimulus and meaning grow 
with time. ACT-R provides extensive tools for increasing 
knowledge via automatic encoding and understanding of 
stimulus.  

ACT-R fails, however, to support any pre-attentive 
comprehension. Over time the knowledge gained by a 
complex display might become automatic. However, a 
production rule must still be fired to recognize the 
previously solved problem. Productions are selected to 
support the current goal with secondary, unrelated goals or 
tasks remaining outside of consideration. 

Therefore, while ACT-R fosters an interesting 
environment with which to observe how users attentively 
understand visualizations, it fails to support any parallelism 
whatsoever for pre-attentive comprehension. Unfortunately, 
notification systems that aim for pre-attentive 
comprehension are designed within completely separate 
constraints than those demanding complete attention, 
voiding any benefits ACT-R might bring. 

 

4.3.2. EPIC. EPIC represents cognition, perception, and 
action using several interconnected processors executing in 
parallel. Each processor corresponds to a component of 
cognition, perception or action. For instance, the “cogp” 
processor selects and executes production rules and 
interacts with working memory, similarly the “auditory” 
processor “listens” to audio input with write-only access to 
memory. EPIC’s parallelism runs deep; all production rules 
whose preconditions match are executed. 

 

Does the architecture properly handle forcible 
interruptions of one task by another?  EPIC targets human 
factors and engineering psychology problems. Kieras’s 
EPIC site states: 

 The most important issue that we are studying 
 with EPIC is the nature of human multiple-task 
 performance: these are situations in which a 
 person is executing more than one task 
 simultaneously, such as tuning a radio while 
 driving a car, or making tactical decisions while 
 tracking a specific target in a military fighter 
 aircraft  [7]. 



EPIC’s management of attention show this as well. EPIC 
represents each task as a set of production rules with a 
governing goal. EPIC can be built using an executive-
control mechanism, working by shifting the focus of 
attention from one task’s governing goal to another 
(synonymous to an operating system’s scheduler). Using 
this framework, Kieras and Meyer modeled the results of 
many classic multi-tasking experiments. Despite EPIC’s 
success in this realm, Kieras and Meyer always remind 
their audience that EPIC remains a research system not 
ready for mass use. In addition, little has been published 
since 1999 further chronicling the system [6]. 

 

How much attention must a cognitive architecture 
apply to a peripheral stimulus to perceive and choose to 
react to it? EPIC executes all production rules whose 
prerequisites are met, allowing a decision to be made 
without diverting from other decision-making resources. 
The multiple actions are capable of reacting with one 
response modality and not another. EPIC could easily swat 
a fly with its left hand and continue to work ardently on a 
paper. Attention, therefore, is extremely parallel and very 
capable of handling reactive tasks [7]. 

In EPIC, each input channel (vision, auditory, tactile) 
has its own processor. EPIC undergoes great lengths to 
ensure that visual events outside of the fovea are 
processed—allowing for reaction to events in the periphery. 
The visual field is divided into several zones. As an object 
moves closer to the fovea, more visual properties (location, 
color, etc) become available. Noticed changes in properties 
are reported to a visual perception processor that maintains 
data structures within working memory. This data remains 
available to EPIC’s cognitive processor. There is only one 
drawback, however, there has not been enough detailed 
research on which visual properties should be available at 
what foveal distance [7]. 

In any case, EPIC provides a great window for 
exploring these issues. Given an appropriate model of 
vision, the reactive decision-making can be modeled while 
not distracting from a primary task’s parallel cognition. It 
remains to be seen to what extent modeled peripheral 
reactions interfere impacts primary task cognition. In this 
sense, EPIC seems too parallel, but promising for 
notification systems research nevertheless. 

 

Can the architecture comprehend and learn 
information occurring pre-attentively?  Amongst the EPIC 
literature listed on EPIC’s site, nothing is available 
describing EPIC’s theories of learning. Indeed, EPIC has 
avoided intense single-task problem-solving cognition, 
concentrating on multitasking simpler tasks. With EPIC 
therefore, it seems perception-meaning mappings are 
“hard-wired.”  

However, EPIC attempts to provide adequate perceptual 
systems. As mentioned above, EPIC keeps tabs on all 

elements in vision, paying attention to what properties 
should be knowable at each level of perception. Therefore, 
testing a notification system for peripheral comprehension 
might prove more fruitful with EPIC. 

The final piece of the puzzle lies in the massively 
parallel production rule selection and execution. 
Knowledge gain can occur without any reallocation of 
attention from the primary task. Productions to understand 
the display and productions to continue performing the 
primary task will fire simultaneously without interrupting 
one-another. This by itself seems unrealistic. Added with 
the concept of “hard-wiring” the display to EPIC and pre-
attentive comprehension seems very unrealistically 
modeled. Seemingly removing both the potential for 
primary task disruption and the integral learning process 
does not allow for a fruitful exploration of comprehension. 
At best, “hard-wired” comprehension can model the most 
expert behavior, but only if the comprehension disrupts the 
primary-task appropriately. 

 

4.3.3. Soar.  Soar differentiates itself from ACT-R and 
EPIC by not allowing the right-side of production rules to 
alter declarative memory. Instead, productions propose 
operators which in turn act upon declarative memory. At 
any iteration in Soar’s execution cycle, selected production 
rules propose a set of operators. Soar analyzes the proposed 
operators, considering intersecting proposals (two 
productions propose the same operator) and past 
experience. Unlike ACT-R, “goals” and “task” do not 
correspond to explicit structures within the architecture and 
may be represented multiple ways [3]. 

 

Does the architecture properly handle forcible 
interruptions of one task by another? Soar avoids 
formalizing goals and tasks. This leaves Soar open to a 
variety of approaches to model sudden interruptions. 
Unfortunately, nothing within the Soar primary literature 
attacks this problem. The secondary literature also yields 
very little results. Searching the “PsychInfo” database on 
OVID for “Soar + cognitive” returned 11 results, none of 
which were related to task switching, interruptions, or 
multitasking. The same search at IEEE® Explore produced 
four results, having little to do with task-switching or 
interruptions. Research is required to examine Soar’s 
capabilities with abrupt interruptions, which would allow 
better assessment of the usefulness for notification systems 
research [3]. 

 

How much attention must a cognitive architecture 
apply to a peripheral stimulus to perceive and choose to 
react to it?  After production rules propose a collection of 
operators, one must be selected and executed. Soar’s choice 
involves choosing amongst proposed operators. Goals and 
tasks are secondary constructs in Soar. Therefore, it can be 
said that Soar’s choice occurs without attention toward a 



goal or task. Operator selection occurs based upon a 
holistic analysis, rather than goal-specific, therefore 
allowing operators from separate tasks to enter into 
consideration. Soar’s cognitive functions could fairly 
leverage the decision between very different operators, 
such as choosing between the operators: “check one’s 
email” on peripheral perception or “continue to work,” 
when the tradeoff [3]. 

A potential benefit and drawback to Soar is its lack of a 
perceptual-motor system. Modelers are expected to provide 
their own “input” and “output” functions. Input functions 
work on their own to provide data to working memory, 
instead of passively needing to be queried like ACT-R. 
Customized input functions might provide appropriate pre-
attentive feature analysis [3]. 

 

Can the architecture comprehend and learn 
information occurring pre-attentively?  Many times, Soar 
considers two operators, which appear equally favorable. 
On such an impasse, Soar performs complex levels of 
consideration before selecting an operator. Soar remembers 
the results of the scenario. Mapping perception onto action 
(pre-attentively or otherwise) is managed through a 
different mechanism. Production rules in Soar can perform 
“state elaboration” before proposing operators. The 
knowledge that “red” means, “my team scored!”, for 
example, would be acquired outside of Soar’s actions, 
exemplified in executing operators. The downside, as 
mentioned, is that modelers are expected to provide their 
own perceptual-motor systems. Both methods of learning 
provide a rich cognitive exploration of pre-attentive 
information [3]. 

 

Table 1 

Rating ACT-R Soar EPIC 
Installation 5 2 1 
Learnability 4 5 1 
HCI Lit. 2 2 1 

Question (1) 3 3 4 
Question (2) 1 4 4 
Question (3) 2 4 2 
Total 17 20 13 
 

Overall ratings, reflecting that no architecture is 
currently fully capable for modeling notification 
system user behavior. Each has its own specific 
flaws, and none has an overwhelming advantage. 

 

5. Discussion and Conclusions 
 

Cognitive architectures strive to capture the universal 
limitations and capabilities of human cognition, perception, 
and action. Modelers take architectures into their domains 

of study to refine a universal theory of cognition. To model 
notification systems, a broader view of cognition, not 
limited to a single task, but rather concerned with an 
individual’s complete environment is needed. Architectures 
should seek crucial bottlenecks in perception, cognition, 
and action while elaborating on human beings’ documented 
ability to multi-task [8]. EPIC sets out to address these 
concerns, but remains poorly documented, difficult to learn 
and unusable. Soar provides an avenue for notification 
systems issues, is easy to learn and use, yet requires 
modelers specify complete perceptual-motor models – no 
easy task. ACT-R is also easy to learn, use, and install but 
implements attention strictly serially. There is almost no 
chance that ACT-R would move away from a current task. 

Each architecture has growing to do before applying it 
to multitasking–demands required in the study of 
notification systems. It appears, also, that each architecture 
concentrates on separate types of tasks. ACT-R and Soar, 
as exemplified in the HCI survey, concentrate on the 
complex cognition of problem-solving. Linear progress 
toward completing a complex task, with a deep, narrow 
decision tree, mostly ignores the possibility that several of 
these tasks could be interacting concurrently. EPIC, 
however, has concentrated on multitasking simpler tasks 
(shallow, broad decision trees). A user’s environment 
undoubtedly overflows with every type of task, simple and 
complex. To truly be complete, architectures must begin to 
examine each other in detail, and learn. Until then, it is 
difficult to imagine testing notification systems with 
shoddy multi-tasking models, a poorly documented system, 
or a non-existent perceptual-motor system. However, if 
positive attributes from each were taken together, then 
automated models and evaluations of concurrent user 
interfaces might seem far less of an unattained ambition. 
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