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Abstract

Events appear to be represented distinctly in memory in
large numbers at a fine grain, even in tasks in which
memory retention is not a primary performance measure. In
Experiment 1, participants classified character strings in
sequences governed by randomly-alternating instructions.
Response times were fastest near the start of a sequence,
slowed gradually throughout the sequence, then sped up
again near the start of the next sequence. This speedup and
gradual slowdown were modeled in the ACT-R architecture
as a combination of priming and interference effects in
episodic memory. The model correctly predicts the absence
of these effects in Experiment 2, in which the instruction
must be inferred from the trial stimulus and hence is not a
source of priming. These findings suggest (a) that episodic
encoding is a pervasive side effect of cognitive
performance; (b) that elements of episodic memory interact
through priming and interferenceeffects traditionally
associated with semantic memory; and (c) that brief
interruptions of task performance have more complex
effects than previously documented.

Introduction
Episodic memory, broadly defined, is memory with a
temporal or contextual aspect, as distinct from a
decontextualized semantic memory for a fact or concept
(Tulving, 1983). Episodic memory has been implicated in a
broad range of higher-level cognitive tasks, including
software design (Jeffries, Turner, Polson, & Atwood, 1981),
navigating large amounts of externally-represented
information (Altmann & John, in press), learning interfaces
by exploration (Rieman, Young, & Howes, 1996), discourse
comprehension (Kintsch, 1998), and in general the efficient
search of problem spaces (Howes, 1993). In each of these
examples, episodic memory captures a history of events that
influences task performance. However, the complexity of
task performance in such domains makes the nature of
episodic memory difficult to assess. What kinds of events
are stored in memory, and at what temporal grain-size?

To gain control over such questions, researchers have
typically adopted memory-oriented paradigms, in which
performance is measured in terms of success at recalling or

recognizing elements studied in a particular context (e.g.,
Tulving, 1983; Logan, 1988). However, such paradigms
ignore the interaction of memory and other aspects of
cognition. What is the role and nature of episodic memory
within a wider cognitive framework?

This paper examines the role of episodic memory in a
paradigm otherwise used to study the control of attention
(Allport, Styles, & Hsieh, 1994; Gopher, Greenshpan, &
Armony, 1996; Rogers & Monsell, 1995). The paradigm
requires participants to classify simple stimuli according to
varying instructions, allowing us to study the role of
memory (for the current instruction) in a task with a
decision-making component (judging the class of a stimulus
according to the current instruction). In Experiment 1,
classification of stimuli was interrupted at random times
with a new instruction. These interruptions were found to
have complex effects on subsequent trials, including a
transient improvement in response time occurring soon after
an interruption. We describe a computational cognitive
model that accounts for this speedup in terms of priming
between elements of episodic memory. From the model we
predict that this speedup will be absent in tasks without
distinct instructions. This prediction is confirmed in
Experiment 2, in which the instruction is implied by the
stimulus and is not presented separately.

Our results suggest that fine-grain events are stored
pervasively in memory as a side effect of performance, even
when retention of information in memory is not itself a
performance measure. Conversely, episodic memory appears
to influence cognition through priming and interference,
effects typically associated with semantic and perceptual
memory (Tulving, 1983; Tulving & Schacter, 1990).

Experiment 1
In Experiment 1, participants classified one string of letters
per trial, based upon an instruction appearing at the start of
that sequence of trials. On each trial, the string consisted of
one letter repeated one or more times. Two classification
tasks were used. For Groupsize, participants judged the
number of elements in the string of letters. The correct
response was low if Groupsize was fewer than five (1, 2, 3,
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4) and high if it was greater than five (6, 7, 8, 9). For Place,
participants judged the string as low if the constituent letter
was near the beginning of the alphabet (a, b, c, d) and high
if it was near the end of the alphabet (w, x, y, z). The
response to a trial caused the next stimulus to be displayed
immediately.

Trials occurred in blocks of 20 grouped into two
sequences or runs. The first run was governed by an
instruction appearing at the start of the block (the start
instruction). The first run continued until a second
instruction appeared (the interrupt instruction). One interrupt
instruction per block appeared at a randomly-selected point
near the middle of the block (ranging from after trial 7 to
after trial 13). Participants responded to an instruction by
pressing the space bar, after which the first trial of the
following run was displayed immediately. At the end of the
block, participants received latency and error feedback
encouraging them to work quickly and accurately.
Participants completed 192 blocks each, of which the first
16 were excluded from analysis to factor out learning effects.
Also excluded were trials falling more than three standard
deviations from the mean response time of each participant.

One independent variable was the Position of a trial
within the block. The Baseline level of Position was the
mean of the response times for the four trials immediately
before the interrupt instruction. The I+1 and I+2 levels were
response times for the first and second trials (respectively)
after the interrupt instruction.

A second independent variable was Instruction, meaning
the kind of instruction presented at interrupt. This variable
manipulated which task to perform after the interrupt
(Gopher, et al., 1996) and served to require attention to the
interrupt. One level was Switch, meaning that the interrupt
and start instructions were different. A block was a Switch
block if the start instruction was Groupsize and the interrupt
instruction was Place or vice versa. The other level was
Noswitch , meaning that the start and interrupt instructions
were the same. Switch and Noswitch blocks were presented
randomly within participants.

We predicted that the interrupt instruction would generate
two kinds of cost (after Gopher et al., 1996). Interrupt cost
is the performance penalty due simply to interrupting a task,
as measured once the task is resumed. Switch cost is an
extra penalty on Switch blocks due to resuming a different
task. We predicted that interrupt and switch costs would be
localized to I+1 (after Rogers & Monsell, 1995), and hence
that I+2 performance should be the same as Baseline.

The dependent measure was response time (RT). Twenty
George Mason University undergraduates participated in the
study for course credit.

Results and Discussion

We tested our predictions with a 3x2 ANOVA on Position
(Baseline, I+1, I+2) and Instruction (Switch, Noswitch).
Figure 1 summarizes the results.

Interrupt cost was indicated by the main effect of Position,
F(2, 9939) = 803.0, p < .001.1  To identify which positions
were affected, we applied orthogonal contrasts to Baseline
(571 msec) and I+1 (706 msec) and to Baseline and I+2 (541
msec). Baseline was faster than I+1, t = 30.7, p < .00001,
replicating Gopher et al. (1996). Baseline was slower than
I+2, t = -6.8, p < .00001.

Switch cost was indicated by the Position x Instruction
interaction, F(2, 9939) = 27.8, p < .001. To identify which
positions were affected, we examined simple effects of
Instruction at each level of Position. There was no effect at
Baseline, F(1, 9939) = 1.1, n.s., as one would expect given
that the task switch had not yet occurred. On I+1, Noswitch
(689 msec) was faster than Switch (744 msec), F(1, 9939) =
71.6, p < .01, again replicating Gopher et al. (1996). On
I+2 there was no effect of Instruction, F(1, 9939) = 1.7, n.s.
Thus both switch cost and interrupt cost were localized to
I+1, as predicted.

We did not predict that Baseline would be slower than
I+2. To explore this effect, we looked for intertrial trends in
response time. A systematic slowing trend within a run

                                                
1 Degrees of freedom for this design were calculated as

follows. Participant was treated as an independent variable to
remove between-participants variance from the error term
(Howell, 1997). Block was not treated as an independent
variable, leaving 88 observations per level of Instruction
(Switch, Noswitch) per Participant. There were 501 outlying
observations. Total df were computed from Position,
Instruction, Participant, and observations per cell, minus
outliers: (3 * 2 * 20 * 88) -  501 - 1 = 10058. Treatment df were
allocated to Position (2), Instruction (1), Participant (19),
Position x Instruction (2), Position x Participant (38),
Instruction x Participant (19), and Instruction x Participant x
Position (38), leaving 10058 - 119 = 9939 df for the error term.
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Figure 1: Interrupt and switch costs on I+1 and interrupt
benefit on I+2.
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would explain how Baseline (at the end of one run) could be
slower than I+2 (near the start of another).

Response times for the first through seventh trials in a
run are plotted in Figures 2 and 3. Figure 2 shows trials
after the start instruction, and Figure 3 shows trials after the
interrupt instruction.2 Both figures show an initial speedup
between the first and second trials, reflecting recovery from
processing the instruction. This speedup is followed by a
linear slowing trend, t = 12.8 and 10.1, respectively, p <
.00001. 3 We refer to this speedup and subsequent slowdown
as within-run slowing .
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Figure 2: Empirical response times for trials in the 1st
through 7th positions after the start instruction.
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Figure 3: Empirical and simulated response times for
trials in the 1st through 7th positions after the
interrupt instruction.

The semantic content of the instruction apparently played
no role in within-run slowing. There was no Position x
Instruction interaction, F(5, 20861) = 1.2, n.s., meaning
                                                

2 Response times for positions 1 through 7 were 713, 524,
535, 550, 556, 562, and 568 msec, and for I+1 through I+7 were
703, 542, 549, 561, 571, 575, and 577 msec.

3 t-values reflect a significant linear term in an orthogonal
polynomial contrast applied to the second through seventh
trials after the start (2 through 7) and interrupt (I+2 through I+7)
instructions. No higher-order  terms  approached significance.

that the effect occurred regardless of whether the interrupt
presented a new task or presented the old task over again.
The event of instruction processing alone, independent of
semantic content, generated a benefit on I+2 that attenuated
gradually across the rest of the run.

A Model of Within-Run Slowing
To account for within-run slowing we constructed a model
using the activation mechanism of the ACT-R cognitive
architecture (Anderson & Lebiére, 1998). This mechanism
has been used to account for a variety of priming and
interference effects in semantic memory (e.g., Anderson &
Lebiére, 1998). Applying it to another phenomenon helps
validate the mechanism and links a variety of phenomena in
a relationship of mutual constraint (Newell, 1990). Below
we describe key aspects of the activation mechanism and
additional assumptions in our model about the encoding of
events in memory.

ACT-R is a production system with a long-term
procedural memory containing productions and a long-term
declarative memory (DM) containing chunks. Chunks can be
linked to other chunks, allowing for structured declarative
representations. ACT-R also implements a mechanism for
focusing internal attention: The goal chunk is a privileged
chunk, selected by productions, that in turn controls the
selection of productions. In each cycle of operation, ACT-R
selects one production that matches the goal chunk. The
remaining conditions of this production are matched against
DM. If DM contains chunks that match all the conditions,
those chunks are retrieved from DM, bound to the
production, and the production fired. The actions of a
production can modify, remove, or replace the goal chunk.

ACT-R makes predictions based on the latency of
matching and firing a production. Latency is determined in
part by the activation of chunks retrieved during the match
process (the higher the activation, the lower the latency to
retrieve a chunk from DM). Activation is the sum of two
terms: baseline activation, which belongs to a chunk
independent of any other knowledge in the system, and
which will not concern us here; and source activation, the
product of goal activation and associative strength.

Goal activation captures the notion that knowledge in the
focus of attention primes related knowledge. This is
implemented as activation emanating from the goal chunk
and spreading out through chunks to which it is linked. If
the goal chunk is linked to chunk A and chunk A is linked
to chunk B, chunk A conducts goal activation to chunk B.

Associative strength captures the notion that the retrieval
of one memory element may predict the need to retrieve
another. In terms of a task like cued recall, the idea is that
the more targets are associated with a cue, the less the
presence of the cue predicts the need to retrieve any one
target (Anderson & Matessa, in press; Anderson, Reder, &
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Lebiére, 1996; Lovett, Reder, & Lebiére, 1997). The
associative strength between chunk A and another chunk B
is a function of how many chunks in total are linked to A.
The more chunks are linked to A (the greater the “fan” out of
A), the less the associative strength between A and any of
them, including B.

A key additional assumption we make in our model is
that of pervasive episodic memory , under which every task-
related event (i.e., every instruction and trial) is encoded
distinctly in DM. This is in the spirit of Logan’s (1988)
instance theory, which posits a unique trace for every
exposure to a stimulus. It also has face validity compared to
the alternative: Were the model to reuse previously-allocated
memory to encode a new event, then some old event would
be forgotten literally without a trace. Without additional
mechanisms that choose which elements to delete, forgetting
by deletion implies indiscriminate reuse and hence complete
episodic amnesia.

Pervasive episodic memory requires that the model keep
track of which instruction and trial are current among the
many in DM. The current instruction is distinguished by
being linked to the goal chunk. This has the side benefit of
making the current instruction immediately available for
other uses. In particular, the current instruction is available
to link to each new stimulus as the stimulus is encoded.
Linking the instruction to the stimulus makes it faster for
the classification process to retrieve the stimulus for
processing after the stimulus has been encoded,4 because
activation spreads from the goal chunk through the
instruction chunk to the stimulus chunk.

As the run progresses and more stimulus chunks are
linked to the current instruction, associative strength
between instruction and all stimuli decreases. This reduces
the source activation flowing through the instruction chunk
to each new stimulus chunk, accounting for the apparent
trial-by-trial slowdown. It also accounts for the release of
slowing when a new instruction is processed. The new
instruction replaces its predecessor in the goal chunk, and
because initially it has no associated stimuli, its strength of
association with stimuli early in a run will be high.

Figure 2 plots our simulated data against the empirical
data from Experiment 1. Between I+1 and I+2 both slopes
are negative, indicating recovery from interrupt cost. The
crossing lines reflect a work-in-progress account of interrupt
and switch costs (Altmann, Gray, Lipps & Trickett,
submitted). Between I+2 and I+7, the simulated and

                                                
4 We assume that retrieval of the stimulus from DM after it is

encoded is a necessary precursor to classifying it. ACT-R
provides a mechanism, known as parameter passing, that would
allow this to occur by bypassing DM, but this mechanism has
no clear theoretical or empirical justification and may
overpredict the reliability of certain memory operations. Thus
parameter passing was not used in our model.

empirical data have the same upward slope, meaning that the
model captures within-run slowing. The gap between the
curves in this interval reflects our focus on a qualitative fit
achieved with a minimum of parameter optimization. This
qualitative fit is sufficient to make a zero-parameter
prediction concerning within-run slowing, described next.

Experiment 2
The Experiment 1 model makes a prediction about the effect
of maintaining an instruction in the focus of attention. The
current instruction was linked to each new stimulus to
ensure correct performance, resulting in instructional
priming of each new stimulus. If the instruction had to be
inferred from the stimulus, then the link between instruction
and stimulus would have to be made anew for every trial.
There would be no source of instructional priming, and
hence no opportunity for the subsequent interference among
trials that accounts for within-run slowing.

Experiment 2 allowed us to test this prediction. Stimuli
consisted of individual characters appearing on the computer
screen one at a time. If the stimulus was a digit (1, 2, 3, 4,
5, 6, 7, 8), the task was to judge it as odd or even. If the
stimulus was a letter (G, K, M, R, A, E, I, U), the task was
to judge it as consonant or vowel. Trials occurred in runs of
digits alternating with runs of letters, with the length of a
run ranging from one to four trials. For example, the
sequence of trials 243GK6RAKM contains runs of three
digits, two letters, one digit, and four letters. There was no
instruction intervening between runs, meaning that the task
could change immediately from one trial to the next.

Participants completed 60 blocks of 40 trials, of which 18
blocks were excluded from analysis.5 The independent
variable was Position within a run (1, 2, 3, 4), which differs
from Position in Experiment 1 in that no interrupt separates
different Positions. All trials in a block were contiguous,
with task switches indicated by stimulus type rather than by
instructions inserted between trials. Thus runs are defined by
stimulus type alone, and by definition Position 1 is always
the first trial after a task switch. The dependent measure was
response time. Ten George Mason University undergraduates
participated in the study for course credit.

The Experiment 1 model was changed to do the
Experiment 2 task. The changes reflect the need to infer task
from stimulus and the absence of distinct instruction events.
On each trial, the new model encodes the stimulus first and

                                                
5 The first 8 blocks per participant were excluded from

analysis to factor out learning effects, matching the 320 initial
trials excluded per participant in Experiment 1 (16 blocks * 20
trials per block). Also excluded were 10 blocks interspersed per
session in which runs of length five were included to inhibit
learning of the maximum run length. In the retained blocks,
trials falling more than three standard deviations from each
participant’s mean RT were again excluded as outliers.
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then retrieves the appropriate task from memory. There is no
separate instruction chunk to link to the stimulus as the
stimulus is encoded, and therefore no source of priming
when the stimulus is retrieved by the classification process.
Quantitative parameters were the same for both models.6

Our predictions based on the model are shown in Figure 4.
The key prediction is the absence of within-run slowing,
indicated by equal simulated RT for Positions 2 through 4.

A second prediction is of switch cost, indicated by elevated
RT on Position 1. This follows from the need to infer the
task from the stimulus (e.g., the odd/even task would be
inferred from a digit). In the model, each chunk representing
a stimulus identity is linked to the appropriate task chunk.
On a given trial, the model first encodes the stimulus by
retrieving its identity from DM. The model then retrieves
the appropriate task, to perform the task on the stimulus.
On the following trial, the stimulus is encoded more quickly
if it implies the same task. The goal chunk is still linked to
that task from the previous trial, making the task a conduit
for goal activation to spread to the stimulus identity. Thus
what others characterize as switch cost (Rogers & Monsell,
1995; Allport et al., 1994) is in our view a benefit due to
priming when consecutive tasks are the same.
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Figure 4: Empirical and simulated response times for
trials in the 1st through 4th positions after a task switch.

Results

The empirical data are also shown in Figure 4.7 The effect of
Position was significant, F(3, 16522) = 184.9, p < .001.8

                                                
6 Both models used the default global parameter values

supplied with ACT-R 4.0b3, except for latency factor (F=0.5
rather than the default F=1.0) and goal activation (W=0.5 rather
than the default W=1.0).

7 Empirical means for Positions 1 through 4 were 754, 647,
641, and 649 msec.

8 Degrees of freedom were calculated as follows. Participant
was again treated as an independent variable. For each
participant there were 672, 504, 336, and 168 observations for
Positions 1 to 4, respectively, in the 42 blocks included in the
analysis. Among these were 238 outlying observations. Total
df were computed from Participant, Position, and observations

Orthogonal contrasts performed between each Position and
the mean of the subsequent Positions showed Position 1
slower than the mean of Positions 2 through 4, t = 22.8, p
< .00001. This confirms the prediction of switch cost. The
two remaining contrasts were not significant, -1 < t < 1,
confirming the predicted absence of within-run slowing.

General Discussion
Evidence from Experiment 1 suggests that processing an
instruction presented during an interrupt induces an
improvement in response time soon after task resumption.
This improvement attenuates gradually but recurs soon after
the following instruction. This pattern of effects, which we
refer to as within-run slowing, seems to be independent of
the instruction’s meaning.

We account for within-run slowing by assuming that task-
related events are encoded pervasively in memory, such that
every instruction and stimulus encountered during the
session leaves a distinct trace. In the context of ACT-R’s
activation mechanism, these distinct traces or chunks
explain within-run slowing as an effect of priming and
interference. The current instruction primes retrieval of the
stimulus in preparation for processing the current trial. The
marginal priming effect decreases as the instruction becomes
less strongly associated with any particular stimulus, a kind
of interference that is released as soon as the next instruction
is fully encoded. Our model predicts the absence of within-
run slowing when performance does not require an
instruction to be retained in the focus of attention. This
prediction was confirmed in Experiment 2, supporting our
model in general and our assumption of pervasive episodic
memory in particular.

We conclude that events may be stored in memory in large
numbers at a fine grain, even in tasks where this is not
logically necessary for successful performance. This
suggests that episodic memory of this kind may influence
other cognitive tasks as well. Converging evidence comes
from a model of memory for attention events developed from
observations of real-world problem solving (Altmann,
Larkin, & John, 1995; Altmann & John, in press). The
domain, data, and underlying cognitive architecture for that
model were quite different from those for the current model,
but the implied grain-size at which information is stored
(roughly two traces per second) is quite similar.

The present research contributes to the debate over the
distinction between episodic and semantic memory. Tulving
(1983) has maintained that “priming effects are mediated by,
and reflect the operations of, a system other than episodic
memory.” Contrary to this view, we have shown that

                                                                               
per Participant per level of Position, minus outliers: 10 * (672
+ 504 + 336 + 168) - 238 - 1 = 16561. Treatment df were
allocated to Participant (9), Position (3), and Participant x
Position (27), leaving 16561 - 39 = 16522 df for the error term.
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priming flows from encoded events: Within-run slowing
occurs even if the interrupt instruction says simply to
continue the same task, implying that the episodic and not
the semantic representation of the instruction causes the
effect. In addition, we have shown that priming and
interference effects in episodic and semantic memory can be
accounted for by the same underlying mechanisms. The
emergence of such functional symmetries bears out the
promise of studying phenomena in context (Newell, 1973)
and of using cognitive architectures to unify phenomena
with existing theory (Newell, 1990).

With respect to human factors psychology, our data show
that brief interruptions have more complex effects on
performance than previous studies document. In addition to
immediate interrupt and switch costs (Gopher, et al., 1996;
Rogers & Monsell, 1995; Allport, et al., 1994), there are
delayed effects that include an interrupt benefit under certain
circumstances. Whether task environments can be designed
to exploit the apparent influence of episodic memory on
performance is a question to address in future studies.
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