
38 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

W e a r a b l e A I

Toward Context-Aware
Computing: Experiences
and Lessons
Joshua Anhalt, Asim Smailagic, Daniel P. Siewiorek, and Francine Gemperle,
Carnegie Mellon University
Daniel Salber, Sam Weber, Jim Beck, and Jim Jennings, IBM T.J. Watson Research Center

The effects of Moore’s law are apparent everywhere: Chip density, processor

speed, memory cost, disk capacity, and network bandwidth are improving

relentlessly. As computing costs plummet, a resource that we have ignored until

now becomes the limiting factor in computer systems—user attention, namely a

person’s ability to focus on his or her primary task.
Distractions occur especially in mobile environ-

ments, because walking, driving, or other real-world
interactions often preoccupy the user. A pervasive-
computing environment that minimizes distraction
must be context aware, and a pervasive-computing
system must know the user’s state to accommodate
his or her needs.

Context-aware applications provide at least two
fundamental services: spatial awareness and tempo-
ral awareness. Spatially aware applications consider
a user’s relative and absolute position and orienta-
tion. Temporally aware applications consider the
time schedules of public and private events. With an
interdisciplinary class of Carnegie Mellon Univer-
sity (CMU) students, we developed and implemented
a context-aware, pervasive-computing environment
that minimizes distraction and facilitates collabora-
tive design.

Our approach
To identify the types of distraction that occur dur-

ing the design process, we created an activity–atten-
tion matrix—the Distraction Matrix (see Figure 1).
The Distraction Matrix categorizes activities as infor-
mation (active and passive), communication (artifi-
cial, formal, and informal), and creation (contribu-
tion). Subcategories specify the types of primary
activity within each category. For example, receiving
information is a type of active-information activity,

and initiating communication is a type of artificial-
communication activity.

We based each distraction’s location on how long
it interrupts a primary activity. We categorized inter-
ruption durations as snap, pause, tangent, and
extended. A snap distraction is one you usually com-
plete in a few seconds, such as checking your watch;
it should not interrupt your primary activity. A pause
distraction involves stopping the primary activity,
switching to a related one, and then switching back
within a few minutes. Pulling over to the side of the
road and checking directions is an example. A tangent
distraction, such as receiving an unrelated phone call,
is of medium duration and is unrelated to your pri-
mary activity. An extended distraction, such as stop-
ping at a motel and resting for the night, is a relatively
long-term interruption of your primary activity.

Applications
We equipped the campus with 400 wireless-net-

working access points, enabling wireless coverage
for the entire campus. To move distractions toward
the Distraction Matrix’s left (snap) side, we imple-
mented a complementary set of interactive applica-
tions and services that support mobile team-design
activities. (See the related sidebar for information on
relevant work in context-aware computing.)

Portable Help Desk. Because they have many meet-
ings at various times and locations, students are often

To minimize distractions,

a pervasive-computing

environment must be

context aware. The

authors define an

activity–attention

framework for context-

aware computing,

discuss the spatial and

temporal aspects of

applications they

developed, and introduce

a pervasive-computing

architecture.

unsure of where their next meeting is sup-
posed to take place. The ability to observe
team members’ locations on campus helps
students determine a meeting’s location. The

Portable Help Desk (PHD) application, a
spatially aware system, confers that ability. It
lets a user build maps of the immediate area,
including colleague and static- and dynamic-

resource locations, and quickly retrieve con-
tact and resource availability information.
While tracking a user’s colleague, PHD dis-
plays that colleague’s contact information.

MAY/JUNE 2001 computer.org/intelligent 39

Time

Snap Pause Tangent Extended

Information

Receiving
Notifying
Monitoring
Serendipity

Message arrival
Information access
Auction
Stocks, sports, matching
similar needs

Free food

Audio, Walkman
Transferring files from
network

Reading news

Seeking Line length
Bus arrival
Locate person

Exam calendar
Software or hardware help
Calendaring
Navigation

Looking for class notes
Who else is doing this now?
Access personal data

Browsing
Finding

Information on Web or built
environment

Poster, bulletin board
information

Web research
Reviewing class notes

Verifying Recall previous queries
Double-checking information

Communication

Initiating

Participating

S.O.S. emergency

Instant messaging

Introductions

Queries

Team building
Collaborative work

Event planning
Assassins game
Social planning

Chatting (public or private)

Broadcasting Information exchange
Scheduling

Posting information to
bulletin board

Advertising

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast to
unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast to
unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast to
unknown people

Creation

Recording Remember this!
Add a to-do or call list

Class note taking
Meeting

Generating messages

Synthesizing Forwarding x to y Filling out survey
Registration

Summarizing lecture

Generating New ideas
Adding information to
existing projects

Mobile-tool building

Ac
tiv

e
Pa

ss
iv

e
In

fo
rm

al
Fo

rm
al

Co
nt

rib
ut

io
n

Ar
tif

ic
ia

l

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast to
unknown people

Figure. 1. The Distraction Matrix. We based each distraction’s location on the primary activity it interrupts and that interruption’s
duration (increasing from left to right).

The application can also display printer
queues, restaurant hours, and stock of car-
bonated beverages and food in connected
vending machines. Figure 2 shows the activ-
ities the PHD system supports and the atten-
tion each demands of the user.

We built both visual and audio interfaces for
the PHD, each of which supports users in dif-
ferent contexts. The visual interface, designed
for stationary use, is richer, but for a user who
is walking around, the hands-free audio inter-
face, Speech-PHD, is less distracting.

Figure 3 illustrates PHD’s visual interface.
The user selects people and resources in the
left pane, and information about those people
and resources appears in the middle pane.
The right pane displays a campus map locat-
ing the selected people and resources.

Speech-PHD accesses the same database
as the visual interface, so all responses are

formatted similarly. Figure 4 is a transcript
of the same queries that Figure 3 demon-
strates. Because PHD knows the user’s cur-
rent location, it can answer questions such as
“Where is the nearest ATM?”

PHD delivers information to the user in
both proactive and user-driven manners. A
user receives proactive information when
engaging infrastructure resources such as
printers. For instance, when the user begins
a print job, PHD will alert him or her if a
large print queue exists and suggest a nearby
printer with a shorter queue. PHD can also
suggest a printer near a destination to which
a user is en route.

In terms of user-driven information, a
design group waiting for a colleague can use
PHD to locate the missing colleague and esti-
mate his or her arrival time. The group also
has access to the colleague’s phone numbers.

Essentially, PHD helps a group avoid repeat-
ing the beginning of a meeting for every late
member. When the team members are get-
ting hungry, they can look up the hours of
nearby restaurants or check whether the soda
machine is full.

Matchmaker. For large projects and design
groups, no single individual has the exper-
tise to perform every task. The Matchmaker
application lets a user rapidly identify an
expert user with the knowledge to help solve
a problem. An expert’s suitability depends
on many factors, such as technical expertise,
friendliness, proximity, and availability.
Matchmaker infers expertise and skills by
observing an expert’s track record rather than
by asking him or her explicitly. Matchmaker
uses temporal context to determine an
expert’s availability and spatial context to
determine the expert’s distance from the user.

The Matchmaker system connects a user’s
query with an expert user who

• is nearby,
• is available,
• has a profile listing the skills needed, and
• has a history of answering similar ques-

tions.

Because the located expert is near the user
initiating the question, he or she avoids wast-
ing time moving to the user. After contacting
the expert with the question, the Matchmaker
system requests feedback from the expert to
determine if he or she is best suited to answer
the question. The database then updates its
profile of the queried expert to increase
expert-selection accuracy.

We have instantiated the Matchmaker sys-
tem, letting users efficiently contact CMU’s
School of Computer Science Computing
Support Group to resolve queries. The CSG
maintains an extensive database of previ-
ously answered queries; this information lets
the Matchmaker system generate profiles of
CSG experts. Figure 5 shows some of the
activities Matchmaker supports.

Figure 6 shows Matchmaker’s system
architecture. Matchmaker sends the user’s
query and the problem’s location to the server.
The server sends the query to the information-
retrieval partition, which searches the data-
base for similar queries, experts who answered
those queries, and experts with similar knowl-
edge. The central server sends the returned list
of experts to the matchmaking partition, which
compares the experts’locations and schedules

40 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

W e a r a b l e A I

Steve Mann introduced humanistic intelligence,1,2 proposing it as a new signal-
processing framework in which the processing apparatus supports and depends on
the user’s natural capabilities of body and mind. (For more on humanistic intel-
ligence, see the Guest Editor’s Introduction in this issue.) Anind K. Dey, Daniel Sal-
ber, Gregory D. Abowd, and Masayasu Futakawa designed a software architecture
to let developers create context-aware applications.3,4 Thad Starner, Bernt Schiele,
and Alex Pentland developed context-aware user interfaces that use body-mounted,
environment-looking cameras and machine-vision techniques.5 Kristof Van Laer-
hoven and Ozan Cakmakci use body-mounted sensors to determine a user’s activity
and infer the user’s context.6 Gerd Kortuem, Zary Segall, and Martin Bauer describe
a wearable computer that alters its user interface based on devices and services in
the user’s environment.7

References

1. S. Mann, “Humanistic Intelligence: ‘WearComp’ as a New Framework and Application for
Intelligent Signal Processing,” Proc. IEEE, vol. 86, no. 11, Nov. 1998, pp. 2123–2151.

2. S. Mann, “Humanistic Intelligence,” From the 1997 Ars Electronica Catalog, www.wearcam.
org/ars/hi.html (current 7 June 2001).

3. A.K. Dey, D. Salber, and G.D. Abowd, “Context-based Infrastructure for Smart Environments,”
Proc. 1st Int’l Workshop on Managing Interactions in Smart Environments (MANSE 99),
Springer-Verlag, New York, 1999, pp. 114–128.

4. A.K. Dey et al., “An Architecture to Support Context-Aware Applications,” tech. report
GIT-GVU-99-23, Graphics, Visualization, and Usability Center, Georgia Tech, Atlanta, 1999.

5. T. Starner, B. Schiele, and A. Pentland, “Visual Contextual Awareness in Wearable Comput-
ing,” Proc. 2nd Int’l Symp. Wearable Computers (ISWC 98), IEEE CS Press, Los Alamitos,
Calif., 1998, pp. 50–57.

6. K. Van Laerhoven and O. Cakmakci, “What Shall We Teach Our Pants?,” Proc. 4th Int’l
Symp. Wearable Computers (ISWC 00), IEEE CS Press, Los Alamitos, Calif., 2000, pp.77–83.

7. G. Kortuem, Z. Segall, and M. Bauer, “Context-Aware, Adaptive Wearable Computers as
Remote Interfaces to ‘Intelligent’ Environments,” Proc. 2nd Int’l Symp. Wearable Comput-
ers (ISWC 98), IEEE CS Press, Los Alamitos, Calif., 1998, pp. 58–65.

The Roots of Context-Aware Computing

to the query’s context. Then, the system noti-
fies the chosen expert of the query.

Privacy Guard. PHD offers a valuable ser-
vice to collaborating work groups, but its
location-sensing ability is a liability. There-
fore, we developed Privacy Guard to help
users protect their information. Privacy
Guard enables basic privacy policies and
advanced expressions describing which
users, groups, and time periods PHD can and
cannot report. Figure 7 illustrates Privacy
Guard’s architecture.

The location-sensing service client derives
the user’s location from the wireless-network
card and sends that location to the central
server. Users update the central server with
permissions. When the server receives a query
for a user’s location, it compares the client
against the target’s permissions. Accordingly,
the server then sends the client the target’s
location or a refusal to answer the request.

Context-aware agents. Busy groups tend not
to have abundant time to browse calendars,
check for new email, or read bulletin boards.
Therefore, we developed context-aware
agents to deliver relevant information when
a user needs that information. When the user
is not engaged in more important activities,
context-aware agents display appointments,
urgent emails, and interesting calendar events.
The agents are proactive: they monitor pub-
lic and private calendars and email accounts
and deliver information to the user instead of
requiring the user to poll the relevant sources.
Their goal is to provide intelligent calendar
management, including setting schedules and
resolving conflicts with other users’ calen-
dars while accounting for the location and
available resources for a meeting. We have
implemented the following three agents:

• Notification Agent alerts a user who passes
within a certain distance of a location that

a task on his or her to-do list identifies. For
example, if a user is near his or her mail-
box, the agent alerts the user if a package
is waiting.

• Meeting-Reminder Agent alerts a user who
is likely to miss a meeting. The system
identifies the time the meeting will start
and determines the travel time there from
the user’s current location.

• Activity-Recommendation Agent recom-
mends activities and meetings, based on
the user’s interests, that the user might like
to attend. For example, consider a user
who sets his Activity-Recommendation
Agent to inform him when free food is
available. As the user walks through a
building, the system identifies a meeting
with free food upstairs and notifies the
user.

Figure 8 shows an example user interface
for the Activity-Recommendation Agent.

MAY/JUNE 2001 computer.org/intelligent 41

Time

Snap Pause Tangent Extended

Information

Receiving
Notifying
Monitoring

Serendipity

Seeking

Browsing
Finding
Verifying

Communication

Initiating

Participating

Broadcasting

Creation

Recording

Synthesizing

Generating

Ac
tiv

e
Pa

ss
iv

e
In

fo
rm

al
Fo

rm
al

Co
nt

rib
ut

io
n

Ar
tif

ic
ia

l

Fred is coming
Print-queue alert

Seek resources Access personal dataCheck print queue
Find person

Request event notification

Select printer from suggested
list

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast
to unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast to
unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast
to unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast
to unknown people

Figure 2. Distraction Matrix for Portable Help Desk.

The user defines his or her interests, enabling
the agent to recommend upcoming activities.
The agent categorizes interests by activity
and keywords. The user can access the inter-
face to find upcoming recommendations if
he or she doesn’t want to wait for the Activ-
ity-Recommendation Agent’s notification.

We designed the context-aware agents to
function as services that simpler applications
can use.

The pervasive-computing
environment

Mobile computing poses challenges such
as intermittent and variable-bandwidth con-
nectivity and client-resource constraints
imposed by weight and size considerations.
We based our pervasive-software architec-
ture on one that the IBM T.J. Watson
Research Center proposed. The class’s pro-
totype used Hewlett-Packard Jornada 680

palmtop computers and Itsy/Cue wearable
computers communicating through Lucent
Wavelan cards on Wireless Andrew.1

Our architecture’s main goal is to let
users seamlessly move work between
devices. The architecture moves the appli-
cation to a network-connected server, leav-
ing only a minimal interface on the client
device. Any device implementing the inter-
face can then reattach the server running

42 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Time

Snap Pause Tangent Extended

Information

Receiving
Notifying
Monitoring
Serendipity

Seeking

Browsing
Finding

Verifying

Communication

Initiating

Participating

Broadcasting

Creation

Recording

Synthesizing

Generating

Ac
tiv

e
Pa

ss
iv

e
In

fo
rm

al
Fo

rm
al

Co
nt

rib
ut

io
n

Ar
tif

ic
ia

l

Receive request for help
Completion of task notification

User searches through list of
possible solutions returned
by system

User tries suggested
solutions

Finding someone to help

Expert and user collaborate

User initiates query

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast
to unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast to
unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast
to unknown people

One-to-one communication

One-to-group communication

One-to-all-possible
communication broadcast
to unknown people

Figure 5. Distraction Matrix for Matchmaker.

Figure 3. Portable Help Desk visual interface.

User: “Locate Bryan.”
Speech-PHD: “Bryan is located in Hamburg Hall.”

User: “What is Bryan’s phone number?”
Speech-PHD: “Bryan’s phone number is 412-802-6819.”

Figure 4. Transcript from Portable Help Desk audio
interface Speech-PHD.

the application. To address mobile com-
puting’s connectivity issues, the architec-
ture includes elements that preserve
dataflow between the server and the
devices. Optimizing data for device capa-
bilities maximizes performance.

Original architecture
Figure 9 shows the four layers of IBM’s

original architecture. The bottom layer
includes a range of mobile and fixed devices;
neither hardware architecture nor operating
system must be homogeneous. The second
layer contains device proxies, which every
device has and which represent a transcod-
ing layer for each device. The third layer is
the user-proxy layer. Every user has a per-
sonal user proxy. This layer can store appli-
cations and a user’s state. The fourth layer is
the services layer, where the architecture
implements shared applications, utilities, and
servers. All requests between layers are in
hypertext transfer protocol (HTTP). The
requests can include data structures such as
integers, characters, and strings. Each request
includes user and device identification.

IBM implemented the architecture in Java.
A device executes the service manager, which
prepares requests and interprets responses for
client applications running on the device. The
device proxies use WEBI, an HTTP proxy that
IBM developed. This proxy intercepts a user’s
requests, passes them through a series of user-
specified filters, and forwards the transcoded
requests and responses. The user proxy
receives a request and either starts an appli-

Server

Client

Triangulation

Permissions

Access point

Target

Query

Response
or refusal

Location
information

Access
point

Access
point

Figure 7. Privacy Guard architecture. By incorporating
permissions, Privacy Guard limits a client user’s access to a target
user’s contact and location information.

Figure 8. An example of an Activity-Recommendation Agent’s user interface.

Information

Central server

Matchmaking

Availability

Location

User Expert

Database

Figure 6. Matchmaker system architecture. The system
receives the user’s query and matches it to an appropriate
expert user. It then locates the expert and notifies him or her
of the query.

MAY/JUNE 2001 computer.org/intelligent 43

cation or forwards the request to a service. If
the requested service is not well-known, or if
the user’s preferences don’t define it, the user
proxy invokes the Service Location Protocol
to locate the requested service.

Revised architecture
The IBM architecture lets a service or user

proxy store preferences and long-term state.
We made the decision to create a unified
(SQL) database as a service. We added a fifth
layer to the architecture, above the services
(see Figure 10). We named the new archi-
tecture Handy Andy, after Handheld Andrew,
CMU’s wireless-network project. In the
Handy Andy architecture, all services’ and
user proxies’database access is based on the
privileges of the user authenticated to them.
That prevents common data such as a user’s
name, address, and contact information from
being duplicated across systems. Users can
update their data with a single application.

With the original architecture, conflicts
pertaining to the format of stored informa-
tion became apparent, as competing appli-
cations preferred certain data sizes and types.
The revised architecture lets stored proce-
dures translate stored data into any format
that a service requests.

Idealink is a virtual meeting space tool. The
user interface—a shared whiteboard that a
user can archive for later review—is optimized
for the minimal screen area that portable
devices provide. The system operates within
a client–server architecture: The application
runs on the target devices, to which the server
distributes screen updates. The Handy Andy
architecture enables additional features and
ease of implementation within a pervasive,
wireless environment. Figure 11 shows a typ-
ical Idealink session’s architecture elements
within the Handy Andy architecture.

The Handy Andy architecture lets the sys-
tem be more flexible. Also, the architecture
automatically deals with problems inherent
in wireless networks. Each user has one or
more devices running the Idealink user inter-
face. The devices might have color or black-
and-white displays; their screen sizes might
range from a watch-sized liquid crystal dis-
play to a wall-sized projected image. The
architecture’s device proxy adjusts color
depth according to the device properties and
instantiates filters that scale the size of screen
updates. The devices do not use valuable
clock cycles and battery power for these
operations. If the communications channel
between the device proxy and the device is
broken, the device proxy caches updates until
the device reestablishes connection. If the
user so desires, he or she can start the Idea-
link session on one device and continue it on
any other. From the user’s calendar, the user
proxy knows what meeting is taking place—
which lets the system automatically negoti-
ate who is included in the Idealink session.
The user proxy stores preferences, including
tool palette layout, and user-selected key-
stroke combinations. The Idealink service
combines each user’s additions to the session
and updates each client. At the end of the
meeting, the service archives the session in
the database.

Location-sensing service
The Location Service generates a key para-

meter of context information. To determine a
user’s location, the wireless-network card
(acting as a sensor) in the user’s computer
measures the signal strengths to all available
wireless-access points and compares them to
recorded training signal strengths. For every
location, the sensor records a unique signal-
strength reading from a group of access

points. For training, the user manually inputs
his or her location into the computer. The
computer then takes and averages approxi-
mately 17 samples. This process generates a
table that lists what signal levels to expect at
different locations. The sensor requires only
a single test, which it can save for use in later
sessions and on other platforms. During use,
the computer compares measured values to
those in the table and computes differences.
It reads the entry with the smallest difference
as the current position.2 As with Privacy
Guard, the user requesting a target’s location
sends his or her request to a server. The server
might use a caching mechanism to answer the
request, or it might send the request to the tar-
get user. The target user’s computer deter-
mines its location and sends the results to the
server. The server completes the transaction
by sending the target’s location to the request-
ing user (assuming that user has permission to
receive the target’s information). Our Loca-
tion Service is significantly more accurate
than standard Global Positioning Systems.2

Table 1 presents the accuracy of our loca-
tion-measurement results. We inferred accu-
racy from the fact that the distance needed for
a signal-strength change of one decibel mil-
liwatt (dBm) has been empirically determined
to be approximately five feet when near an
access point. Because more than 99.9 percent
of our measurements are within 3 dBm of the
actual value, we infer that the reported loca-
tions are within +/- 15 feet of actual positions.

Client–server speech issues
Speech-PHD requires significant comput-

ing resources for the automatic speech recog-
nizer (CMU’s Sphinx ASR—see www.
speech.cs.cmu.edu for details) and for text-to-
speech conversion (Festival Text-to-Speech
software). When we were developing Speech-

44 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

W e a r a b l e A I

Services

User proxies

Device proxies

Devices

Figure 9. IBM’s original architecture. Information passes from devices to
services and back through device and user proxies.

User proxies

Device proxies

Devices

Services

Database

Figure 10. Handy Andy architecture. We added a fifth
layer, a unified database that acts as a service, to IBM’s
original architecture (see Figure 9).

PHD, no mobile device had the required
computing power, memory, and non-
volatile storage. Placing the ASR and
text-to-speech software on a server
solved the resource limitations but intro-
duced network latency. We measured
latency from the end of the user’s query
until the system began its response.
Table 2 summarizes the results. Trans-
ferring both the query and the response
as a file required almost five seconds. By
modifying Sphinx to stream the query,
we reduced latency to two seconds. By
modifying Festival to also stream the
response, we reduced the delay by a fac-
tor of 25.

Lessons learned
The Handy Andy architecture pro-

vides a useful framework for develop-
ing persistent applications. The archi-
tecture is extremely broad in its
description, letting developers imple-
ment very portable applications. A suc-
cessfully implemented device proxy
can maximize a device’s usefulness
while offloading expensive conversions

to a network server. Developers can
implement simple applications in the
user proxy or as a service.

Developers have tried to make device
proxies do more than they could. To fully
exploit the capabilities of device proxies
within the architecture, we explored
speech- and user-interface-adaptation fil-
ters. ASR vocabularies are limited. Most
require knowledge of the user’s language
in the form of a language model. The
application must provide such a model;
therefore, accessing the device proxies
would no longer be transparent to the
application programmer.

Our database lets users and services
share data. Because we could customize
the data-access interface for each ser-
vice, we limited issues with proprietary
application-protocol interfaces. The data
inherited the database’s security model,
allowing user-permission specification
and enforcement. This was convenient
for programming, but it introduced a
degree of failure: the database limited
performance and exposed all shared data
to security risks.

MAY/JUNE 2001 computer.org/intelligent 45

User proxies

Device proxies

Devices

Service

Database

Figure 11. Idealink architecture within the Handy Andy architecture. The
Handy Andy architecture provides a pervasive, wireless environment for
the Idealink whiteboard tool.

Table 1. Accuracy of location measurements.

Accuracy (%) Strength (dBm) Distance (feet)

68.6 +/– 0.939 +/– 5

95.4 +/– 1.146 +/– 10

99.9 +/– 2.817 +/– 15

Table 2. Speech-PHD network speech latency.

Latency (sec) Transfer file query Streaming query

Transfer file response 5 2

Streaming response – .2

2001 Editorial
Calendar

January-March
Web Engineering: Part 1

Leaders in the field discuss new approaches and
tools for developing, deploying, and evaluating
Web-based applications and systems.

April-June
Web Engineering: Part 2

Part 2 further explores Web-based systems and
picks up where Part 1 leaves off. Read about lessons
learned and the latest advances in creating appli-
cations and systems for the Web.

July-September
Intelligent Multimedia and
Distance Education

Top researchers discuss next-generation appli-
cations in fields such as artificial intelligence, vir-
tual environments, interactive multimedia,
e-commerce, and distance education.

October-December
Multimedia and Security

Join the experts as they discuss the goals and
problems in designing secure multimedia envi-
ronments in the 21st century. Learn about the lat-
est advances in proposed solutions such as digital
watermarking and cryptographic protocols.

http://computer.org/multimedia

Our proactive agents cannot access sys-
tem-level functions, such as starting

new applications, on the user’s behalf. We
won’t let them do so until we address sys-
tem-level security. Although context infor-
mation helps generate more-intelligent sys-
tem behavior, it is a liability for the system’s
users. Location information provides a prime
example. All system levels, including the
architecture, protocols, inferred preferences,
and user-specified preferences, must address
the security of such information.

We have not yet optimized the location
service. Requiring the tracked client to return
its current location for every request uses
mobile devices’ limited power and computa-
tion cycles. Ideas for increasing the location
service’s efficiency and scalability include
caching and predicting user location.

Acknowledgments
We acknowledge the funding support of IBM

Research, the US National Science Foundation
under grant 9901321, and the Defense Advanced
Research Projects Agency. We also acknowledge
the students from the Rapid Prototyping of Com-
puter Systems and Mobile Computing courses
(Spring and Fall semesters) for their contributions
to the project. We thank Mike Karasick for his con-
tinuous support to the project.

References

1. A. Smailagic and D. Siewiorek, “User-Cen-
tered Interdisciplinary Design of Wearable
Computers,” ACM Mobile Computing and
Comm. Rev., vol. 3, no. 3, July 1999, pp.
43–52.

2. J. Small, A. Smailagic, and D.P. Siewiorek,
“Determining User Location for Context-
Aware Computing through the Use of a Wire-
less LAN Infrastructure,” submitted for pub-
lication to ACM Mobile Networks and
Applications, vol. 6, 2001.

For further information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

46 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

W e a r a b l e A I

T h e A u t h o r s
Joshua Anhalt is a graduate student of electrical and computer engineer-
ing at Carnegie Mellon University. His research interests include ubiquitous
computing, context-aware computing, and the privacy of information. He
received his BS in electrical and computer engineering from Carnegie Mel-
lon University. Contact him at 5260 Forbes Ave., Pittsburgh, PA 15217-1102;
anhalt@andrew.cmu.edu.

Asim Smailagic is a faculty member at Carnegie Mellon University’s Insti-
tute for Complex Engineered Systems, College of Engineering, and Depart-
ment of Electrical and Computer Engineering. He also directs CMU’s lab for
Interactive Computer Systems. His research interests include pervasive com-
puting, system-level design of advanced computer systems, rapid prototyp-
ing of wearable computers, and audio-visual and sensor interfaces to com-
puters. Contact him at Institute for Complex Engineered Systems, Carnegie
Mellon Univ., Hamburg Hall, Pittsburgh, PA 15213; asim@cs.cmu.edu.

Daniel P. Siewiorek, Buhl University Professor of Computer Science and
Electrical and Computer Engineering at Carnegie Mellon University, directs
the Human–Computer Interaction Institute. His research interests are mobile
computing, computer architecture, human–computer interactions, and relia-
bility. He received his BS in electrical engineering from the University of
Michigan and his MS and PhD in electrical engineering from Stanford. He is
a member of the ACM, Tau Beta Pi, Eta Kappa Nu, Sigma Xi, and the IEEE
Computer Society. Contact him at Human–Computer Interaction Inst., CMU,
Newell-Simon Hall, Pittsburgh, PA 15213; dps@cs.cmu.edu.

Francine Gemperle is a senior industrial designer with the Wearable Com-
puting Group at Carnegie Mellon University. She is an expert in designing
products for wearability and is working on becoming an expert in tactile
interaction design. She received her BFA in industrial design from Carnegie
Mellon University. She is a member of the Industrial Designers Society of
America. Contact her at Carnegie Mellon University, Institute for Complex
Engineered Systems, 2203 Hamburg Hall, Pittsburgh, PA 15213.

Daniel Salber is a research associate at the IBM T.J. Watson Research Cen-
ter. He is interested in software engineering for human–computer interac-
tion and context-aware computing. He received his MS and PhD in com-
puter science from the University of Grenoble. He is a member of the IFIP
Working Group 2.7 on Engineering for Human–Computer Interaction, ACM
SIGCHI, and a founding member of AFIHM. Contact him at IBM T.J. Wat-
son Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532; sal-
ber@acm.org.

Sam Weber is a research staff member at IBM’s T.J. Watson Research Cen-
ter. His research interests include software architecture, security, and verifi-
cation. He received his BSc and MSc from the University of Toronto and
MSc and PhD from Cornell University. His hobbies include swing and con-
tra dancing and collecting mechanical puzzles. Contact him at IBM T.J. Wat-
son Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532;
samweber@watson.ibm.com.

Jim Beck is director of systems engineering and mobility at Inmedius Corp.
and a visiting researcher at CMU’s Human–Computer Interaction Inst. His
research is in mobile computing, n-tier distributed applications, service frame-
works, component-based software systems, embedded systems, computer archi-
tecture, design automation, hardware design, and digital application-specific
integrated circuit design. He received his BS in electrical engineering from the
Univ. of Pittsburgh, his MS in electrical engineering from Purdue, and his MS
and PhD in electrical and computer engineering from CMU. Contact him at
Inmedius, Inc., 417 S. Craig St., Pittsburgh, PA 15213; jbeck@inmedius.com.

Jim Jennings works on behalf of IBM in several international standards
organizations. His research interests are in embedded computing. He received
his PhD from the Computer Science Department of Cornell University. Con-
tact him at IBM T.J. Watson Research Center, 30 Saw Mill River Road,
Hawthorne, NY 10532; jsj@acm.org.

