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The effects of Moore’s law are apparent everywhere: Chip density, processor

speed, memory cost, disk capacity, and network bandwidth are improving

relentlessly. As computing costs plummet, a resource that we have ignored until

now becomes the limiting factor in computer systems—user attention, namely a

person’s ability to focus on his or her primary task.
Distractions occur especially in mobile environ-

ments, because walking, driving, or other real-world
interactions often preoccupy the user. A pervasive-
computing environment that minimizes distraction
must be context aware, and a pervasive-computing
system must know the user’s state to accommodate
his or her needs.

Context-aware applications provide at least two
fundamental services: spatial awareness and tempo-
ral awareness. Spatially aware applications consider
a user’s relative and absolute position and orienta-
tion. Temporally aware applications consider the
time schedules of public and private events. With an
interdisciplinary class of Carnegie Mellon Univer-
sity (CMU) students, we developed and implemented
a context-aware, pervasive-computing environment
that minimizes distraction and facilitates collabora-
tive design.

Our approach
To identify the types of distraction that occur dur-

ing the design process, we created an activity–atten-
tion matrix—the Distraction Matrix (see Figure 1).
The Distraction Matrix categorizes activities as infor-
mation (active and passive), communication (artifi-
cial, formal, and informal), and creation (contribu-
tion). Subcategories specify the types of primary
activity within each category. For example, receiving
information is a type of active-information activity,

and initiating communication is a type of artificial-
communication activity.

We based each distraction’s location on how long
it interrupts a primary activity. We categorized inter-
ruption durations as snap, pause, tangent, and
extended. A snap distraction is one you usually com-
plete in a few seconds, such as checking your watch;
it should not interrupt your primary activity. A pause
distraction involves stopping the primary activity,
switching to a related one, and then switching back
within a few minutes. Pulling over to the side of the
road and checking directions is an example. A tangent
distraction, such as receiving an unrelated phone call,
is of medium duration and is unrelated to your pri-
mary activity. An extended distraction, such as stop-
ping at a motel and resting for the night, is a relatively
long-term interruption of your primary activity.

Applications
We equipped the campus with 400 wireless-net-

working access points, enabling wireless coverage
for the entire campus. To move distractions toward
the Distraction Matrix’s left (snap) side, we imple-
mented a complementary set of interactive applica-
tions and services that support mobile team-design
activities. (See the related sidebar for information on
relevant work in context-aware computing.)

Portable Help Desk. Because they have many meet-
ings at various times and locations, students are often
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unsure of where their next meeting is sup-
posed to take place. The ability to observe
team members’ locations on campus helps
students determine a meeting’s location. The

Portable Help Desk (PHD) application, a
spatially aware system, confers that ability. It
lets a user build maps of the immediate area,
including colleague and static- and dynamic-

resource locations, and quickly retrieve con-
tact and resource availability information.
While tracking a user’s colleague, PHD dis-
plays that colleague’s contact information.
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Figure. 1. The Distraction Matrix. We based each distraction’s location on the primary activity it interrupts and that interruption’s
duration (increasing from left to right).



The application can also display printer
queues, restaurant hours, and stock of car-
bonated beverages and food in connected
vending machines. Figure 2 shows the activ-
ities the PHD system supports and the atten-
tion each demands of the user.

We built both visual and audio interfaces for
the PHD, each of which supports users in dif-
ferent contexts. The visual interface, designed
for stationary use, is richer, but for a user who
is walking around, the hands-free audio inter-
face, Speech-PHD, is less distracting.

Figure 3 illustrates PHD’s visual interface.
The user selects people and resources in the
left pane, and information about those people
and resources appears in the middle pane.
The right pane displays a campus map locat-
ing the selected people and resources.

Speech-PHD accesses the same database
as the visual interface, so all responses are

formatted similarly. Figure 4 is a transcript
of the same queries that Figure 3 demon-
strates. Because PHD knows the user’s cur-
rent location, it can answer questions such as
“Where is the nearest ATM?”

PHD delivers information to the user in
both proactive and user-driven manners. A
user receives proactive information when
engaging infrastructure resources such as
printers. For instance, when the user begins
a print job, PHD will alert him or her if a
large print queue exists and suggest a nearby
printer with a shorter queue. PHD can also
suggest a printer near a destination to which
a user is en route.

In terms of user-driven information, a
design group waiting for a colleague can use
PHD to locate the missing colleague and esti-
mate his or her arrival time. The group also
has access to the colleague’s phone numbers.

Essentially, PHD helps a group avoid repeat-
ing the beginning of a meeting for every late
member. When the team members are get-
ting hungry, they can look up the hours of
nearby restaurants or check whether the soda
machine is full.

Matchmaker. For large projects and design
groups, no single individual has the exper-
tise to perform every task. The Matchmaker
application lets a user rapidly identify an
expert user with the knowledge to help solve
a problem. An expert’s suitability depends
on many factors, such as technical expertise,
friendliness, proximity, and availability.
Matchmaker infers expertise and skills by
observing an expert’s track record rather than
by asking him or her explicitly. Matchmaker
uses temporal context to determine an
expert’s availability and spatial context to
determine the expert’s distance from the user.

The Matchmaker system connects a user’s
query with an expert user who

• is nearby,
• is available,
• has a profile listing the skills needed, and
• has a history of answering similar ques-

tions.

Because the located expert is near the user
initiating the question, he or she avoids wast-
ing time moving to the user. After contacting
the expert with the question, the Matchmaker
system requests feedback from the expert to
determine if he or she is best suited to answer
the question. The database then updates its
profile of the queried expert to increase
expert-selection accuracy.

We have instantiated the Matchmaker sys-
tem, letting users efficiently contact CMU’s
School of Computer Science Computing
Support Group to resolve queries. The CSG
maintains an extensive database of previ-
ously answered queries; this information lets
the Matchmaker system generate profiles of
CSG experts. Figure 5 shows some of the
activities Matchmaker supports.

Figure 6 shows Matchmaker’s system
architecture. Matchmaker sends the user’s
query and the problem’s location to the server.
The server sends the query to the information-
retrieval partition, which searches the data-
base for similar queries, experts who answered
those queries, and experts with similar knowl-
edge. The central server sends the returned list
of experts to the matchmaking partition, which
compares the experts’locations and schedules
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Steve Mann introduced humanistic intelligence,1,2 proposing it as a new signal-
processing framework in which the processing apparatus supports and depends on
the user’s natural capabilities of body and mind. (For more on humanistic intel-
ligence, see the Guest Editor’s Introduction in this issue.) Anind K. Dey, Daniel Sal-
ber, Gregory D. Abowd, and Masayasu Futakawa designed a software architecture
to let developers create context-aware applications.3,4 Thad Starner, Bernt Schiele,
and Alex Pentland developed context-aware user interfaces that use body-mounted,
environment-looking cameras and machine-vision techniques.5 Kristof Van Laer-
hoven and Ozan Cakmakci use body-mounted sensors to determine a user’s activity
and infer the user’s context.6 Gerd Kortuem, Zary Segall, and Martin Bauer describe
a wearable computer that alters its user interface based on devices and services in
the user’s environment.7
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to the query’s context. Then, the system noti-
fies the chosen expert of the query.

Privacy Guard. PHD offers a valuable ser-
vice to collaborating work groups, but its
location-sensing ability is a liability. There-
fore, we developed Privacy Guard to help
users protect their information. Privacy
Guard enables basic privacy policies and
advanced expressions describing which
users, groups, and time periods PHD can and
cannot report. Figure 7 illustrates Privacy
Guard’s architecture.

The location-sensing service client derives
the user’s location from the wireless-network
card and sends that location to the central
server. Users update the central server with
permissions. When the server receives a query
for a user’s location, it compares the client
against the target’s permissions. Accordingly,
the server then sends the client the target’s
location or a refusal to answer the request.

Context-aware agents. Busy groups tend not
to have abundant time to browse calendars,
check for new email, or read bulletin boards.
Therefore, we developed context-aware
agents to deliver relevant information when
a user needs that information. When the user
is not engaged in more important activities,
context-aware agents display appointments,
urgent emails, and interesting calendar events.
The agents are proactive: they monitor pub-
lic and private calendars and email accounts
and deliver information to the user instead of
requiring the user to poll the relevant sources.
Their goal is to provide intelligent calendar
management, including setting schedules and
resolving conflicts with other users’ calen-
dars while accounting for the location and
available resources for a meeting. We have
implemented the following three agents:

• Notification Agent alerts a user who passes
within a certain distance of a location that

a task on his or her to-do list identifies. For
example, if a user is near his or her mail-
box, the agent alerts the user if a package
is waiting.

• Meeting-Reminder Agent alerts a user who
is likely to miss a meeting. The system
identifies the time the meeting will start
and determines the travel time there from
the user’s current location.

• Activity-Recommendation Agent recom-
mends activities and meetings, based on
the user’s interests, that the user might like
to attend. For example, consider a user
who sets his Activity-Recommendation
Agent to inform him when free food is
available. As the user walks through a
building, the system identifies a meeting
with free food upstairs and notifies the
user.

Figure 8 shows an example user interface
for the Activity-Recommendation Agent.

MAY/JUNE 2001 computer.org/intelligent 41

Time

Snap Pause Tangent Extended

Information

Receiving
Notifying
Monitoring

Serendipity

Seeking

Browsing
Finding
Verifying

Communication

Initiating

Participating

Broadcasting

Creation

Recording

Synthesizing

Generating

Ac
tiv

e
Pa

ss
iv

e
In

fo
rm

al
Fo

rm
al

Co
nt

rib
ut

io
n

Ar
tif

ic
ia

l

Fred is coming
Print-queue alert

Seek resources Access personal dataCheck print queue
Find person

Request event notification

Select printer from suggested 
list

One-to-one communication

One-to-group communication

One-to-all-possible 
communication  broadcast 
to unknown people

One-to-one communication

One-to-group communication

One-to-all-possible  
communication broadcast to 
unknown people

One-to-one communication

One-to-group communication

One-to-all-possible 
communication broadcast 
to unknown people

One-to-one communication

One-to-group communication

One-to-all-possible 
communication broadcast 
to unknown people

Figure 2. Distraction Matrix for Portable Help Desk. 



The user defines his or her interests, enabling
the agent to recommend upcoming activities.
The agent categorizes interests by activity
and keywords. The user can access the inter-
face to find upcoming recommendations if
he or she doesn’t want to wait for the Activ-
ity-Recommendation Agent’s notification.

We designed the context-aware agents to
function as services that simpler applications
can use.

The pervasive-computing
environment

Mobile computing poses challenges such
as intermittent and variable-bandwidth con-
nectivity and client-resource constraints
imposed by weight and size considerations.
We based our pervasive-software architec-
ture on one that the IBM T.J. Watson
Research Center proposed. The class’s pro-
totype used Hewlett-Packard Jornada 680

palmtop computers and Itsy/Cue wearable
computers communicating through Lucent
Wavelan cards on Wireless Andrew.1

Our architecture’s main goal is to let
users seamlessly move work between
devices. The architecture moves the appli-
cation to a network-connected server, leav-
ing only a minimal interface on the client
device. Any device implementing the inter-
face can then reattach the server running
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Figure 5. Distraction Matrix for Matchmaker.

Figure 3. Portable Help Desk visual interface.

User: “Locate Bryan.”
Speech-PHD: “Bryan is located in Hamburg Hall.”

User: “What is Bryan’s phone number?”
Speech-PHD: “Bryan’s phone number is 412-802-6819.”

Figure 4. Transcript from Portable Help Desk audio
interface Speech-PHD.



the application. To address mobile com-
puting’s connectivity issues, the architec-
ture includes elements that preserve
dataflow between the server and the
devices. Optimizing data for device capa-
bilities maximizes performance.

Original architecture
Figure 9 shows the four layers of IBM’s

original architecture. The bottom layer
includes a range of mobile and fixed devices;
neither hardware architecture nor operating
system must be homogeneous. The second
layer contains device proxies, which every
device has and which represent a transcod-
ing layer for each device. The third layer is
the user-proxy layer. Every user has a per-
sonal user proxy. This layer can store appli-
cations and a user’s state. The fourth layer is
the services layer, where the architecture
implements shared applications, utilities, and
servers. All requests between layers are in
hypertext transfer protocol (HTTP). The
requests can include data structures such as
integers, characters, and strings. Each request
includes user and device identification.

IBM implemented the architecture in Java.
A device executes the service manager, which
prepares requests and interprets responses for
client applications running on the device. The
device proxies use WEBI, an HTTP proxy that
IBM developed. This proxy intercepts a user’s
requests, passes them through a series of user-
specified filters, and forwards the transcoded
requests and responses. The user proxy
receives a request and either starts an appli-
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Triangulation

Permissions

Access point

Target

Query

Response
or refusal

Location
information

Access
point

Access
point

Figure 7. Privacy Guard architecture. By incorporating
permissions, Privacy Guard limits a client user’s access to a target
user’s contact and location information.

Figure 8. An example of an Activity-Recommendation Agent’s user interface.
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Figure 6. Matchmaker system architecture. The system
receives the user’s query and matches it to an appropriate
expert user. It then locates the expert and notifies him or her
of the query.
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cation or forwards the request to a service. If
the requested service is not well-known, or if
the user’s preferences don’t define it, the user
proxy invokes the Service Location Protocol
to locate the requested service.

Revised architecture
The IBM architecture lets a service or user

proxy store preferences and long-term state.
We made the decision to create a unified
(SQL) database as a service. We added a fifth
layer to the architecture, above the services
(see Figure 10). We named the new archi-
tecture Handy Andy, after Handheld Andrew,
CMU’s wireless-network project. In the
Handy Andy architecture, all services’ and
user proxies’database access is based on the
privileges of the user authenticated to them.
That prevents common data such as a user’s
name, address, and contact information from
being duplicated across systems. Users can
update their data with a single application.

With the original architecture, conflicts
pertaining to the format of stored informa-
tion became apparent, as competing appli-
cations preferred certain data sizes and types.
The revised architecture lets stored proce-
dures translate stored data into any format
that a service requests.

Idealink is a virtual meeting space tool. The
user interface—a shared whiteboard that a
user can archive for later review—is optimized
for the minimal screen area that portable
devices provide. The system operates within
a client–server architecture: The application
runs on the target devices, to which the server
distributes screen updates. The Handy Andy
architecture enables additional features and
ease of implementation within a pervasive,
wireless environment. Figure 11 shows a typ-
ical Idealink session’s architecture elements
within the Handy Andy architecture.

The Handy Andy architecture lets the sys-
tem be more flexible. Also, the architecture
automatically deals with problems inherent
in wireless networks. Each user has one or
more devices running the Idealink user inter-
face. The devices might have color or black-
and-white displays; their screen sizes might
range from a watch-sized liquid crystal dis-
play to a wall-sized projected image. The
architecture’s device proxy adjusts color
depth according to the device properties and
instantiates filters that scale the size of screen
updates. The devices do not use valuable
clock cycles and battery power for these
operations. If the communications channel
between the device proxy and the device is
broken, the device proxy caches updates until
the device reestablishes connection. If the
user so desires, he or she can start the Idea-
link session on one device and continue it on
any other. From the user’s calendar, the user
proxy knows what meeting is taking place—
which lets the system automatically negoti-
ate who is included in the Idealink session.
The user proxy stores preferences, including
tool palette layout, and user-selected key-
stroke combinations. The Idealink service
combines each user’s additions to the session
and updates each client. At the end of the
meeting, the service archives the session in
the database.

Location-sensing service
The Location Service generates a key para-

meter of context information. To determine a
user’s location, the wireless-network card
(acting as a sensor) in the user’s computer
measures the signal strengths to all available
wireless-access points and compares them to
recorded training signal strengths. For every
location, the sensor records a unique signal-
strength reading from a group of access

points. For training, the user manually inputs
his or her location into the computer. The
computer then takes and averages approxi-
mately 17 samples. This process generates a
table that lists what signal levels to expect at
different locations. The sensor requires only
a single test, which it can save for use in later
sessions and on other platforms. During use,
the computer compares measured values to
those in the table and computes differences.
It reads the entry with the smallest difference
as the current position.2 As with Privacy
Guard, the user requesting a target’s location
sends his or her request to a server. The server
might use a caching mechanism to answer the
request, or it might send the request to the tar-
get user. The target user’s computer deter-
mines its location and sends the results to the
server. The server completes the transaction
by sending the target’s location to the request-
ing user (assuming that user has permission to
receive the target’s information). Our Loca-
tion Service is significantly more accurate
than standard Global Positioning Systems.2

Table 1 presents the accuracy of our loca-
tion-measurement results. We inferred accu-
racy from the fact that the distance needed for
a signal-strength change of one decibel mil-
liwatt (dBm) has been empirically determined
to be approximately five feet when near an
access point. Because more than 99.9 percent
of our measurements are within 3 dBm of the
actual value, we infer that the reported loca-
tions are within +/- 15 feet of actual positions.

Client–server speech issues
Speech-PHD requires significant comput-

ing resources for the automatic speech recog-
nizer (CMU’s Sphinx ASR—see www.
speech.cs.cmu.edu for details) and for text-to-
speech conversion (Festival Text-to-Speech
software). When we were developing Speech-
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PHD, no mobile device had the required
computing power, memory, and non-
volatile storage. Placing the ASR and
text-to-speech software on a server
solved the resource limitations but intro-
duced network latency. We measured
latency from the end of the user’s query
until the system began its response.
Table 2 summarizes the results. Trans-
ferring both the query and the response
as a file required almost five seconds. By
modifying Sphinx to stream the query,
we reduced latency to two seconds. By
modifying Festival to also stream the
response, we reduced the delay by a fac-
tor of 25.

Lessons learned
The Handy Andy architecture pro-

vides a useful framework for develop-
ing persistent applications. The archi-
tecture is extremely broad in its
description, letting developers imple-
ment very portable applications. A suc-
cessfully implemented device proxy
can maximize a device’s usefulness
while offloading expensive conversions

to a network server. Developers can
implement simple applications in the
user proxy or as a service.

Developers have tried to make device
proxies do more than they could. To fully
exploit the capabilities of device proxies
within the architecture, we explored
speech- and user-interface-adaptation fil-
ters. ASR vocabularies are limited. Most
require knowledge of the user’s language
in the form of a language model. The
application must provide such a model;
therefore, accessing the device proxies
would no longer be transparent to the
application programmer.

Our database lets users and services
share data. Because we could customize
the data-access interface for each ser-
vice, we limited issues with proprietary
application-protocol interfaces. The data
inherited the database’s security model,
allowing user-permission specification
and enforcement. This was convenient
for programming, but it introduced a
degree of failure: the database limited
performance and exposed all shared data
to security risks.
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Figure 11. Idealink architecture within the Handy Andy architecture. The
Handy Andy architecture provides a pervasive, wireless environment for
the Idealink whiteboard tool.

Table 1. Accuracy of location measurements.

Accuracy (%) Strength (dBm) Distance (feet)

68.6 +/– 0.939 +/– 5

95.4 +/– 1.146 +/– 10

99.9 +/– 2.817 +/– 15

Table 2. Speech-PHD network speech latency.

Latency (sec) Transfer file query Streaming query

Transfer file response 5 2

Streaming response – .2
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Our proactive agents cannot access sys-
tem-level functions, such as starting

new applications, on the user’s behalf. We
won’t let them do so until we address sys-
tem-level security. Although context infor-
mation helps generate more-intelligent sys-
tem behavior, it is a liability for the system’s
users. Location information provides a prime
example. All system levels, including the
architecture, protocols, inferred preferences,
and user-specified preferences, must address
the security of such information.

We have not yet optimized the location
service. Requiring the tracked client to return
its current location for every request uses
mobile devices’ limited power and computa-
tion cycles. Ideas for increasing the location
service’s efficiency and scalability include
caching and predicting user location.
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