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ABSTRACT 
For the majority of us, inter-personal communication is an 
essential part of our daily lives. Instant Messaging, or IM, 
has been growing in popularity for personal and work-
related communication. The low cost of sending a message, 
combined with the limited awareness provided by current 
IM systems result in messages often arriving at 
inconvenient or disruptive times. In a step towards solving 
this problem, we created statistical models that successfully 
predict responsiveness to incoming instant messages – 
simply put: whether the receiver is likely to respond to a 
message within a certain time period. These models were 
constructed using a large corpus of real IM interaction 
collected from 16 participants, including over 90,000 
messages. The models we present can predict, with 
accuracy as high as 90.1%, whether a message sent to begin 
a new session of communication would get a response 
within 30 seconds, 1, 2, 5, and 10 minutes.  This type of 
prediction can be used, for example, to drive online-status 
indicators, or in services aimed at finding potential 
communicators. 

Author Keywords 
Statistical models of human activity, Responsiveness,  
Interruptibility, Availability, Awareness. 

ACM Classification Keywords 
H5.2. Information interfaces and presentation: User Interfaces; 
H1.2. Models and Principles: User/Machine Systems.  

INTRODUCTION 
Inter-personal communication through Instant Messaging, 
or IM, is gaining increasing popularity in the work place 
and elsewhere. IM programs, or clients, facilitate one-on-
one communication between a user and their list of 
contacts, commonly referred to as buddies, by allowing 
them to send and receive short textual messages (“instant 
messages”).  

Unlike face-to-face communication, users of IM cannot 
easily detect whether a buddy is available for 
communication or not. As the use of IM is growing, and in 
particular in the work place, the inability to detect a 
buddy’s state can often result in communication 
breakdowns with negative effects on both communication 
partners. For the receiver, communication at the wrong time 
might be disruptive to their ongoing work. If, on the other 
hand, receivers simply decide to ignore communication, the 
initiator’s productivity might suffer as they are left waiting 
for a piece of information needed for their work. 

If, however, we were able to accurately predict whether a 
user was likely to respond to a message within a certain 
period of time, then some of these breakdowns could be 
prevented. For example, models could be used to 
automatically provide different "traditional" online-status 
indicators to different buddies depending on predicted 
responsiveness. Alternatively, models can be used to 
increase the salience of incoming messages that may 
deserve immediate attention if responsiveness is predicted 
to be low. One could also imagine a system whose role is to 
allow its users to locate others who are available for 
conversation (for example, to find other users who can 
provide them with help or support) while hiding those who 
aren’t. This would benefit users looking for help, whose 
messages would be more likely to get a response, as well as 
busy users who would be able to stay on task uninterrupted. 

The work presented in this paper describes the creation of 
accurate statistical models that are capable of predicting a 
user’s responsiveness to incoming messages – simply put: 
whether the receiver is likely to respond to a message 
within a certain period of time. For example, of the models 
presented in this paper, one was able to predict with 89.4% 
accuracy whether a user will reply to a message within 5 
minutes and another with 90.1% accuracy a response within 
10 minutes (Figure 1). 

Background 
A number of benefits of using IM have contributed to its 
increasing popularity. With its near-synchronous nature, IM 
is positioned somewhere between synchronous 
communication channels (such as phone or face-to-face) 
and asynchronous communication channels (such as email, 
newsgroups, and online forums). This near-synchronous 
nature allows conversations to range from a rapid exchange 
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of messages, to hours or even days passing between 
messages in the same conversation. Since IM is inherently 
asynchronous, users can choose when or whether to 
respond to an incoming message. As noted by [ 25], users 
welcome the ability to use “plausible deniability” when 
electing not to respond to messages. IM is thus often 
regarded as less disruptive than other synchronous 
communication channels. In fact, IM is sometimes used for 
communication even between users who share the same 
physical work-space in an attempt not to disrupt one 
another’s work. This asynchrony means that messages often 
arrive when a user is engaged in other tasks. Indeed, 
research shows that users often multitask when using IM 
 [ 14, 20, 25].  Particularly in the work place, messages may 
thus arrive when a user is engaged in important and 
potentially urgent work. 

This means that while it is convenient and desirable for the 
sender to initiate a conversation, it may be undesirable and 
often inconvenient for the receiver. The receiver must then 
choose between staying on task and engaging in 
conversation. Staying on task and not responding may come 
at a cost to the initiator, who may need some information 
from the receiver. The receiver herself may incur a social 
cost from being portrayed as unresponsive. Engaging in 
conversation, on the other hand, will often come at a cost to 
the receiver’s ongoing work [ 27].  

One of the most important features of IM clients is the 
ability to provide some awareness of presence. IM clients 
typically provide this information by indicating whether a 
user is online and whether the user is currently active or 
idle (often referred to as the user’s “Online Status”). Most 
IM clients also allow users to set additional indicators to 
signal whether they are busy or away from the computer. 
Those, however, are often insufficient as they require users 
to remember to set and reset them [ 23]. Begole et al. 
presented a system that was able to predict a person’s 
presence based on observed patterns [ 5]. 

As noted in [ 4] and [ 11], knowing whether a person is 
present, however, does not necessarily provide an 
indication of whether or not that person is available for 
communication. A user who is not present (typically 
indicated as ‘offline’ or ‘idle’) is indeed not available for 
communication. On the other hand, a user engaged in an 
important task and unavailable for communication will be 
indicated by an IM client as present (unless they 
remembered to manually set their status to ‘Busy’). 

Since the content or topic of an incoming message is 
typically unknown to the user before it arrives, users 
generally have to attend to all messages. While the tool 
presented in [ 2] increases alerts to some messages based on  
their content, it does not prevent default alerts from taking 
place. As a result, users will sometimes elect to turn their 
IM client off when they are busy, refusing incoming 
messages altogether [ 25]. As Isaacs et al note, however, 
most IM conversations held in the workplace are work-

related [ 20]. This makes closing the IM client a less 
desirable strategy. Similar to the use of Caller ID in phones, 
a user can typically also see who the sender of the message 
is before attending to the message. However, even this brief 
interruption can, in and of itself, be disruptive [ 13]. Results 
from [ 1] and [ 8] suggest that, given information about the 
receiver, senders would be able, and willing, to time their 
messages to accommodate for the receiver’s state. 

Interruptions and Interruptibility 
Incoming instant messages join an ever growing number of 
interruptions a person is exposed to. Those include 
interruptions external to the computer, such as telephone 
calls or people stopping by to ask a question, as well as 
interruptions from various computer applications, including 
alerts of incoming email, calendar notifications, or 
notifications of new items from RSS feeds. Unlike face-to-
face interaction, most computer-generated or computer-
mediated interruptions occur entirely without regard to 
whether the receiver is ready to accept them.  

A number of studies have been performed showing the 
negative effect of interruptions on people’s performance. 
[ 13], for example, showed that even a very short 
interruption can be disruptive, while [ 7] showed that even 
an ignored interruption can have a negative effect. Field 
studies on the effects of interruptions in the workplace 
observed that, while interruptions can be beneficial to 
people’s work [ 26], some perceive them to be such a 
problem that they will physically move away from their 
computer or even offices to avoid them [ 18]. In the 
particular case of IM, we observed a number of managers 
who refused to use IM for fear of being interrupted.  

In previous work [ 19] we have demonstrated the ability to 
create statistical models that predicted, with relatively high 
accuracy, time periods reported by participants as highly 
non-interruptible. [ 17], for example, presented statistical 
models that were able to predict whether a user is “Busy” or 
“Not Busy” with accuracy as high as 87%. 

0

10

20

30

40

50

60

70

80

90

100

30sec 1min 2min 5min 10min

Predict response within

%
 A

cc
ur

at
e

Figure 1.  Accuracy of models predicting response to Session 
Initiation Attempts (SIA-5) within 30 seconds, 1, 2, 5, and 10 
minutes.  Baseline prior probability is shown with the black 

lines 

732

CHI 2006 Proceedings  •  Using Knowledge to Predict & Manage April 22-27, 2006  •  Montréal, Québec, Canada



 

We wanted to use the knowledge that we gained from the 
research described above to create useful predictive models 
in support of inter-personal communication, and in 
particular IM. 

FROM AVAILABILITY TO RESPONSIVENESS 
Availability for inter-personal communication is a concept 
not easy to define. Many factors can contribute to a 
person’s availability: their current mental task, the 
proximity to the next breakpoint, the identity of the 
conversation partner, established organizational norms and 
culture, and so on.  

Unfortunately, getting at a person’s “true” availability is 
near impossible. Furthermore, a person’s stated availability, 
how available they claim to be, may not match their 
demonstrated availability – their actual responsiveness to 
communication. For example, a person may be busy and 
state that they are unavailable for communication, while 
organizational norms coerce that same person to respond to 
incoming communication, thus demonstrating availability. 
While stated availability is of great interest to us and others, 
we have decided to focus our initial efforts on predictions 
of demonstrated availability, more specifically, on the 
ability to predict responsiveness to incoming 
communication. We are hopeful that this work will allow us 
to further understand the relationship between 
responsiveness, demonstrated availability, and finally 
availability for communication overall. 

Behavior as Ground Truth 
In order to create a predictive model using machine 
learning techniques referred to as supervised learning, one 
must first gather data along with labels that represent 
ground truth about the data. (Other machine learning 
techniques, referred to as unsupervised learning, that do not 
use labeled data also exist, but are often less useful for HCI 
purposes). For example, a set of email messages along with 
labels provided by a user, indicating messages as either 
‘spam’ or ‘legitimate’, can be used to train a model to 
identify spam email messages. 

Previous related work, including [ 9, 15, 17, 19, 24], collected 
naturally occurring behavior as data, using participants’ self 
reports as labels of ground truth.  Other work, such as [ 10] 
used the behavior of subjects participating in a lab 
experiment to create their predictive models. The work 
presented in [ 9] and [ 19] (and used by [ 4] for their models), 
for example, gathered its labeled data by asking 
participants, at different intervals, to provide self-reports of 
their interruptibility on a scale of 1-5. Horvitz et al asked 
participants to observe video recordings of their day and 
assign a monetary value to a hypothetical interruption [ 15], 
and Nagel et al had participants fill out a short survey on a 
PDA at random intervals [ 24].  

One of the main drawbacks of using self-reports as 
measures of ground truth, faced in previous work, is that 
they are very demanding from the participant’s point of 

view and make it hard to collect large amounts of data. 
Responding to a voice-prompt (as in [ 19]) or to a survey on 
a PDA (as in [ 24]) or sitting for a long period of time to 
label past events (as in [ 15]) can be socially and 
attentionally costly, and quite time consuming. Another 
problem with self-reports is that they reflect individuals’ 
subjective interpretation of what is asked of them, an 
interpretation that can vary from individual to individual. 

In contrast with the work mentioned above (and similar to 
[ 5] and, for the most part, [ 16]), the work presented in this 
paper describes the creation of predictive statistical models 
trained using naturally occurring human behavior.  One 
added benefit of using naturally occurring behavior as the 
source for learning is that a model deployed as part of a 
system would be able to continuously observe user behavior 
to train and improve its performance without requiring any 
intervention from the user. These considerations led to the 
design of the data collection mechanism described in the 
next section. 

In the remainder of this paper we describe the data 
collection method we used and give an overview of the data 
collected. We then go on to describe in detail the predictive 
models that we constructed, followed by discussion of the 
work presented, its limitations, its implications for practice, 
and conclude with our plans for further research. 

DATA COLLECTION 
Our data were collected using a background process 
implemented as a custom plug-in module for Trillian Pro, a 
commercial IM client developed by Cerulean Studios  [ 6], 
and running on the Windows operating system. We chose to 
use Trillian Pro as it supports the development of dedicated 
plug-ins through a Software Development Kit (SDK) giving 
access to most of the client’s functionality. 

Like a number of other IM clients, Trillian allows a user to 
connect to any of the major IM services (ICQ, AOL, MSN, 
Yahoo!, and IRC) from within one application. Trillian Pro 
is further capable of communication with other IM services, 
including Jabber and Lotus Sametime [ 22] (used by half of 
our participants). Using Trillian Pro thus allowed us to 
recruit participants without concern for the specific IM 
service they were using. In fact, 8 of the 16 participants 
used two or more IM services during their participation, and 
using Trillian Pro allowed us to observe their interactions 
over all channels. 

Another important reason in our decision to use a 
commercial client such as Trillian Pro, rather than develop 
a client on our own, was that it provided functionality 
beyond the simple exchange of text messages. For example, 
it allows file sharing, audio and video chats, sending 
images, etc. This reduced the likelihood of participants 
using other IM clients, which support these features, during 
the course of their participation in our study.  

To capture instant messaging events, as well as desktop 
events, a copy of Trillian Pro was purchased for each of our 
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participants and then instrumented with a data recording 
custom plugin that we wrote. Our plugin is written in C and 
implemented as a Dynamically-Linked-Library (DLL) that 
is run from inside Trillian Pro. The plugin automatically 
starts and stops whenever Trillian Pro is started or stopped 
by the participant. The following events are recorded: 

IM events: 
• Message sent or received  
• Trillian start or stop  
• Message window open or close  
• Starting to type a message  
• Status changes (online, away, occupied, etc.) of 

both participants’ and buddies’.  
• Indicator for incoming message is blinking (if this 

setting is used) 
Desktop events: 

• Key press (does NOT include which key was 
pressed)  

• Mouse button click / double-click  
• Mouse move  
• Window created (including window title and size 

of window)  
• Window minimized (including window title)  
• Window in focus (including window title and size 

of window)  
• Window closed 

These events, along with the time in which they occurred 
were saved into log files. These log files were compressed 
by the plugin “on-the-fly”, encrypted, and stored locally on 
participants’ machines. 

Participants were required to use Trillian Pro for all their 
IM interactions for a period of at least four weeks. The 
compressed log files were collected from participants’ 
computers at the end of their participation and instructions 
were given to them for removing the plugin. 

Privacy of Data 
We have taken a number of measures to preserve, as much 
as possible, the privacy of participants and their buddies. 
Unless we received specific permission from the 
participant, the text of messages was not recorded and 
messages were masked in the following fashion: Each alpha 
character was substituted with the character ‘A’ and every 
digit was substituted with the character ‘D’. Punctuation 
was left intact. For example, the message “This is my secret 
number: 1234 :-)” was recorded as “AAAA AA AA 
AAAAAA AAAAAA: DDDD :-)”.  

Alerts notifying buddies of the participation in the study 
were sent to each buddy the first time that our participant 
opened a message window to that buddy and the buddy was 
online. (A couple of our participants told us that these alerts 
generated some interesting discussion with their buddies at 
the beginning of their participation). Buddies of participants 

who provided the additional permission to record the text of 
messages were notified with a different alert message that 
further instructed them of a simple mechanism we included 
to allow them to temporarily mask messages.  

Finally, for determining that two events were associated 
with the same buddy we used an MD5 cryptographic hash 
of the buddy name instead of the buddy name itself.  

PARTICIPANTS 
Data was recorded from 16 participants in two phases. The 
first phase, which started in May 2005, included eight 
participants, all Masters students at our department. During 
their participation, each of these participants was engaged 
in a number of group projects as part of their studies. Of the 
participants, six were female and two male, with an average 
age of 24.5 (SD=2.39, Min=22, Max=29). Six of these 
participants ran the recording software on their personal 
laptops. One participant, who used a laptop at school and a 
desktop computer at home, ran the recording software on 
both machines. The eighth participant ran the recording 
software on his account on a shared desktop computer in 
the Masters students’ lab. The remainder of this paper will 
refer to this group of participants as the “Students” group. 

In the second phase, which started in July 2005, we 
collected data from eight employees of a large industrial 
research laboratory who used IM in the course of their 
everyday work. One group consisted of three first-line 
managers and three full-time researchers. The average age 
of these six participants was 40.33 (SD=4.97, Min=34, 
Max=49) with three female and three male. We will refer to 
these six participants as the “Researchers” group. The 
second group consisted of two temporary summer interns at 
the laboratory. Since these last two participants not only 
worked at the research lab but were also graduate students, 
we suspected that the patterns of IM use they display will 
lie somewhere in between that of the Students and that of 
the Researchers. One female and one male, the last group 
had an average age of 34.5 (SD=3.54, Min=32, Max=37). 
We refer to the last two participants as the “Interns” group. 
All participants in phase 2 ran the recording software on 
their work laptops. For confidentiality reasons, we did not 
record the text of messages from any of the participants in 
the “Researchers” or “Interns” groups.  

All of our participants except one were new to Trillian Pro 
but were able to automatically import the list of all their 
buddies into Trillian Pro. None of the participants had any 
difficulty making the transition to using Trillian Pro (and 
the majority still uses it now after the end of their 
participation), although some assistance was required with 
customization of specific options to match the preferences 
that individual users were accustomed to.  All participants 
ran the recording software for a period of at least 4 weeks. 2 
of the participants voluntarily continued their participation 
for a total of approximately 3 months.  
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Figure 2.  Delay (log sec) between 500 consecutive messages 
exchanged between one participant and one of their buddies. 

DATA OVERVIEW 
Using Trillian Pro as the client on which we based our data 
collection resulted in the successful recording of a very 
high volume of IM events. (A small number of data files 
were unusable due to corruption in the on-the-fly 
compression, often as a result of participants’ laptops 
running out of power.) Table 1 provides a summary of data 
collected in both phases. We collected a total of 
approximately 5200 hours of recorded data, observing over 
90,000 incoming and outgoing instant messages. 73,906 
messages from participants of phase 1 spread over 3,839 
recorded hours, and 17,633 messages in phase 2 from 1355 
hours of recordings. Two of the participants in the 
Researchers group recorded significantly fewer messages in 
their logs (96 and 350 messages). However, we did not 
remove their data from our models and analyses. 

To accommodate the fact that data were recorded only 
when Trillian was running, we provide separate fields in 
Table 2 indicating the amount of time recorded, as well as 
the total participation time (calculated for each participant 
from the start time of their first log file, until the end time 
of their final log). Since participants in the second phase 
only recorded activity during business days, their 
participation time is multiplied by 5/7. The number of 
recorded hours per day did not vary significantly between 
groups (p=.23, N.S.). 

Participants in the Students and Interns groups exchanged 
an astonishing average of 19.25 and 19.54 messages per 
hour recorded respectively. In other words, when Trillian 
was running, they exchanged, on average, a single message 
almost every 3 minutes! By comparison, the Researchers 
exchanged an average of 7.42 messages per hour, or a 
single message every 8 minutes. Differences between the 
rates of message-exchanges by group were significant 
(F[2,13]=5.08, p=.024). A pair-wise comparison shows that 
the difference in the rate of messaging was significantly 
different between the Researchers and either the Students 
(t[13]=-2.57, p=.023) or Interns (t[13]=2.71, p=.018). There 
was no significant difference between the Interns and the 
Students groups (p=.32, N.S.). 

Overall, message exchanges between our participants and 
their buddies demonstrated patterns of bursts of rapid 

exchanges followed by periods of inactivity. Figure 2 
shows the delay between 500 consecutive messages 
between one of our participants and one of their buddies. 
This pattern is similar to the pattern of email exchanges 
discussed by Barabási in [ 3].  

In our data set, 92% of messages are responded to within 5 
minutes (in fact, 50% of the messages in our data are 
responded to within 15 seconds).  This means that a system 
that always predicts that a user will respond to any 
incoming message within 5 minutes will be correct 92% of 
the time. However, the majority of messages occur as part 
of a rapid exchange of messages – what we will call an IM 
session. Once a session has been established, 
responsiveness is likely to be high and can be explicitly 
negotiated between parties if needed (for example, one 
could explicitly declare their responsiveness by sending a 
message saying that a visitor has entered the room). 
Consequently, predicting responsiveness to an incoming 
instant message is interesting primarily for messages that 
can be defined as initiating a new session, rather than those 
inside a session proper. 

Defining IM Sessions 
We define an IM session to be a set of instant messages that 
are exchanged within a certain time delay between one 
another. Unlike a conversation, a session is not determined 
by the content of its messages. Indeed, a single 
conversation may extend over multiple sessions, while a 
particular session may contain many conversations. The 

Group N Avg 
age 

Total 
hours in 

study 

Total 
hours 

recorded* 

Avg hours 
recorded 

per 
participant 

Avg 
Trillian 
hours 

per day 

Avg active 
buddies per 
participant 

Total 
msgs 

Avg msg 
per 

recorded 
hour 

Minutes 
per 

message 

Students 8 24.5 9834.5 3839.8 480.0 9.4 31.4 73906 19.2 3.1 
Researchers 6 40.3 3709.5 982.5 163.8 6.4 22.8 7290 7.4 8.1 
Interns 2 34.5 1593.9 373.0 186.5 5.6 31.5 10343 27.7 2.2 
Overall 16 31.7 15138.0 5195.2 324.7 8.2 28.2 91539 17.6 3.4 

* - Due to corrupt log files, these numbers are slightly lower than the true value. 

Table 1. Overview of the data collected from each group 
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main reason for using predictions on sessions rather than 
conversations in this work is that, even if we had the 
content of messages from all of our participants, accurately 
analyzing the content of messages and determining whether 
two messages belong to the same conversational threads 
would be quite difficult. We also did not use the closing of 
a message window to segment sessions since different IM 
users exhibit different patterns of closing message windows 
(with some users closing message windows immediately 
after they send a message, while others keep message 
windows open for hours with no messages exchanged). 

We identify an incoming message from a buddy as a 
“Session Initiation Attempt” (SIA) if the time that has 
passed since the participant sent a message to that same 
buddy is greater than some threshold. In the work presented 
in this paper we used two thresholds: a 5-minutes threshold 
(SIA-5), similar to the threshold used by Isaacs et al [ 20], 
and a more conservative 10-minutes threshold (SIA-10). 
Note that any message identified as a SIA-10 is necessarily 
also identified as a SIA-5. Of the 45,468 incoming 
messages in our data, 3,805 were identified as SIA-5 and 
3,161 as SIA-10 (both session thresholds are indicated in 
Figure 2). 72% of messages in SIA-5 and 71% of messages 
in SIA-10 were responded to within 5 minutes, compared to 
92% of the full set of messages. The median response time 
for messages in SIA-5 and SIA-10 was 37 seconds, 
compared to the median of 15 seconds for the full data set. 

Features and Classes 
Before beginning to create the model we processed the raw 
user-data to produce, for every incoming or outgoing 
message, a set of 82 features describing IM and desktop 
states and a set of classes that the models should learn. 
Table 2a shows a partial list of the IM features associated 
with every message. We adapted our desktop features from 
features used in [ 9] and [ 17]. Those include the amount of 
user activity and the most-used application, in the 0.5, 1, 2, 
5, and 10 minutes time intervals that precede the message 
arrival time. We associated applications with a general set 
of application types (including for example, email, WWW, 
design-tool, etc.). Table 2b shows a partial list of the 
desktop features associated with every message. 

Our base measure of responsiveness, “Seconds until 
Response”, was computed, for every incoming message 
from a buddy, by noting the time it took until a message 
was sent to the same buddy. A histogram of “Seconds until 
Response” for incoming SIA-5 messages is presented in 
Figure 3. From this base measure we then created five 
binary classification labels by indicating, for every 
message, whether or not it was responded to within each of 
the following five time periods: 30 seconds, 1, 2, 5, and 10 
minutes. (Note that, as indicated in the previous section, 
less than half the SIA messages were responded to within 
30 seconds, while more than half were responded to within 
the 1, 2, 5, and 10 minutes time periods). 

We were now ready to train models to predict each of these 
binary classifications using the generated features. 

MODEL PERFORMANCE 
This section presents the performance of statistical models 
of responsiveness to instant messaging, more specifically to 
Session Initiation Attempts over each of the classes 
described above. The models presented were generated 
using a J4.8 Decision-Tree classifier (an implementation of 
the C4.5 rev. 8 algorithm) using the Weka machine-learning 
tool-kit [ 28]. Other classification techniques were also 
explored but generated models with lower accuracy. For 
our decision-tree models we used a wrapper-based feature 
selection technique [ 21]. This technique selects a subset of 
the available features by incrementally adding features to 
the model and testing the model performance until no added 
feature improves the performance of the model. Each of the 
models in the process is evaluated using a 10-fold cross-
validation technique. That is, each model is created over 10 
trials, with each trial using 90% of the data to train, and the 
remaining 10% to test the model’s performance. The 
overall model accuracy is then presented as the average 
over these 10 trials. Finally, a boosting process took place 
using the AdaBoost algorithm [ 12]. 

The performance of ten models created for both SIA 
thresholds and predicting responses within 0.5, 1, 2, 5, and 
10 minutes, is presented in Table 3 (labeled “Full Set”) and 
also presented in Figures 1 and 4. The performance is 
  

Day of week 

Hour 

Is the Message-Window open 

Buddy status (e.g., “Away”) 

Buddy status duration 

Time since msg to buddy 

Time since msg from another buddy 

Any msg with others in last 5 mins 

log(time since msg with any buddy) 

Is an SIA-5 
(a) IM features 

App. in focus 

App. in focus duration 

Previous app. in focus 

Previous app. in focus duration 

Most used app. in past m  minutes 

Duration for most used app. in past m  minutes 

Number of app. switches in past m  minutes 

Amount of keyboard activity in past m  minutes 

Amount of mouse activity in past m  minutes 

Mouse movement distance in past m  minutes 
(b) Desktop features 

Table 2.  Partial list of generated features Figure 3. Histogram of “Seconds Until Response” 
for incoming SIA-5 set with a cut-off at 10 minutes.
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compared to prior probability for each of the predictions. 
(Prior probability represents the accuracy of a model that 
picks the most frequent answer at all times). A comparison 
shows that all models perform significantly better than the 
prior probability baseline (for SIA-5 models 
G2(1,3805)≥1335, p<.001, for SIA-10 models 
G2(1,3161)≥916, p<.001). A comparison of accuracy 
between models created using the SIA-5 and the SIA-10 
data sets revealed no significant differences in accuracy. 

User-Centric Models 
In order to understand the role that buddy state and identity 
play in our predictions, we next examine ten predictive 
models of responsiveness created after removing all buddy-
related features.  We thus term these “user-centric” models. 

User-centric models are interesting also as they offer a 
different solution from a practical standpoint. Models that 
use the full feature-set (knowing, for example, how much 
time has passed since the last time a message was 
exchanged with a specific buddy) may predict, at the same 
time, different levels of responsiveness to different buddies. 
In contrast, user-centric models are oblivious to information 
about the source of the message, and will predict, at any 
point in time, the same level of responsiveness to all 
buddies, basing the prediction only on information that is 
“local” to the user. 

A comparison of accuracy between the models presented 
above and the user-centric models is presented in Table 3. 
Figure 4 shows a graphical comparison for models created 
with the SIA-10 set. As expected, the user-centric models 
performed slightly worse than the models using the full 
feature set, however this difference was not significant. In 
fact, in some of the models described earlier, the automated 
feature-selection process selected no buddy-related features 
even when they were made available. The user-centric 
models performed significantly better than the baseline of 
prior probability in all cases (for SIA-5 models 

G2(1,3805)≥1335, p<.001, for SIA-10 models 
G2(1,3161)≥916, p<.001). Again, no significant difference 
in accuracy could be found between SIA-5 models and 
SIA-10 models. 

A Closer Look at Selected Features 
Following model generation we examined the features that 
were automatically selected for the 20 models presented 
above. These features represent those providing the most 
useful and predictive information to the model. Models 
built from the full set of features selected on average 12.3 
features, while user-centric models selected, on average, 
10.4 features (this difference is not significant).  

Most Selected Features 
Since the combined total of distinct features selected by all 
models was high (57 out of the possible 82), for this 
discussion we group together features describing similar 
user activity and application information regardless of the 
time interval they describe (e.g., group all Keyboard Count 
features together). We further group features into 3 high-
level categories: buddy-related IM information, user-centric 
IM information, and desktop information. 

The top 10 selected features for both types of models are: 

Full-Data Models User-Centric Models 
Mouse Distance Traveled (pix) Mouse Distance Traveled (pix) 
Mouse Event Count Time Since Last Outgoing Msg 
Time Since Last Outgoing Msg User Input Count 
Most Focused Window Type Most Focused Window Type 
User Input Count Mouse Event Count 
Keyboard Count Duration of Own Status 
Time in Most Focused Window Own Status 
Duration of Own Status Keyboard Count 
Time Since Last Incoming 
Message from Different Buddy  

Location (laptop/work/home) 

Time Since Last Outgoing 
Message to Different Buddy 

Window Switches Count 

 
Note that the top features selected for both types of models 
each include six features that are related to desktop activity, 
(four of which are directly related to user input). This 
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Figure 4.  Accuracy (in %) of SIA-10 models compared to 
baseline by feature sets (Full vs. User-Centric) and prediction 

class (30secs, 1, 2, 5, and 10 minutes)  Baseline prior 
probability is shown with the black lines 

  
Predict 
response 
within 

30sec 1min 2min 5min 10min

  Full Set 79.8 83.8 87.0 89.4 90.1 
 SIA-5 User-centric 79.8 83.7 87.0 89.4 89.3 
  Baseline 54.7 55.9 63.8 72.0 75.4 

  Full Set 77.5 84.1 86.7 89.6 88.9 
 SIA-10 User-centric 77.5 84.1 86.6 89.6 88.6 
  Baseline 54.7 55.1 62.2 70.7 74.2 

Table 3.  Accuracy (in %) of models compared to baseline by 
data sets (SIA-5 vs. SIA-10), feature sets (Full vs. User-Centric) 

and prediction class (30secs, 1, 2, 5, and 10 minutes) 
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indicates significant predictive influence from the amount 
of user interaction.  Of features related to IM, the time since 
the last outgoing message, as well as the duration of the 
current online-status of the participant appear in both lists. 
It is possible that the duration of status was frequently 
selected by our models as it could indicate a recent change 
of state. Finally, we can see that two features describing IM 
interaction with other buddies were frequently selected for 
models built from the full set of features for predictors of 
responsiveness.  

Distribution of Feature Types 
Next we examined the distribution of feature selection by 
high level category.  On average, full-set models selected 
55.3% desktop features, and 44.7% IM features (22.8% 
user-centric IM features, and 22% buddy-related IM 
features). When moving from these models to user-centric 
models, the distribution of selected features shifts to 62.6% 
desktop features and 37.4% IM features, suggesting that the 
void left by the removal of buddy-related IM features was 
filled, for the most part, by user-centric IM features. 

Contribution of Desktop Features by Time Window 
As described above, desktop features accounted for over 
50% of the features selected by our models. The desktop 
features we generated looked at different time intervals 
(e.g., from the last 5 minutes vs. from the last 30 seconds).  
Figure 5 shows the percentage that features with different 
time intervals were selected for both full-data models and 
user-centric models. It is interesting to observe that 
desktop-features using longer intervals are selected more 
frequently, potentially because they provide information 
that is less susceptible to small changes and noise or 
because longer trends have more predictive importance. 

DISCUSSION 
In the previous section we have presented statistical models 
that are able, with high accuracy, to predict responsiveness 
of IM users. Specifically, these models are able to predict 
whether a user is likely to respond to an incoming message 
within a certain time period. Since our participants showed 
a high level of responsiveness overall, we were particularly 
interested in predicting responsiveness to messages that 

represent a buddy’s attempt to start a new session 
(incoming Session Initiation Attempts). 

Indeed, predictive models of responsiveness can be applied 
in a number of useful ways. For example, models can be 
used to automatically provide different "traditional" online-
status indicators to different buddies. Alternatively, models 
can be used to increase the salience of incoming messages 
that may deserve immediate attention (such as in [ 2]) if 
responsiveness is predicted to be low. Models could also be 
used by a system that will show a list of potentially 
responsive buddies to users who are looking for help or 
support, while hiding others. We now discuss a number of 
issues regarding the practical use of predictive models of 
responsiveness: 

Implications for Practice 

Preserving Plausible Deniability 
One of the key benefits of IM is users’ ability to respond to 
messages at a time that is convenient to them (or even not 
respond at all). The insufficient awareness provided by 
most IM clients is at the source of the problem that we are 
trying to solve with our models. However, it is the 
ambiguity inherent in this insufficient awareness that 
provides users with ‘plausible deniability’; that is, it allows 
them to claim that they did not see a message or even that 
they were not at their computer. It is thus important to warn 
against a naïve use of predictions of availability. Providing 
prediction of responsiveness to buddies “as-is”, would 
substantially reduce plausible deniability and should be 
avoided. Instead, careful consideration of the application 
and presentation of predictions is required (for an example 
of the effect of different awareness displays on timing of 
interruptions see [ 8]). 

Making Predictions Visible to the User 
In all current IM clients, users can see their own online-
status. This allows them to be aware of and control the 
presence that they expose to others. Similarly, any system 
providing automatic predictions of responsiveness to others 
should reflect this information back to the user. One danger, 
of course, is that users will attempt to learn which factors 
determine the system’s predictions. For example, in a 
system that uses responsiveness to determine whether to 
include a user in a set of possible communicators, a user 
may try to “game” the system in order to always appear as 
non-responsive. The system, however, can potentially avoid 
such a situation by making use of predictions from multiple 
models. A greater number of models, and potentially a 
greater number of features, could reduce the overall effect 
of any one feature in the prediction. Finally, allowing users 
to override the predictions will likely eliminate the need to 
“game” the system. 

Multiple Concurrent Levels of Responsiveness 
In this paper we presented a set of models, which we called 
User-Centric, generated using only information about the 
state of the user without any buddy-related features. Our 
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Figure 5. Percent of desktop features selected as a factor of the 

time interval they were computed on 

738

CHI 2006 Proceedings  •  Using Knowledge to Predict & Manage April 22-27, 2006  •  Montréal, Québec, Canada



 

primary reason was to investigate the relative accuracy of 
user-centric models. However, the use of user-centric 
models also has implications for practice. Specifically, a 
predictive model that takes into account features describing 
the state and history of a user’s interaction with different 
buddies will, inherently, predict different levels of 
responsiveness to different buddies. On the other hand 
models that use only information about the state of the user 
are guaranteed to provide the same prediction regardless of 
the identity of the buddy initiating the session. This 
difference should be carefully considered by the system 
designer when deciding which type of models to use. 

Limitations 
One limitation of the models presented is this paper is that 
they are unaware of the content of messages sent and 
received. A large number of messages do not in fact require 
immediate responses. Avrahami and Hudson list different 
levels of responsiveness expected for different types of 
messages [ 2]. A model for predicting responsiveness that 
does not use the content of messages will use other features 
to explain the lack of a response, potentially leading to 
inaccurate predictions.  

Predictions of responsiveness without using content may 
also result in misinterpretations of availability. An example 
of a case where mere responsiveness incorrectly reflects 
availability is that of responses used for deferral. For 
example, a user responding quickly with a message saying 
“can’t talk, in a meeting” would demonstrate high 
responsiveness but low availability. A model unaware of 
the content of the message is likely to misinterpret this 
behavior. In order for such events to be classified correctly 
they should, more appropriately, be noted in the training 
data as “no response”. This, however, would be impossible 
to detect without the content of the messages (and even 
then, detecting those in an automatic way is not trivial). 

Future Work 

Content Analysis 
For future improvements to our models, we plan to look at 
the content of messages provided by four of our 
participants. We plan to test the ability to automatically 
detect the topic of a message. This will allow us to address 
the limitations discussed above as well as introduce other 
content-based features to our models. 

Responsiveness as a Continuous Measure 
Our plans for further exploring the predictions of 
responsiveness include the creation of models that predict 
the time until a user responds as a continuous measure. In 
this paper we presented models capable of successful 
predictions for 5 different time periods,  however, a system 
might require a model that can provide finer grain 
predictions of responsiveness. As a first step in this 
direction we plan to use regression models to try and 
estimate users’ response times. Through the use of linear-
regression we hope to also be able to understand the 

detailed contribution of specific features and the 
interactions between those features. 

Beyond Desktop Events 
The work presented, for example, in [ 4, 9, 16] described the 
creation of statistical models that used input from a 
person’s calendar as well as sensors external to the  
workstation. Those included a door sensor, sensing whether 
the door was open or closed, a phone sensor, sensing 
whether the phone was on or off hook, simple motion 
detectors, and speech sensors, implemented with 
microphones installed in the person’s office, or the 
microphone built into participants’ laptops. When designing 
the data collection for the work presented in this paper we 
decided not to use sensors external to the desktop. While 
we believe that it is reasonable to expect events and 
activities external to computer usage to be reflected in that 
usage (for example, a user attending to a visitor is likely to 
generate fewer computer events), we suspect that 
improvement to our models could potentially be generated 
from features that use such sensor data. As the collection of 
software events is possible on most all computers and is 
extremely low cost in comparison with other sensors, we  
plan to investigate the correlation between software 
generated events and external events. 

From Responsiveness to Availability 
As we mentioned at the beginning of this paper, we are 
interested in a better understanding of the concept of 
availability. In the future we plan to collect both behavioral 
data (as we did in this work), as well as collect participants’ 
self-reports, in order to understand the relationship between 
stated and demonstrated availability. 

SUMMARY 
Instant Messaging is an important communication channel 
increasing opportunities for inter-personal communication 
between both distributed and co-located people. The low 
cost of initiating communication over IM, combined with 
its currently limited awareness support, results in messages 
often arriving at times that are inconvenient or distracting 
for the receiver. An attempt to start a conversation may then 
either result in a disruption to the receiver’s work, or if the 
receiver decides to ignore it, may result in the initiator left 
without a needed piece of information. In the work 
presented in this paper we focused our efforts on 
predictions of demonstrated availability – more 
specifically, on the ability to predict responsiveness to 
incoming communication. We described the collection of a 
large corpus of IM interaction and the creation of statistical 
models that successfully predict a person’s responsiveness 
to incoming messages, in particular responsiveness to 
incoming attempts at initiating a new IM session. We 
further investigated the performance differences between 
models that provide different responsiveness levels for 
different buddies, versus “user-centric” models that predict 
the same responsiveness for all buddies. The performance 
of these “user-centric” models was not significantly 
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different from that of models that were able to use the full 
set of features. This means that considerations for the 
particular use of the models will allow a system designer to 
choose between these two alternative model types. 

Ultimately we are interested in understanding the factors 
that govern availability (both stated and demonstrated).  We 
believe that the ability to predict the behavioral 
manifestations of availability, namely responsiveness, 
advance us in that direction. 
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