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Abstract

Interrupting users engaged in tasks typically has negative effects on their task completion time,
error rate, and affective state. Empirical research has shown that these negative effects can be miti-
gated by deferring interruptions until more opportune moments in a user’s task sequence. However,
existing systems that reason about when to interrupt do not have access to models of user tasks that
would allow for such finer-grained temporal reasoning. To enable this reasoning, we have developed
an integrated framework for specifying and monitoring user tasks. For task specification, our frame-
work provides a language that supports expressive specification of tasks using a concise notation.
For task monitoring, our framework provides an event database and handler that manages events
from any instrumented application and a task monitor that observes a user’s progress through spec-
ified tasks. We describe the design and implementation of our framework, showing how it can be
used to specify and monitor practical, representative user tasks. We also report results from two user
studies measuring the effectiveness of our existing implementation. The use of our framework will
enable attention aware systems to consider a user’s position in a task when reasoning about when
to interrupt.
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1. Introduction

When applications interrupt users at less opportune moments in their task sequence,
disruptions to task performance (Bailey, Konstan, & Carlis, 2001; Czerwinski, Cutrell, &
Horvitz, 2000b; Monk, Boehm-Davis, & Trafton, 2002), error rate (McFarlane & Lato-
rella, 2002), and affective state (Adamczyk & Bailey, 2004) are much more severe than if
the interruption had occurred at a more opportune moment. Prior work has both argued
(Miyata & Norman, 1986) and empirically demonstrated (Adamczyk & Bailey, 2004;
Iqbal, Adamczyk, Zheng, & Bailey, 2005) that subtask boundaries during task execution
represent more opportune moments for interruption than non-boundary moments. One
explanation, among others, is that a user’s mental workload temporarily decreases at
boundary moments (Iqbal et al., 2005; Iqbal, Zheng, & Bailey, 2004), leaving more men-
tal resources for the interrupting task and for later resuming the previously suspended
task.

These and other empirical findings have created rapidly growing interest in developing
attention aware systems that can computationally balance a user’s need for minimal dis-
ruption with their desire for information. An empirically supported approach is to defer
the delivery of information, such as email notifications, system alerts, and instant mes-
sages, until a user reaches an opportune moment in a task sequence (Bailey & Konstan,
2005; Horvitz, Jacobs, & Hovel, 1999). In office settings or other work environments
where peripheral information is often desired, but not generally safety critical, this
approach could allow users to exchange awareness of information for mitigation of
disruption.

We have developed a task specification and monitoring framework that facilitates the
creation of such attention aware systems. Our framework consists of four components;
a task description language that supports expressive specification of tasks using a concise
notation, a graphical tool that enables rapid assembly of task specifications, an event data-
base and handler that manages user events from instrumented applications, and a task
monitor that follows a user’s progress through specified tasks, notifying user-level services
when task-related events occur.

Existing systems that reason about when to interrupt users rely on external and non-
task specific cues (Horvitz, 1999; Hudson et al., 2003). By supporting models of tasks
informed by and consistent with prior empirical work (Adamczyk & Bailey, 2004; Bai-
ley & Konstan, 2005; Zacks, Tversky, & Iyer, 2001), our framework enables systems to
draw upon this knowledge when making decisions about when to interrupt. While there
has been work on task description languages for generating interfaces (Szekely, Luo, &
Neches, 1993), predicting usability (Card, Moran, & Newell, 1983; John, 1995; Kieras,
Wood, Abotel, & Hornof, 1995), guiding cognitive models (Ritter, Baxter, Jones, &
Young, 2000), and research on task monitoring by cooperative agents (Franklin, Bud-
zik, & Hammond, 2002; Rich & Sidner, 1998), our work provides an integrated frame-
work for both specifying and monitoring user tasks. Rather than infer task models
from user events (Maulsby, 1997), our framework includes a suite of effective end-user
tools for rapidly creating task specifications and then monitoring those tasks during
execution.

An important contribution of our framework is that it provides an open architecture,
enabling tasks involving any application with appropriate instrumentation to be moni-
tored and any user-level service to be notified when task-related events occur. Our frame-
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work thus enables systems to have access to accurate information about a user’s current
position in a task sequence, important for intelligent tutoring systems (Cheikes et al.,
1998), software agents (Lieberman, 1997; Maes, 1994), and attention aware systems that
manage interruption (Horvitz et al., 1999).

2. Related work

We review empirical evidence showing that interruptions have a negative impact on
users and their tasks and discuss how attention aware systems can leverage task models
to mitigate those effects. Then, we discuss how existing task description languages, script-
ing languages and frameworks, and task monitors are not sufficient to operationalize these
empirical findings, and explain how our framework builds upon this prior work to move
closer to this goal.

2.1. Interruption and task models

Many experiments have shown that interrupting users engaged in tasks can have a sig-
nificant, negative impact on task completion time (Cutrell, Czerwinski, & Horvitz, 2001;
Czerwinski, Cutrell, & Horvitz, 2000a, 2000b; McFarlane, 1999; Monk et al., 2002), error
rate (Latorella, 1998), decision-making (Speier, Valacich, & Vessey, 1999), and affective
state (Bailey & Konstan, 2005; Zijlstra, Roe, Leonora, & Krediet, 1999). To mitigate
effects of interruption, Miyata and Norman (1986) have speculated that task (and subtask)
boundaries represent more opportune (or less disruptive) moments for interruption since
users have reduced mental workload at those moments. They argue that when a user com-
pletes a task, the executive system releases the mental resources allocated for performing
the task, momentarily reducing workload before the cycle of allocation and deallocation
occurs again for the next task.

Experiments have empirically supported this speculation. Bailey and Konstan (2005)
and Iqbal et al. (2005) showed that delivering peripheral tasks at particular boundaries
during task execution causes considerably less disruptive impact than at other moments
in the task. Since a small deferral resulted in a large mitigation of disruption, these results
show that temporal manipulation of information offers an effective and practical compu-
tational strategy for mitigating effects of interruption. Our work seeks to enable such com-
putational strategies by developing a language for specifying task models and marking
moments selected for interruption and by developing a task monitor that allows higher-
level services to defer delivery until those selected moments are reached.

For human–computer interfaces, a task model represents the hierarchical and sequen-
tial structure of a task (Card et al., 1983). Task models link how a person cognitively struc-
tures a task (what to do) with the actions afforded by a particular interface (how to do it).
Models can be constructed by applying task modeling techniques such as GOMS (John &
Kieras, 1996) or event perception theory (Zacks et al., 2001). For example, a typical sce-
nario of use for GOMS is to develop initial models for a set of interface tasks, refine the
models based on observing users performing the tasks, and then validate the refined mod-
els by observing another set of users performing the same tasks. However, the formality
applied depends on the desired accuracy of the models. When creating task models, some
form of a description language is almost always needed to express and represent the
models.
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2.2. Task description languages

A task description language provides a formal syntax and semantics for creating task
models. The constructed models can then be used to specify and communicate interface
designs, generate interfaces, predict the usability of interfaces, or enable systems to mon-
itor user activities.

For specifying interface designs, description languages include task grammars (Shnei-
derman, 1982), modeling notations (Carr, 1994; Hartson, Siochi, & Hix, 1990; Siochi &
Hartson, 1989; Tauber, 1990), algebraic specifications (Guttag & Horning, 1980), and
transition diagrams (Harel, 1987). If expressive and detailed enough, the models can even
be used to generate an executable form of the interface (Szekely et al., 1993). However, the
models constructed with these languages would not generally allow a system to monitor
the execution of the tasks.

Research in cognitive modeling has produced several task description languages, e.g.,
those used in (Byrne & Anderson, 1998; Byrne, Wood, Sukaviriya, Foley, & Kieras,
1994; John, Vera, Matessa, Freed, & Remington, 2002; Kieras & Meyer, 1997; St. Amant
& Riedl, 2001). Once developed, the models can be typically passed to a cognitive simula-
tor to predict usability (Ritter et al., 2000). For example, GLEAN (Kieras et al., 1995)
offers an English-like syntax for describing the hierarchical, sequential and unordered
parts of a task. An author uses the language to describe fine detail of an interaction such
as ‘move hand to mouse’, ‘move cursor to location’, and ‘click button,’ which is necessary
for the simulator to make predictions. These types of task description languages have been
used successfully to build models of complex interface tasks and have led to design
improvements (Gong & Kieras, 1994). While useful for simulating performance, these lan-
guages are more complex and require more specification detail than what interruption
management would probably require, as indicated in (Bailey & Konstan, 2005).

Task description languages have also been created to allow software agents to monitor
user activities. For example, to apply discourse theory to human–agent interaction, Rich
and Sidner (1998) developed a task description language that allowed agent behavior to be
linked to specific actions in the interface during design. As part of the Intelligent Class-
room, Franklin et al. (2002) developed a task description language that allowed an agent
to monitor an instructor’s tasks and cooperate by managing the media capture devices.
Each language has elements that would be useful for attention aware systems, but the lan-
guages themselves are inextricably tied to the particular system, which severely limits the
ability of others to build upon their implementation.

As part of a project on embedded training, Cheikes et al. (1998) developed a task
description language that allowed context-specific instructions to be integrated into task
models at multiple levels of detail. While the description language used constructs similar
to our own language (e.g., InOrder and AnyOrder tags) for expressing patterns of inter-
face events, the monitoring system did not support multi-tasking behavior, which is com-
mon in practice.

While task models are usually constructed through manual use of description lan-
guages, there has been work to automatically infer the models. For example, Action-
Streams (Maulsby, 1997) is a system that attempts to inductively learn the hierarchical,
sequential, and variable parts of a task model from the user event stream. This is done
by learning a grammar that expresses the sequences of incoming events. Maulsby (1997)
acknowledges that learning a grammar is a complex problem and, in some cases, no algo-



B.P. Bailey et al. / Computers in Human Behavior 22 (2006) 709–732 713
rithms have yet been discovered that would enable the system to function as desired, e.g.,
learning grammars for arbitrary interleaving of events. Though learning task models is
attractive, it is beyond the current state of the art for general use.

2.3. Scripting languages and event frameworks

Scripting languages and event (or message passing) frameworks have been developed to
enable system-wide communication among applications and to support advanced func-
tionality within individual applications. System-wide frameworks such as AppleEvents
(AppleScript) typically provide a centralized communication manager that enables appli-
cations to publish and subscribe to registered events and exchange data. When an appli-
cation publishes an event, the communication manager notifies applications that
previously subscribed to the event by invoking a callback routine. The scripting language,
e.g., AppleScript, is typically provided as part of the framework and can be used to pro-
gram the desired response behavior.

Within applications, scripting languages enable sequences of interface commands to be
recorded as macros, which are executable descriptions of a task. For example, Adobe
Photoshop enables a graphic designer to visually record a sequence of image editing oper-
ations, edit the sequence, and then execute it on batches of images.

While existing scripting languages and frameworks support the exchange of individual
events, they do not support explicit structures of task models or notifications of task-related
events, e.g., that a user just crossed a particular subtask boundary. However, system-wide
frameworks such as AppleScript could be used to facilitate implementation of a framework
similar to our own.

2.4. Task monitoring

Many systems, e.g., (Cheikes et al., 1998; Franklin et al., 2002; Maglio, Barrett, Camp-
bell, & Selker, 2000; Maulsby, 1997; Rich & Sidner, 1998) monitor the user event stream
and compare events to a task model in order to provide context-sensitive instruction or
feedback. While our system provides similar function, it also attempts to learn a flexible
model of task execution and record that model in a user profile. In other words, the spec-
ified task model describes all the possible sequences of events and the model of task exe-
cution describes how often a user has historically followed each of those sequences when
executing the tasks.

Bayesian networks have been applied to infer a probability distribution over user tasks
(Albrecht, Zukerman, & Nicholson, 1997; Horvitz & Apacible, 2003). The networks typ-
ically use specific events or properties of events as evidence variables. This works well for
identifying a task in the midst of sparse or noisy data. However, Bayesian networks by
themselves cannot easily monitor multiple instances of the same task (e.g. preparing
two separate email messages) or multiple active tasks (e.g. interrupting the editing of a
document to send an instant message and then resuming), both of which are common
in multi-tasking environments. Also, building or adapting the computational machinery
for a Bayesian network would be overly difficult for most.

A challenge in task recognition is how to handle situations where multiple tasks match
the same initial sequence of events. In this case, our task monitor maintains a candidate set
of possible tasks and refines the set as more events are generated. While our approach
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provides a working solution, more sophisticated, probabilistic approaches such as Demp-
ster–Shafer theory (Carberry, 2001) could be used in the future. User preferences for exe-
cution sequences and more domain specific information could also help resolve ambiguity
in task recognition.

To summarize, our task description language extends prior work in that it leverages the
syntactic structure of XML to more easily support hierarchical decomposition, it draws
upon the use of regular expressions to describe patterns of events in a concise notation,
and it results in task models that are reasonably easy to read and understand. Our task
monitor extends prior work in that it can monitor multiple ongoing tasks and multiple
instances of the same task, seeks to learn a model of task execution, and uses a client/ser-
ver architecture to support multiple applications.

3. Framework design goals

Several design goals were defined to guide the development of our task specification
language and monitoring system. The term author refers to the person writing a task spec-
ification, which could be an interface designer, developer, IT support staff, end user, or
other stakeholder. The goals of the system are to:

� Enable low-investment creation of task specifications. The benefit that comes from spec-
ifying tasks should ostensibly outweigh the investment required to specify those tasks.
While we have shown the potential benefit of task monitoring for attention aware
systems (Adamczyk & Bailey, 2004), realizing a net benefit requires a task specification
language that is reasonably easy to use and learn and that is accompanied by effective
interface tools.

� Enable tasks to be specified at multiple levels of detail. For example, a compose email
task could be decomposed into open window, compose and send mail subtasks. Com-
pose could then be further decomposed into select recipients, enter subject, and enter
body subtasks, and so forth. For attention aware systems, finer-grained task decompo-
sition would enable finer temporal reasoning about when to interrupt (Adamczyk &
Bailey, 2004), but also requires more effort on part of the author. Striking the appro-
priate balance between level of detail and specification effort should be left to the
author’s discretion, not imposed by the system.

� Support expressive descriptions of tasks. An effective language should enable an author
to express variations of task execution in a concise notation. Although there may be
many different execution sequences to accomplish a task, an author should not have
to explicitly describe all those variations; rather the language should accommodate mul-
tiple interpretations. This is analogous to how regular expressions provide a notation
that enables a single specification to describe several matching patterns of strings.

� Enable specification of tasks that involve multiple applications. Interactive tasks often
involve multiple applications. An example is that a user receives an email with an
attached document, opens the document, edits it, and emails it back to the sender. If
performed often, an author may want to specify this sequence as a single task because
it provides a more accurate representation of the interaction sequence.

� Accurately monitor specified tasks in the midst of unspecified activities. Due to the
enormous number and diversity of tasks possible in a typical computing environment,
a task monitoring system cannot expect that every task that a user performs would
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have an associated specification. However, research shows that users often spend
about 81% of their time performing core tasks in a few applications (Czerwinski, Hor-
vitz, & Wilhite, 2004). Thus, even if a system is able to monitor only a small part of
the overall task space, it is still possible for it to recognize tasks that a user performs
most of the time.

� Support forecasting of a user’s task execution. By building a model of how a user per-
forms and transitions among specified tasks, a system could forecast the user’s task exe-
cution. The temporal granularity of the forecasting would be commensurate with the
level of detail in the specifications. For example, for a compose email task specified
at a coarse level, a system could forecast that a user will spend 5 min composing an
email, or if specified at a finer level, that the user will spend 1 min selecting recipients,
30 s writing the subject, and 3.5 min composing the body. Forecasting would be useful
to enable an attention aware system to better reason about when to interrupt a user
engaged in a task, e.g., by deferring the delivery of information until the user reaches
a boundary in their task sequence (Miyata & Norman, 1986).

While our current implementation does not yet fully achieve all of these goals, we felt it
was vital to define them up front and use them to guide implementation and other design
decisions.

4. Framework architecture

As shown in Fig. 1, our framework consists of four components; (i) a task description
language that enables an author to express tasks at multiple levels of detail, (ii) an event
database and handler that manage user events, (iii) a graphical tool called PETDL Maker
that can be used to quickly assemble task specifications, and (iv) a task monitor that fol-
lows a user’s progress through specified tasks, recording transition frequencies and the
time spent at each step.

In our framework, the term event refers to an application-level event, which is a system-
level event that has been delivered to and interpreted by an interface control. For example,
a system-level event is ‘mouse click’ while an application-level event is ‘select file menu.’
Our framework assumes and only ever receives application-level events that were gener-
ated by user interaction. Our framework further assumes that applications have been
instrumented to send these events. To demonstrate the feasibility of and test our frame-
work, we instrumented MS Outlook, MS Word, and Firefox using their built-in scripting
tools to generate events for common tasks. In the future, we expect that applications
would have such instrumentation already available.

The framework uses a client/server architecture where the event handler and task mon-
itor execute in a server process on the same or separate machine. Executing the server on a
separate machine would enable the task monitor to monitor the tasks of multiple users
simultaneously and across heterogeneous systems.

4.1. Task description language

Pattern-based Event and Task Description Language (PETDL) is an XML-based
language for describing user tasks that draws upon GOMS (Card et al., 1983), regular
expressions, and schema descriptions. Table 1 shows the tags available in the language
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architecture to communicate with applications and services.
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and Fig. 2 shows how a calendaring task in Microsoft Outlook could be specified using the
tags. Any number of task specifications can be contained in one PETDL document.
PETDL includes tags to describe events, hierarchy, references, and pattern matching:

� Events. An author uses the Æeventæ tag to name an application-level event in a speci-
fication. Although not shown in Fig. 2 for brevity, event tags include attributes for spec-
ifying the name of an application. By including the application name with an event,
specifications can include events from multiple applications. The name of the event
must exactly match the name of the event forwarded. Because an application registers
an event dictionary with our event database, an author is able to view all events avail-
able for supported applications when writing specifications.

� Hierarchy. Drawing upon task modeling techniques such as GOMS (Card et al.,
1983), PETDL enables an author to hierarchically decompose a task into subtasks
(goals) and patterns of events (operators). PETDL provides a single tag Ætaskæ that
can be recursively nested to more easily express hierarchy. The use of nesting allows –



<task name="Manage Schedule">
  <task name="Schedule Appointment From Email">
    <inOrder> 
      <event name="OpenMailItem"/>
      <optional> 
        <event name="SwitchFocus"/>
      </optional> 
      <anyOrder> 
        <task name="AddAppointment">
          <inOrder> 
            <event name="OpenApptItem"/>
            <oneOrMore> 
              <event name="ChangeApptItemProp"/>
            </oneOrMore> 
            <event name="WriteApptItem"/>
            <event name="CloseApptItem"/>
          </inOrder>
        </task> 
        <event name="CloseMailItem"/>
      </anyOrder> 
    </inOrder> 
  </task>
</task>

Fig. 2. Sample specification for a calendaring task using PETDL.

Table 1
Tags available in our task description language

PETDL Tag Description

Task Expresses hierarchical task structure and enables reuse
inOrder Children tags must occur in specified order
anyOrder Children tags can occur in any order, but all must occur
Optional Zero or one of specified children may occur
oneOrMore One or more of specified children may occur
zeroOrMore Zero or more of specified children may occur
repeatExactly Children must occur an exact number of times
Choice Exactly one of the children may occur
Event An application-level event
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rather than forces – tasks to be specified at multiple levels of detail. In a Ætaskæ tag,
any number of control tags can be nested to express patterns of matching user events.
The names of the control tags were designed to reflect the event patterns they express.
Also, the Ætaskæ tag supports a reference attribute that allows it to be named and
then reused elsewhere in the same or other specification. The hierarchical structure
of the model implicitly defines boundary points, with each end tag for a task defining
a boundary. The nesting level of the boundary is used to infer how opportune that
moment would be for interruption. Alternatively, an author can set the opportune
attribute that takes an integer parameter, with lower numbers being more opportune
for interruption.
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� References. A positive consequence of using nesting to express hierarchy is the ability to
rapidly create new specifications by composing reusable parts of existing ones. This
reduces duplication of common subtasks, making them easier to maintain, and enables
specifications to be shared among authors. PETDL allows a reference to be made to
existing tasks/subtasks through the use of a ref = true attribute in a Ætaskæ tag.
For example, in Fig. 3, the AddAppointment subtask is referenced and reused later
in the task specification, and could also be used in other specifications.

� Pattern matching. Listed in Table 1, PETDL provides seven control tags for specifying
rich patterns of user events. Control tags are built to resemble the control syntax used in
regular expressions, e.g., the use of ÆzeroOrMoreæ in PETDL is equivalent to the use
of an asterisk (*) in regular expressions. Similar to describing matching patterns of
strings, an author uses control tags in a task specification to concisely express matching
sequences of user events. Beyond regular expressions, however, our language also
includes an ÆanyOrderæ tag, as this tag allows many variations of execution sequences
to be immediately expressed. For example, the use of this tag in Fig. 2, states that a user
may either, add the appointment then close the email, or close the email and then add
the appointment. Just as with regular expressions, some patterns of events may be
described with alternative combinations of control tags. We leave the decision of
how to best express patterns of events up to the specification author.

4.2. Event database and handler

The event database maintains a persistent store of event dictionaries for applications
and records live streams of events generated by a user interacting with instrumented appli-
<task name="Manage Schedule">
  <task name="AddAppointment">
    <inOrder> 
     ... 
    </inOrder> 
  </task>
  <task name="Schedule Appointment From Email">
    <inOrder> 
      ... 
      <anyOrder> 
        <task name="AddAppointment" ref="true"/> 
        <event name="CloseMailItem"/>
      </anyOrder> 
    </inOrder> 
  </task>
</task>

Fig. 3. A specification using a task reference. References allow tasks and subtasks to be reused in the same or
other specifications.
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cations connected to our server. When an application starts, it can connect to the event
database to register or later modify its event dictionary. An event dictionary gives the
name and description of all events that can be generated by an application. An author
can inspect the event dictionary directly (as it is plain text) or can use our PETDL graph-
ical tool which supports features such as filters.

After registering or modifying its event dictionary, an application connects to the event
handler executing in our server. The event handler manages the streams of events gener-
ated by users interacting with the applications. For each event, the name of the event,
the application that generated it, and the time that it was generated are sent to the event
handler. The handler forwards this event structure on to the task monitor and then records
it into the database. Because events are recorded, an author can use our graphical tool to
monitor live streams of events and use these events to author task specifications in a way
similar to macro authoring. A stream is removed from the database once the correspond-
ing application is exited.

4.3. PETDL Maker

PETDL Maker is a graphical tool written in Visual Basic that enables quick assembly
of task specifications. As shown in Fig. 4, the tool enables an author to view elements from
Fig. 4. The PETDL graphical tool used to quickly assemble task specifications. Events from the event dictionary
are listed in the upper left while events from the incoming event stream are listed in the lower left. Control tags are
listed at the right. An author may drag events and control tags from any of these sources and drop them into the
document region (middle). The dialog shown in the center can be used to manually add events to the specification.
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event dictionaries, the live stream of events being generated by user interaction, and the
control tags. Because the list of incoming events can be large, the tool supports filtering
based on application name and time. To create a specification, an author drags elements
from any of these sources and drops them into the document region. The elements are
inserted into an editable tree-structure that reflects and enforces the hierarchical nature
of the language (see Fig. 4). Our experience with the tool shows that the ability to monitor
events while interacting with an application is particularly useful for creating specifica-
tions. For example, to create a specification for a calendaring task, an author would
run the PETDL graphical tool, perform the calendaring task as usual, view the live stream
of events being generated by the interaction, and then select the desired events and appro-
priate control tags to assemble task specifications. We believe that this style, akin to macro
authoring, will facilitate quick and accurate creation of specifications.

4.4. Task monitor

The task monitor follows a user’s progress through task specifications and notifies user-
level services of task-related events, e.g., starting or finishing a task. The task monitor
receives events from the event handler and matches them to the available specifications,
loaded at startup. The algorithm for matching incoming events to specifications is shown
in Fig. 5.
HandleEvent(event)

matched  False 

« check against existing position placeholders »
for (p in placeholders) 
    if p is older than 1 hour 
        delete p from placeholders
    else if p.matches(event)

p p.handleEvent(event)
matched  True

        « check to see if the task is completed » 
        if p is NULL 
            delete p from placeholders

« see if it's a new task » 
if not matched
    for (t in tasks)
        if t.matches(event)

p t.handleEvent(event)

 « add the new position placeholders to the existing list » 
            placeholders.add(p)

matched  True

« if matched is False, then the event has been ignored » 

Fig. 5. Algorithm for managing the position placeholders in the task monitor.
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The task monitor maintains a list of position placeholders, which is initially empty. A
position placeholder points to the next matching event or control tag in a specification and
there is one placeholder for each instance of a task that the user is currently in. This allows
the user to be in the midst of multiple tasks or the same task multiple times, an important
advantage over many existing approaches, such as those discussed in (Cheikes et al., 1998;
Horvitz, Breese, Heckerman, Hovel, & Rommelse, 1998).

When an event arrives, each placeholder (or active task) attempts to match the event to
its next allowable events. For example, if a placeholder points to an AnyOrder tag, it
would match the event against its contained events and recursively against the next allow-
able events of its contained control tags. If a placeholder matches an event, it then handles

the event. Handling an event involves marking the matched event as having occurred in
that instance of the specification and determining if it was the last event of the tag. If it
was the last event, a placeholder to the next control tag is returned, otherwise the same
placeholder is returned.

If the incoming event does not match any existing placeholders, the event is compared to
events that start new tasks. If it matches, a new placeholder is created and added to the list.
Otherwise, since the event does not move an existing task forward or start a new task, it is
discarded. This process repeats itself for each incoming event. If a placeholder has notmoved
for a specified duration, then it is removed from the list and the specificationmust bematched
from the beginning. This situation may occur if a task was interrupted and never resumed.

To demonstrate the algorithm, suppose the event stream in Fig. 6 is matched against the
Manage Schedule task in Fig. 2:

1. This first event, AppActivate, is ignored by the task monitor because it does not
match the first event in the task description, OpenMailItem. The task monitor con-
tinues to ignore events until it sees OpenMailItem.

2. The second event, OpenMailItem, matches the first event of the Schedule

Appointment From Email task. Since this is the first event in the task, the task mon-
itor creates a position placeholder to track progress through the task. The next match-
ing event can be SwitchFocus, which is optional, or OpenApptItem or
CloseMailItem, which can occur in any order but both must occur.
1. <event name="AppActivate"
timeOccurred="2004.07.04 18:36:09" /> 

2. <event name="OpenMailItem"
timeOccurred="2004.07.04 18:36:30" /> 

3. <event name="ReadMailItem"
timeOccurred="2004.07.04 18:36:30" /> 

4. <event name="OpenApptItem"
timeOccurred="2004.07.04 18:37:53" /> 

5. <event name="ChangeApptItemProp"
timeOccurred="2004.07.04 18:38:59" /> 

6. <event name="ChangeApptItemProp"
timeOccurred="2004.07.04 18:38:59" /> 

Fig. 6. Example event stream with events numbered for reference.
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3. The third event, ReadMailItem, does not match the existing position in the task
nor does it start a new task. Since it does not match, it is ignored by the task
monitor.

4. The fourth event, OpenApptItem, matches the position placeholder and now the posi-
tion placeholder is pointing to ChangeApptItemProp.

5. The fifth event, ChangeApptItemProp, matches the position placeholder. It is
updated and now expects another ChangeApptItemProp or WriteApptItem.

6. The last event, ChangeApptItemProp, also matches the position placeholder
because of the ÆoneOrMoreæ control tag. The position placeholder will still match more
ChangeApptItemProp events or a Write-ApptItem event.

Because the algorithm maintains the position placeholders while ignoring non-matching
events, the task monitor can monitor tasks in the midst of non-matching events and
unspecified activities. For example, in the Manage Schedule task, the user could save
the email at any time – thus generating a series of non-matching events – without disrupt-
ing the task monitor.

The algorithm compares incoming events against the specified events that could possi-
bly occur next. In cases where an event matches multiple subsequent events, an ambiguity
arises. We handle this through one of many possible solutions, namely by matching the
event to the placeholder that was created first chronologically.

As a user transitions among specified tasks, the task monitor builds a model of the
user’s task execution. The model is a graph where the nodes represent tasks and events
and directed edges represent transitions between the events. Initially, the graph represents
the task structure of the corresponding specification, built recursively from the specifica-
tion itself. There is one graph for each specification supplied. Note that control tags are
not included in the graph, since by this point, the task monitor has already decided that
the generated event matches a specification.

When an event occurs, a directed edge is added (just the first time) from the last
event’s node to the generated event’s node and the frequency and timing information
is recorded. For example, for the specification in Fig. 2, if the last event was openApp-
Item and the next event is changeAppItemProp, the system adds a directed edge
between the event’s nodes, sets the transition probability to 1, and records the time
between events in the last event’s node. Next time, for example, if a closeMaiItem

event occurs, the system adds an edge from the openAppItem node to the close-

MailItem node, updates the transition frequencies on the outgoing links to 0.5, and
updates the timing information, e.g., by computing and storing the average of the values,
and so on. From the model, the monitor can infer the time and transition to the next
event (task) and further event (task) sequences. The tasks containing an event can always
be identified from the model. The more repetitive the tasks and events are, the more
accurate the inferences.

Forecasting would provide a much needed service for attention-aware systems that seek
to defer delivery of information until a user reaches an opportune moment such as a
boundary in their task sequence. To make an effective decision, the system must know
the likelihood that the user will reach different levels of boundaries (with the assumption
that interrupting at a higher-level boundary would cause less disruption) and how long it
will take for the user to reach those moments. We are currently extending our implemen-
tation to provide this support.
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4.5. Implementation

We engineered our system to enable others to leverage and build upon our implemen-
tation effort as much as possible. Since XML is a powerful, well-known language toolkit, it
was used to construct our task description language. We believe the resulting syntactic rep-
resentation is easy to use and learn. Also, there are many freely available tools for building
and parsing XML documents, so our language can be quickly extended, e.g., to add new
attributes to existing tags.

A key design decision was the use of a client/server architecture with multiple connec-
tion points. Any instrumented client application can connect to our event handler, register
an event dictionary, and begin sending events. While the application must communicate
using a defined protocol, the protocol is documented in the source distribution and is rel-
atively simple in that it exchanges plain text XML structures. Once an application is con-
nected, the PETDL tool can be immediately used to view the live stream of events from the
application as well as to create related specifications. Once specifications are created, the
task monitor can observe those tasks.

Similarly, any user-level service can connect to the task monitor and request notifica-
tions of when a user starts or finishes a specified task or subtask. Requests and notifica-
tions are exchanged using plain text XML structures as a communication protocol.
Because user task recognition and monitoring is an essential component of many intelli-
gent systems including intelligent tutoring systems (Cheikes et al., 1998), software agents
(Maes, 1994), and attention aware systems (Horvitz & Apacible, 2003), our architecture
reduces future implementation efforts by abstracting these commonly needed services into
a single monitoring component. Our future implementation effort will be to allow user-
level services to store their own information into the execution model maintained by the
task monitor and to support forecasting of a user’s task execution sequences.

The task monitor and the event handler were written in Python and consist of several
thousand lines of programming code. Python’s xml.dom library was used to validate task
specifications. PETDL Maker was written in Visual Basic.NET and consists of about 2500
lines of code. Plugins for MS Outlook and MS Word were written with Visual Basic 6 and
monitored events published by their respective scripting APIs. The plugin for Firefox was
written in ECMAScript. We implemented our framework on an MS Windows platform
because it was readily accessible to us and it was the best fit with the programming exper-
tise of our research team.

5. Evaluation

We conducted two user studies to evaluate how well our existing implementation satis-
fied our design goals and to identify areas and methods for improvement. The studies were
designed to represent a common scenario of use in user task modeling. The first study was
conducted to learn how effective our language was for creating task specifications and how
useful our graphical tool was for constructing specifications from collected events. In this
study, two authors analyzed interaction videos of four users performing the same three
tasks. From these observations and, with the help our graphical tool, they created speci-
fications of the tasks.

The second study was conducted to measure how well those specifications could match
the event streams generated by a different group of users performing the same tasks. Also,
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the event streams collected from this study were fed into the task monitor to determine the
robustness of its event matching algorithm. Together, these studies enabled us to measure
length and complexity of the specifications, how many and which PETDL tags were used,
and the effectiveness of the matching algorithm in the task monitor.

5.1. Users and tasks

Two authors (both male) and four users (one female) participated in the first study, and
eight different users (four female) participated in the second study. The two authors were
computer science graduate students familiar with regular expressions and grammars. The
users consisted of undergraduate and graduate students who were experienced users of
email, word processing, and web browsing software. In both studies, each user performed
the same three tasks.

To keep users focused on their task, and to assure an uninterrupted experimental trial,
users were given instructions on how to perform the tasks, and were then left unattended
while they performed them. Details in the instructions were kept to a minimum so as to
not influence the pattern of user behavior. Though individual tasks were conducted with-
out a broader context, we constructed the tasks to involve multiple applications and
placed as few restrictions as possible on user behavior.

Three tasks; document editing, Web posting, and calendar scheduling, were developed
for the studies. For the document editing task, the user first located an email message in
Outlook’s inbox, opened the attached document in MS Word, made corrections, saved the
modified document, and sent a reply from MS Outlook with the modified document
attached. The document was annotated with instructions on how to correct each error.

In the Web posting task, the user navigated to a website using Mozilla Firefox, found a
specific web log entry and posted a comment. The user interacted with the site to ensure
that the post was anonymous, to preview the comment, and to make a given change to the
comment before making the final post. Again user interaction within the task was uncon-
strained, with users instructed only broadly in terms of the main task goals.

The third task was a scheduling task where the user opened an email in Microsoft Out-
look and scheduled an initial appointment using Outlook’s calendar based on require-
ments in the email. The user then opened a second email and again scheduled an
appointment. Because the requirements (date, time) of the appointment were ambiguous,
a user may have had to re-schedule the first appointment in order to properly schedule the
second appointment.

The average time to perform each task was just over 4 min, more than enough time to
generate a meaningful stream of events. We selected these three tasks because they would
provide a sufficient initial test of our system in the desktop domain; they involved multiple
applications, are representative of tasks that users often perform, and users could perform
them in a manner unconstrained enough to test the expressiveness of our task description
language. This last aspect also provides a good test of how well our task monitor could
handle variance in task execution.

5.2. Procedure

In both studies, a user performed practice trials of the tasks prior to the experimental
tasks. After any clarifications or questions were answered, the user performed the
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experimental tasks. Our plugins for the applications involved in the tasks intercepted user
events and sent them to the event handler for logging. This would allow us to match the
event streams to the specifications by hand and understand where and why mismatches
occurred. Commercially available software was used to electronically record a user’s screen
interaction. Each study lasted about 30 min.

6. Measurements and results

6.1. User study I

In our first study, the two authors reviewed the event logs and screen interaction videos
to create PETDL specifications for each task. Part of the final specification for the calen-
daring task is shown in Fig. 2 and the full specification for the document editing task is in
Fig. 7. The process was iterative, with authors creating the first draft of the specifications
after viewing one user’s interaction, then revising that specification based on the task exe-
cutions of the remaining users. Once complete, the resulting specifications expressed all of
the users’ task sequences.

The total time spent constructing the task specifications was not significantly more than
the time needed to review the interaction videos, which was about 2 h. After specifications
were developed, we counted the frequency of tags used to describe each task, summarized
in Table 2. Specifications required only a small number of tags to express the tasks overall
and were relatively short in length. On average, counting just the event and control tags,
document editing was 14 lines, Web posting was 15 lines, and calendar scheduling was 12
lines. This shows that our description language can express event streams for practical
tasks in a concise manner.

6.2. User study II

For the second study, we wanted to determine how well the specifications developed
in the first study would express the task execution of a different set of users performing
the same tasks. After following a procedure similar to that outlined above, we com-
pared the new set of user event streams to the specifications. For each event, we clas-
sified the outcome as a match, a user error, or a specification error. A match meant
that the specification correctly described the event. A user error occurred when the
specification could express the event stream, but an error arose due to the user not per-
forming the task as requested. For example, during the Web posting task, one user
posted to the wrong web log. A specification error was when the user performed the
task as requested, but the specification did not express the event stream. This was
the most serious type of error.

The matching outcomes are depicted in Fig. 8. Though accuracy was task dependent,
the specifications were able to reasonably express the event streams from this set of users.
An inspection of the event streams showed that improved accuracy could be achieved by
performing additional iterations on the task specifications; there were a number of infor-
mative events that could be added to future iterations of the task specifications. However,
because this was the first time that the authors in our study had ever created task specifi-
cations or used our description language to do so, we find these results encouraging and
believe that they show that creating task specifications is feasible in practice.



Table 2
Tag usage for specifications from the first user study

PETDL tag Doc edit Web search Scheduling Total

Task 4 5 3 9
inOrder 0 0 2 2
anyOrder 0 1 1 2
Optional 1 0 1 2
oneOrMore 1 0 1 2
zeroOrMore 1 0 0 0
repeatExactly 0 0 0 0
Choice 1 1 0 2
Event 10 9 7 24

Total tags 17 16 15 43

<taxonomy name="DocEdit">
<activity name="document editing">

<task name="manage email">
<event name="objMailItem_Open" />
<event name="objMailItem_AttachmentRead" />

<task name="edit document">
<oneOrMore>

<choice>
<event name="objDocument_Change" />
<event name="objDocument_Spellcheck" />
<event name="objDocument_Grammarcheck" />

</choice>
</oneOrMore>
<event name="objDocument_Save">

<parameter>
<name>location</name>
<value>desktop</value>

</parameter>
</event>
<optional>

<event name="objDocument_Close" />
</optional>

</task>
<task name="reply to email">

<event name="objMailItem_Reply" />
<event name="objMailItem_Open" />
<event name="objMailItem_AttachmentAdd" />
<event name="objMailItem_Send" />

</task>
</task>

</activity>
</taxonomy>

Fig. 7. The final task specification for the document editing task built from the first user study.
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Because matching the event streams to the specifications was done by hand in order to
categorize and understand matching errors, the next step was to test the computational
matching algorithm in the task monitor. The specifications (without modification) were
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loaded into the task monitor and events from each captured stream were delivered one at a
time, just as if they had come from the event handler in a live environment. For each
stream, the task monitor correctly matched events to the specifications and correctly
ignored events that did not match. Though the matching algorithm worked correctly,
an important point is that how well a specification matches an event stream really depends
on the accuracy of the specification itself, not necessarily on the matching algorithm.

Next, to simulate multiple tasks and multiple instances of the same tasks being per-
formed, we interleaved the streams arbitrarily and sent events from this newly formed
stream to the task monitor. Through inspection of the matching log, we found that the
algorithm correctly matched each event to the appropriate specification and correctly
ignored non-matching events. This validates the correctness of the algorithm and shows
that use of the position placeholders supports multiple active tasks and multiple instances
of the same tasks.

7. Discussion

7.1. Meeting the design goals

We discuss how the existing implementation of our framework has heretofore met our
system design goals. To enable low-investment creation of task specifications, we devel-
oped an XML-based language that has a small number of control tags that can be used
to concisely express many variations of task execution sequences. This results in specifica-
tions that are reasonably easy to read and understand and that are of relatively short
length. The language is accompanied by an effective graphical tool that facilitates a
macro-style authoring of specifications. The tool enables authors to construct specifica-
tions by composing control tags and events from the live user event stream and event dic-
tionaries within an editable tree structure.

To enable tasks to be specified at multiple levels of detail, we leverage the hierarchical
nesting syntax of XML. To enable specification of tasks that involve multiple applications,
the language allows the names of events to be prefaced by the name or instance of the
application, eliminating ambiguity among events with the same name. To accurately mon-
itor specified tasks in the midst of unspecified activities, our monitoring algorithm uses a



728 B.P. Bailey et al. / Computers in Human Behavior 22 (2006) 709–732
list of position placeholders to mark where a user is relative to each instance of a task. This
enables the monitor to follow a user’s progress through multiple active tasks and multiple
instances of the same task. To support forecasting of a user’s task execution, we have laid
the implementation groundwork by recording transition frequencies in a persistent model
of task execution.

7.2. Lessons about task specification

From our experience using the system, we also learned lessons about how to better
specify tasks. First, tasks should not end with control tags that may optionally occur.
For example, if ÆzeroOrMoreæ or ÆoneOrMoreæ are used as the last control tag in a task,
the task monitor does not know whether or not to keep waiting for more repetitions or to
mark the task as complete. Second, task authors can help disambiguate task specifications.
For example, some tasks can be described with multiple specifications that match the same
event sequences. The same problem can be found in regular expressions like
(the)|(this) which is equivalent to th((e)|(is)). While this normally does not
influence regular expressions, for task specifications it causes ambiguity when matching
events. To help overcome this ambiguity, it proved best to group together the longest
sequence of events possible in each part of a specification. Another solution could be to
review past events and consider future transition probabilities.

Our language enables an author to specify tasks at multiple levels of detail. Consistent
with lessons from task modeling (Card et al., 1983), our experience is that specifying tasks
to progressively finer levels of detail is progressively more difficult since many more exe-
cution sequences become possible. More experience with creating specifications for prac-
tical tasks is necessary to understand and recommend an appropriate level of detail.

7.3. Limitations and implementation issues

A limitation of our approach is that, regardless of the effectiveness of our language and
tools, creating specifications will always require some amount of effort. However, we
believe that the effort to create task specifications will be outweighed by the benefit of their
use, e.g., mitigating the negative impact of interruption, in both safety critical and office
environments. In safety critical environments, where human operators of complex systems
can often be interrupted when performing critical tasks, mitigating the negative impact of
interruption on task performance, error rate, and decision-making could save lives and
prevent catastrophic accidents (McFarlane & Latorella, 2002). In office environments,
where task performance is important, but perhaps less critical, large reductions in the frus-
tration, annoyance, and anxiety that users too often experience due to ill-timed interrup-
tions would also yield a meaningful benefit.

It is important to understand that specifications for tasks only need to be created once

and can then be shared and reused. We envision specifications being produced as part of
the interface design process and packaged with applications. Also, we envision a commu-
nity of authors (designers, developers, IT staff, end users, etc.) willing to create and share
specifications for common task environments such as for email and instant messaging, gra-
phic design, document editing, and Web browsing. If effective user-level services can be
developed and deployed, this will provide further impetus for creating and sharing speci-
fications. In particular, we believe that developing an attention aware system – facilitated
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by the use of our framework – that mitigates the negative impact of interruption would
provide such a compelling service.

Another practical limitation is that the use of our framework requires applications to be
properly instrumented such that the task monitor can access the user event stream. There
are at least two methods to provide this instrumentation. One method is for developers of
software applications to provide the necessary instrumentation during development. This
is not unrealistic, as many applications developed for the Mac OS have such instrumenta-
tion, presumably due to the long availability of its system-wide scripting and event frame-
work. The software infrastructure needed to script applications, which would provide
much of the instrumentation needed to leverage our framework, is becoming increasingly
available in other operating systems as well. The disadvantage of this method, however, is
that instrumentation must occur per application.

An alternative is to adapt the underlying user interface management system to make the
event stream accessible without modification to the applications that use it, e.g., by mod-
ifying the dynamic interface libraries loaded at startup. This method has been successfully
used in several projects, such as those discussed in (Cheikes et al., 1998; Ritter et al., 2000).
The advantage is that instrumentation only needs to occur once while the disadvantage is
that events are lower-level and more difficult to interpret (e.g., mapping an event to the
corresponding interface control). We believe that advances in directions of both methods
will make the user event stream more readily available in the future.

It should also be noted that the level of detail in the instrumentation itself affects the
level of detail possible in the task specifications. For example, if events related to text selec-
tion in MS Word are not made available, then authors cannot include those events in a
specification. Thus, developers should instrument applications to a fine level of detail
and allow authors to choose the desired level of detail when creating specifications.

When a user reaches an opportune moment in a task sequence, an attention aware sys-
tem must be able to respond quickly, presumably on the order of a few hundred millisec-
onds, else the window of opportunity for interruption may be lost. This is challenging, as
once an application sends the triggering event, the task monitor must, at a minimum, cap-
ture, match, and handle the event and then notify the system. Whether this process would
allow the system to deliver the information in time depends on several factors such as the
computational speed of the machine executing the task monitor, the efficiency of its algo-
rithms, and the size of the temporal window around the opportune moment. Empirical
research is needed to provide numerical estimates for the latter factor.

8. Future work

Our future work seeks to implement algorithms for forecasting a user’s task execution
sequences based on historical observations of task execution, extend our existing plugins
to further instrument the applications, develop plugins for additional, commonly used
applications, and develop an attention aware system that uses our framework to defer
the delivery of peripheral information until selected boundary points in a user’s task
sequence.

Once developed, such a system must undergo extensive evaluation to demonstrate its
utility for users in realistic settings. An evaluation should focus on at least two elements.
First, an evaluation must measure how well the task monitor can forecast a user’s task
sequences for commonly used applications, as accurate forecasting would be critical for
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deciding when to interrupt. This also implies that task specifications must effectively
describe common patterns of application use and that the task monitor can accurately rec-
ognize those patterns.

Second, since the system would defer delivery of information until boundary points
during task execution, the evaluation must investigate acceptable tradeoffs between
decreased awareness and increased mitigation of disruption. Though results from empir-
ical studies show that decreased awareness can indeed be exchanged for increased mitiga-
tion of disruption (Bailey & Konstan, 2005), the tradeoffs that would be necessary for
users to adopt such systems in practice needs to be better understood.

9. Conclusion

Existing systems that reason about when to interrupt do not have access to task models
that would allow for finer-grained temporal reasoning. To enable this reasoning, we have
presented an integrated framework for specifying and monitoring user tasks. For task
specification, our framework provides a language that supports expressive specification
of tasks using a concise notation. For task monitoring, our framework provides an event
database and handler that manage events from any instrumented application and a task
monitor that observes a user’s progress through specified tasks. Results were also pre-
sented from two user studies showing that our language can be used to effectively specify
practical tasks and that our monitoring system can accurately follow a user’s progress.
Our framework facilitates instrumentation of office environments as well as safety critical
domains to provide compelling user-level services such as intelligent tutoring, context-sen-
sitive help, and intelligent interruption management.
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