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Abstract

Pupillary response is a valid indicator of mental workload and is being increasingly leveraged to identify lower cost moments for inter-
ruption, evaluate complex interfaces, and develop further understanding of psychological processes. Existing tools are not sufficient for
analyzing this type of data, as it typically needs to be analyzed in relation to the corresponding task’s execution. To address this emerging
need, we have developed a new interactive analysis tool, TAPRAV. The primary components of the tool include; (i) a visualization of
pupillary response aligned to the corresponding model of task execution, useful for exploring relationships between these two data sources;
(ii) an interactive overview + detail metaphor, enabling rapid inspection of details while maintaining global context; (iii) synchronized
playback of the video of the user’s screen interaction, providing awareness of the state of the task; and (iv) interaction supporting dis-
covery driven analysis. Results from a user study showed that users are able to efficiently interact with the tool to analyze relationships
between pupillary response and task execution. The primary contribution of our tool is that it demonstrates an effective visualization and
interaction design for rapidly exploring pupillary response in relation to models of task execution, thereby reducing the analysis effort.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Pupillary response is a reliable indicator of mental work-
load and is being increasingly leveraged in many areas of
research, e.g., to identify lower cost moments for task inter-
ruption (Iqbal et al., 2005), evaluate complex interfaces
(Marshall, 2003), and develop further understanding of
psychological processes (Schluroff et al., 1986). It is well
established that relative increases in a user’s pupil size, or
pupillary response, has a positive correlation with increases
in their mental processing effort, or workload (Backs and
Walrath, 1992; Beatty, 1982; Granholm et al., 1996; Just
et al., 2003; Verney et al., 2001).

For example, in our prior work (Iqbal et al., 2005), we
leveraged the use of pupillary response to better under-
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stand where periods of lower mental workload occur dur-
ing execution of interactive tasks, as delivering
information at these moments could reduce the cost of
interruption (Miyata and Norman, 1986). For several
tasks, we developed models of their execution by decom-
posing them into their component goals and operators
(Card et al., 1983). In a lab setting, users performed the
tasks while their pupil size was measured using an eye
tracking system. By analyzing the cursor and gaze cues in
the interaction videos, we were able to determine the start
and end timestamps for each subtask in the model, allow-
ing it to be precisely aligned to the pupillary response data.
The task model and pupil data were then entered into a
spreadsheet application for analysis.

However, prior to conducting formal statistical analysis,
we first wanted to employ visualization techniques and
retrieve descriptive statistics in order to make sense of
and explore relationships between these data sources,
e.g., to quickly determine a user’s workload at specific
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parts of the task, identify macro-level patterns in the work-
load data, and locate any unexpected areas of potential
interest. This would allow us to informally generate, test,
and refine hypotheses and gain further confidence in later
analysis results.

Unfortunately, existing analysis tools such as GazeTrac-
ker, Data Viewer, and SigmaPlot are not sufficient for
exploring this type of data. The foremost problem is that
graphs generated with these tools do not allow interactive
analysis of the pupillary response data in relation to the
model of task execution. For example, descriptive statistics
for the response data cannot be retrieved at different loca-
tions within the task model, which is one of the most com-
mon and important analysis needs. Due to high-resolution
sampling of the pupil (e.g., up to 250 Hz) and use of a hier-
archical model, the data also needs to be explored at vari-
ous levels of detail. As a result, we had to generate many
related, but independent graphs; repeatedly switch between
the graphs and numeric spreadsheets; and invest a large
effort into programming complex macros to sort, filter,
and compare different parts of the data sets. These limita-
tions severely inhibited our ability to explore and under-
stand relationships between pupillary response and task
execution.

Though this analysis scenario was grounded in our pri-
or work, the need to analyze pupillary response in relation
to models of task execution is in fact much broader. For
example, pupillary response has been leveraged in numer-
ous controlled experiments to study how task complexity
relates to psychological complexity (Backs and Walrath,
1992; Beatty, 1982; Granholm et al., 1996; Hyona et al.,
1995; Schluroff et al., 1986; Verney et al., 2001). Pupillary
response has also been proposed as a new metric by which
to evaluate complex user interfaces (Marshall, 2003). Any-
one conducting these types of experiments or proposed
evaluations would follow a similar methodology and
would have analysis needs similar to those previously
described.

In this work, we describe the design, use, and evaluation
of a new interactive analysis tool, TAPRAV (Task Aligned
Pupillary Response Analysis and Visualization). Our work
drew upon several existing techniques for exploring other
types of high-resolution temporal data, e.g., see (Casares
et al., 2002; Mills et al., 1992; Stolte et al., 1999), and
applied them to produce an effective tool that facilitates
interactive analysis of pupillary response data aligned to
a hierarchical model of task execution.

The main components of our tool include (i) a visualiza-
tion of pupillary response aligned to the corresponding
model of task execution, useful for making sense of rela-
tionships between these two data sources; (ii) an interactive
overview + detail metaphor, enabling rapid inspection of
specific parts of the aligned data while maintaining global
context; (iii) synchronized playback of the video of the
user’s screen interaction, allowing awareness of the current
state of the task; and (iv) interaction supporting discovery
driven analysis; including interactive retrieval of descriptive
statistics for pupillary response within any part of the task
model, marking points of interest, creating multiple views
on the data, recording analysis notes, and navigating data
sets for multiple users. Results from a user study showed
that users can efficiently interact with the tool to analyze
relationships between pupillary response and task execu-
tion for ecological data sets.

1.1. Contributions

The principal contribution of TAPRAV is that it dem-
onstrates an effective visualization and interaction design
for rapidly analyzing pupillary response data in relation
to hierarchical models of task execution, reducing the effort
required to analyze this type of data. By lowering the anal-
ysis burden, which is currently very high, our tool can facil-
itate broader use of this type of physiological data in both
research and practice. Also, our tool leverages the basic
visualization metaphor of overview + detail, but extends
this metaphor to support exploration of a temporally
aligned data set – pupillary response aligned to a corre-
sponding model of task execution.

2. Related work

We describe measures of mental workload and task
models along with several projects linking them together
and their common analysis needs. We discuss why existing
tools are not sufficient for addressing these needs and
review visualizations influencing those used in our tool.

2.1. Measures of mental workload

Mental workload is generally accepted to be the ratio of
attentional resources allocated to a task versus the total
resources available (Moray et al., 1979). There are three
categories of mental workload measures; subjective (Hart
and Staveland, 1988), performance-based (Wickens,
2002), and physiological (Kramer, 1991). The advantage
of physiological measures is that they are continuous,
enabling access to ephemeral changes in a user’s mental
processing effort (Kramer, 1991).

Physiological measures include event-related potential
(Kok, 1997), electroencephalogram (Schacter, 1977), heart
rate variance (Rowe et al., 1998), and pupil size (Beatty,
1982; Pomplun and Sunkara, 2003). Our work to date
has focused on the use of pupillary response, as it measures
workload holistically, is low latency, and offers an immedi-
ate measure, i.e., a few samples relative to a baseline value
indicates workload (Kramer, 1991). Most newer eye track-
ing systems are able to measure pupil size to about a hun-
dredth of a millimeter and at very high sampling rates, e.g.,
up to 250 Hz.

The average human pupil is about 5 mm and increases in
pupil size correlate with increases in task demands (Beatty,
1982). Task-evoked increases in pupil size are usually less
than 20% above the baseline (Beatty, 1982). Eye tracking
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systems typically log the raw pupil and gaze data to a file.
To extract workload from this data, one must first process
the eye data (e.g., filter eye blinks, correct for saccades,
interpolate missed values, etc.) and compute the relative
increase in pupil size over a baseline, typically recorded
at the beginning of the experiment.

Rising interest in the use of pupillary response as a
research instrument can be attributed to better understand-
ing of how to interpret the raw data, availability of less
physically intrusive hardware at lower cost, and the endur-
ing need to measure workload in many controlled experi-
ments (Kramer, 1991). Our tool currently supports the
use of pupillary response as the measure of mental work-
load, but the visualization and interaction techniques dem-
onstrated could apply to the design of similar analysis tools
for other measures of workload.

2.2. Models of task execution

A model of task execution, or task model, represents the
hierarchical decomposition of the execution structure of a
task. Models can be developed using any number of well-
known modeling techniques such as Hierarchical Task
Analysis (Kirwan and Ainsworth, 1992), Event Perception
Theory (Zacks and Tversky, 2001), and GOMS (Card
et al., 1983; John, 1995; John and Kieras, 1996). For exam-
ple, when applying GOMS, the goal structure of a task is
recursively decomposed into its elementary perceptual,
cognitive, and motor operators, though any level of detail
is possible. Our work assumes that an analyst will apply
an existing modeling technique to define the hierarchical
and sequential structure of the experimental tasks. The
resulting models must accurately reflect users’ specific exe-
cution sequences realized during the experiment and be at a
level of detail consistent with the types of research ques-
tions being posed.

Once developed, the models of task execution, along
with their temporal alignment to the pupillary response
data, can be specified for our tool using a relatively simple
markup language. The language allows the hierarchical
and sequential execution structure of a task to be specified,
which is sufficient for describing most of the tasks used in
controlled experiments involving pupillary response, e.g.,
see tasks used in (Backs and Walrath, 1992; Iqbal et al.,
2004, 2005; Schluroff et al., 1986; Verney et al., 2001,
2004). The execution sequences of these tasks must typical-
ly be tightly controlled in order for the corresponding
pupillary response data to be properly compared across
users. However, future work could explore extensions to
the language and corresponding visualization that would
support temporal overlap between elementary operators,
as in CPM-GOMS (John et al., 2002), or that would sup-
port variable or more complex execution structures such
as those supported by ConcurTaskTrees (Paternò et al.,
1997).

The task models can be produced prior to users’ execu-
tion of tasks in an experiment, e.g., to study how workload
changes in relation to the structure of a task (Iqbal et al.,
2005); or produced after an experiment by analyzing traces
of users’ execution of the tasks, e.g., to study how work-
load affects a user’s selection of input modalities (Oviatt
et al., 2004).

2.3. Workload relative to task execution

Many projects have measured pupillary response during
execution of tasks and explored their relationship. For
example, in our own prior work on interruption manage-
ment, we wanted to understand where moments of lower
workload occur during task execution (Iqbal et al., 2005),
as interrupting at these moments could reduce the cost of
interruption (Miyata and Norman, 1986). For example,
one common, objective measure of the cost of interruption
is the amount of time needed to resume an interrupted pri-
mary task (Altmann and Trafton, 2004).

We developed hierarchical models for several tasks and
had users perform those tasks while their pupillary
response was continuously measured using an eye tracking
system. The models were then temporally aligned to the
response data and statistically analyzed, but this was a sig-
nificant struggle without access to interactive tools for first
exploring and making sense of relationships between these
two data sources.

Pupillary response has been proposed as a new metric by
which to evaluate complex interfaces (Marshall, 2003). The
basic vision is that users would perform a series of tasks
with one or more interface designs while their pupillary
response was measured. Designers would then align the
response data to the models of task execution and either
select the design that imposes the least workload overall
or re-design areas within a specific design that have unac-
ceptably high workload. Our work contributes to realizing
this vision by providing a usable software tool that reduces
the effort required for performing this type of analysis on
pupillary response data.

In cognitive psychology, researchers have sought to
understand the relationship between psychological process-
es and syntactic complexity of written language (Schluroff
et al., 1986). To further explicate this nebulous relation-
ship, users were asked to transform sentences with different
levels of ambiguity while their pupil size was measured. The
structure of the transformation process was then aligned to
the pupillary response data and analyzed. Many similar
experiments have been conducted to further understand
the relationship between task complexity and psychological
processes, e.g., see work in (Backs and Walrath, 1992;
Granholm et al., 1996; Hyona et al., 1995; Takahashi
et al., 2000; Verney et al., 2001).

Though not exhaustive, this sample of work offers
strong evidence that pupillary response does in fact often
need to be explored in relation to models of task execution.
The benefit of using our tool is that it reduces the effort
required to analyze relationships between these two data
sources.
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2.4. Tools for analyzing pupillary response and other

behavioral data

We reviewed software analysis tools from two leading
companies that sell eye tracking systems, GazeTracker
from Applied Science Labs and Data Viewer from SR
Research. Both tools offer support for analyzing pupil
data. The tools can be used to generate graphs of pupillary
response data over time, temporally zoom in/out of the
data, and play videos of a user’s screen interaction. Howev-
er, the tools do not allow the response data to be interac-

tively analyzed in relation to a task’s execution, the
zooming is disorienting as it does not maintain global con-
text, and video playback is not synchronized to the other
data sources. The lack of these features inhibits the ability
to rapidly explore and understand relationships between
the multiple data sources.

Our work seeks to develop a tool that overcomes these
central limitations; allowing rapid, interactive analysis of
pupillary response data in relation to models of task execu-
tion and allowing synchronized playback of the video of
screen interaction. However, the particular visualization
and interaction techniques used in our tool could be repli-
cated within existing commercial tools.

In addition, numerous interactive visualization tools
have been developed that allow behavioral data such as
eye gaze, task completion time, and task execution traces
to be explored in relation to prescribed models of task exe-
cution, e.g., see work by (Paganelli and Paternò, 2003) and
the review in (Ivory and Hearst, 2001). Our work differs in
that we are interested specifically in facilitating analysis of
pupillary response data in relation to the hierarchical struc-
ture of a task’s execution, which itself is a significant
research problem, as discussed in the previous section.

2.5. Influential visualizations

One goal of our visualization was to show the pupillary
response data visually aligned to the task model. The
response data could be naturally graphed over time, but
linking the task model was more challenging. We thus drew
upon time-based visualizations resembling those used in
typical scheduling charts as well as those used in CPM-
GOMS (John et al., 2002). With this type of temporal visu-
alization of the task model, we could visually align it to the
pupillary response data.

Another important goal was to allow the data to be
interactively explored at various levels of detail while main-
taining global context. Studies show that maintaining con-
text is an important factor when navigating large data sets
(Baudisch et al., 2001; Hornbæk et al., 2002) and our early
experiences have indicated that maintaining global context
is also important when exploring details of high-resolution
pupil data. For example, this would allow the analyst to
inspect localized changes in workload as part of a sur-
rounding trend in the data. One possible solution would
be to use a distortion-based visualization such as a fisheye
view (Sarkar and Brown, 1992), bifocal display (Spence
and Apperley, 1982) or perspective wall (Mackinlay
et al., 1991). However, the distortion inherent in these tech-
niques would make it difficult to compare workload data at
distant or recurring parts of the task.

Our selected solution uses an interactive over-
view + detail metaphor, where an overview of the aligned
data is shown in one spatial area and details of a selected
region are shown in another (Baldonado et al., 2000). This
metaphor was chosen because it has been shown to be use-
ful for exploring other temporal data with similar charac-
teristics, e.g., digital video (Casares et al., 2002; Mills
et al., 1992) and program execution (Stolte et al., 1999).
However, our work extends the basic overview + detail
metaphor to support two distinct data sources that are
temporally aligned, the pupil data and the model of task
execution. Though details and context are not smoothly
integrated in this metaphor (Baudisch et al., 2001), we have
not yet found this to be a significant limitation for the type
of data being analyzed in our work.

Our work is original in that it targets a novel problem
domain – analyzing pupillary response in relation to mod-
els of task execution. We drew upon and extended existing
visualization techniques to produce an effective tool for
interactively exploring data in this domain. A small part
of our work has been previously presented in (Bailey and
Busbey, 2006). This article substantially extends our earlier
discussion by including a thorough description of our
design goals for the tool, design rationale for the resulting
interface, more expansive discussion of the tool’s interface
components and their use, and empirical results and lessons
learned from a user study of the tool.

3. Goals and design evolution

In this section, we describe our design goals for develop-
ing a tool that would support interactive analysis of pupil-
lary response data in relation to models of task execution.
We then briefly discuss the iterative design process through
which our tool was developed, offering design rationale for
the particular visualization and interaction design chosen.

3.1. Goals

To generate appropriate design goals for an effective
analysis tool, we leveraged our own research experiences,
learned from limitations of existing software for analyzing
this type of data, and leveraged principles from known
visualization techniques. The primary goals were to:

• Allow pupillary response to be explored relative to a model

of task execution and video of on-screen interaction. To
effectively analyze pupillary response, analysts need to
navigate and synthesize three distinct sources of data;
the raw response data, the abstract model of task execu-
tion, and the video of a user’s on-screen interaction. There
are known techniques for visualizing each of these sepa-
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rately; e.g., response data can be graphed over time; task
models can be visualized in a tree view; and video can be
shown using any media player. However, as none of these
data sources make sense independent of the others, the
central challenge is to understand how to effectively inte-
grate them within a common visualization aligned to a
global timeline. This would allow the aligned data set to
be explored from the perspective of any of the data
sources.

• Support rapid exploration of the aligned data set at vari-

ous levels of detail. Pupillary response experiments often
generate enormous amounts of data, due to extended
interaction or high-resolution sampling of the pupil.
An analyst thus needs the ability to explore a global
view of the aligned data to identify macro-level patterns
or to compare patterns at different or recurring parts of
the task. At the same time, the analyst also needs the
ability to select and examine details in order to assess
the response data during execution of specific subtasks.

• Support a discovery driven analysis process. When
exploring complex relationships in the data set, analysts
need to retrieve descriptive statistics for particular parts
of the data, record analysis notes, mark points of inter-
est for later review and collaboration, etc. An effective
tool should provide user interface controls that support
this type of exploratory analysis.

• Support models of task execution at various levels of

detail. The tasks used in workload experiments can
range from basic stimulus-response tasks, e.g., see (Pom-
plun and Sunkara, 2003), to more complex activities,
e.g., see (Schluroff et al., 1986; Verney et al., 2001). An
effective tool should thus be able to support models of
task execution at various levels of detail, from linear
execution sequences to more complex goal hierarchies.

• Support various data formats and processing algorithms.
Most eye tracking systems generate similar pupil data
but in different formats. We wanted our tool to support
the specific format of our system, but be easily extensible
to others. Since pupil and eye gaze data may be used for
myriad purposes, an eye tracking system typically logs all
of the data and allows external applications to process
the data as needed. Regardless of the format, there are
several steps necessary to extract workload from raw
pupil data; such as filtering eye blinks, interpolating
missed values, calculating relative differences, and
smoothing. These techniques are known, but details are
often spread throughout the research literature. Our tool
could thus serve as a unified resource for analyzing pupil-
lary response, facilitating efficient processing of the data
consistent with existing analysis practices. Also, algorith-
mic extensions to the tool could allow broader and more
timely access to newly developed analysis techniques.

Although the current implementation of our tool may
not fully meet all of these goals, we felt that it was crucial
to define them up front in order to guide later design
decisions.
3.2. Audience and user tasks

The audience of the tool is mainly computer scientists
and cognitive psychologists working with pupillary
response data in relation to task stimuli. This community
is currently small, but rapidly growing due to improved
hardware at lower costs, better understanding of how to
interpret pupil data, and the enduring need to measure
mental workload in many user experiments. We also
believe that providing more effective analysis tools such
as TAPRAV will help enable and encourage more
researchers and practitioners to utilize pupillary response
in their own work.

A task analysis was performed to identify end user tasks
that would benefit most from a new tool in this domain. It
was performed by reflecting on our own analysis experienc-
es, data artifacts, research notes, and wish lists generated in
prior work (Iqbal et al., 2005; Iqbal and Bailey, 2005) and
reviewing procedures, experimental tasks, and analysis dia-
grams described in related work, e.g., (Hyona et al., 1995;
Schluroff et al., 1986; Verney et al., 2001).

Identified tasks included loading and clamping data
sources to a common timeline, examining detailed views
while maintaining context, retrieving descriptive statistics
for specific parts of the task model, comparing workload
at different parts of the model, marking points of interest
and recording notes, and navigating data sets for multiple
users. While not exhaustive, we felt these and related tasks
would influence the visualization and interaction design of
our tool the most.

3.3. Design evolution

Developing a visualization that was appropriate for our
analysis tool presented a significant design challenge. In
addition, Amar and Stasko argue that visualizations often
suffer worldview gaps, where the specific visualization does
not support end users’ actual needs (Amar and Stasko,
2004). To address our design challenge and close worldview
gaps as best as possible, we felt that it was imperative to
develop and test a series of low-fidelity prototypes to more
fully explore the design space. Low-fidelity prototypes were
developed using paper, sticky notes, colored pens and pen-
cils, etc. (Rettig, 1994) and each prototype was evaluated
with 3–5 users, one at a time. Most users had experience
with analyzing data from eye tracking experiments or
building task models while others had experience with
information visualization or user interface design.

As users performed tasks with a prototype, major
usability issues were identified by observing parts of the
interface that were particularly problematic to comprehend
or use, by having users verbalize their ongoing thoughts to
determine when expectations did not match the visualiza-
tion or allowable controls (Rettig, 1994), and by analyzing
user feedback about the prototype.

For example, Fig. 1 shows an early prototype in which
an overview + detail metaphor was used for the response



Fig. 1. An early paper prototype of our tool. An overview plus detail model was used for the response graph while a drill-down metaphor was used for
exploring the task hierarchy.
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graph and a drill-down metaphor was used for exploring
the task model. For the graph, the overview frame showed
all of the pupil data while the detail frame magnified the
selected region. The task model was initially rendered with
just the root goal (subtask). Clicking a subtask would split
it into its component subtasks and this interaction could be
applied recursively, resulting in a visualization similar to
Tree-Maps (Johnson and Shneiderman, 1991). However,
results from an evaluation showed that this design was
too complicated, as users felt the drilling interaction was
disorienting during navigation. But, users liked the block
metaphor for the subtasks, visual alignment of the data
sets, and interactive overview + detail metaphor.
Fig. 2. A later paper prototype of our tool. The overview plus detail metaphor
two detail frames aligned at the center. A magnification lens (rectangle) in the
Fig. 2 shows a later paper prototype where the over-
view + detail metaphor was now applied to both the task
model and the response graph. Replacing the drilling inter-
action, levels of the task model were unfolded into multiple
rows and the width of each subtask represented its duration
relative to the entire task. The two detail frames were posi-
tioned adjacent to each other, aligned at the center of the
interface. Magnification lenses were added to both of the
overviews, and the data within them was shown within
the detail frames, as in (Mills et al., 1992; Stolte et al., 1999).

Feedback from evaluating this prototype was more posi-
tive, with users finding it much simpler to understand than
prior iterations. However, users felt that the visualization
was now extended to both the response graph and the task model, with the
two overview frames controlled the content in the detail frames.
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needed to better emphasize the relationship between the
two overview frames and the two detail frames rather than
between the two data sources. Our solution was to pair the
two overviews and the two detail frames, and place the
pairs adjacent to each other. This also allowed the two
magnification lenses to be collapsed into a single lens, sim-
plifying the overview + detail interaction.

The iterative design process continued until we felt that
most of the major usability issues with the visualization
and interaction design were resolved. Overall, about five
major design iterations were performed, leading to our
functional tool TAPRAV.

4. TAPRAV

TAPRAV is a software tool that facilitates rapid, inter-
active analysis of pupillary response data in relation to
hierarchical models of task execution. The primary compo-
nents of the tool include (i) a visualization of pupillary
response aligned to the corresponding model of task execu-
tion; useful for exploring relationships between these two
data sources; (ii) an interactive overview + detail meta-
phor, enabling inspection of details while maintaining glob-
al context; (iii) synchronized playback of the video of the
user’s on-screen interaction, allowing better awareness of
the current state of the task; and (iv) interaction supporting
a discovery driven analysis process; including interactive
retrieval of descriptive statistics, marking points of interest,
creating views on the data, recording analysis notes, and
navigating data sets for multiple users.

4.1. Data background

To offer relevant context for the tool, we review repre-
sentative data collected in our prior work (Iqbal et al.,
2005). In this work, we wanted to analyze how mental
Fig. 3. The route planning task used in our prior work. A user retrieved distan
added the distances and fares, and selected the shorter and the cheaper of the
workload changes during task execution, e.g., to test
whether workload decreases at certain boundaries and
whether certain types of subtasks induce more workload
than others. As many researchers have speculated that
the cost of interruption would be lower during moments
of lower mental workload (Miyata and Norman, 1986),
results from this analysis would allow us to empirically test
this speculation.

In an experiment, users performed several tasks while
their pupil size was monitored using an eye tracking sys-
tem. Tasks included planning routes, editing text docu-
ments, and classifying e-mail messages. Fig. 3 shows the
route planning task used in the study. Each task lasted
about 5 min and the system logged 250 pupil samples per
second, along with gaze data. A model for each task was
developed and validated using GOMS (Card et al., 1983).
The resulting models generally had about 5 levels of sub-
goal structure and 30–50 low-level operators.

To analyze pupillary response at various parts of the
task model, we needed to precisely align the model to the
response data, once processed from the raw pupil file. This
was achieved by carefully reviewing the cursor and gaze
cues in the interaction video to determine the start and
end timestamps of each subtask in the model, which could
also be used to index the pupillary response data. The task
model was then coded and, along with the pupil data, was
entered into a numeric spreadsheet.

Performing formal statistical analysis on any part of the
data was straightforward. The struggle, however, was to
first develop an understanding of how the pupillary
response data changed relative to the structure of the task
(e.g., to identify patterns and locate unexpected areas of
interest) so that we could better direct our analysis efforts,
and gain further confidence in and better interpret later
results. This required analyzing the pupillary response data
at different temporal locations and at different levels of
ce and fare information from the map, entered it into the tables on the left,
two routes.
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hierarchical detail within the task model. Our analysis of the
data sets using existing tools required many weeks of labo-
rious effort; as we had to generate, interpret, and compare
many independent graphs of various parts of the data and
write complex macros to filter and sort the data as needed.
4.2. Visualization

Fig. 4 shows TAPRAV with the task model and pupil-
lary response data from one user performing the route
planning task (Fig. 3). Though filtered, the pupil data still
contains some noise, but this is not atypical. A few interest-
ing characteristics are immediately visible in the tool. For
example, workload (pupillary response) rises rapidly at
the onset of the task, fluctuates throughout execution as
mental resources are being adaptively allocated, and tails
off near the end of the task. These types of observations
are consistent with the characteristics that analysts often
want to identify or discover, e.g., see (Granholm et al.,
1996; Hyona et al., 1995; Schluroff et al., 1986; Verney
et al., 2001). Once the visualization and interaction design
of the tool are described, we will further elaborate on how
the tool can be used to analyze this data (Section 4.8).

The visualization consists of three main components; the
pupillary response graph, the model of task execution, and
the interactive overview + detail frames.
4.2.1. Response graph

Pupillary response is plotted along the vertical axis over
a horizontal timeline. The red line drawn horizontally
across the graph represents the baseline value, as workload
is computed as the relative increase in pupil size over a
baseline. Both the vertical and horizontal axes are of linear
Fig. 4. The main interface screens of TAPRAV. The main window (top left)
within an overview + detail metaphor. The two detail and the two overview fra
The magnification lens (blue rectangle) allows the analyst to zoom or change t
timeline to mark points of interest, shown as vertical lines near the middle and l
shown near the bottom of the main window. The statistics window (bottom l
overview frame, detail frame, and current selection. The video window (top rig
data. The red vertical lines in the detail and overview frames are linked to the
about salient features in the current view. (For interpretation of the references t
paper.)
scale. Positioning the cursor over a point on the graph dis-
plays the response value at that particular time instant,
allowing for immediate and detailed data inspection. The
cursor can also be quickly moved along the graph in order
to follow details of momentary changes in workload.
4.2.2. Task model

A time-based visualization of the task model is provid-
ed. A rectangular block represents each subtask in the task
model. The width of each block corresponds to its duration
relative to the overall task. For example, in Fig. 4, the root
node Complete Map Task spans the entire length of the
overview frame whereas the lower level node Add Data is
much narrower since it lasts for only a few seconds. The
name of a task block is drawn within its bounds, space per-
mitting. When the cursor is placed over a block, a tool-tip
gives its description and temporal information.

The task model is composed of a collection of blocks
and the hierarchy is formed by placing the blocks at each
level in the model into successive horizontal rows. The
ordering of the blocks along the timeline reflects the order-
ing of the execution of the subtasks in the model. The mod-
el is clamped to the same timeline as the response data, and
it is perhaps this property that contributes most to the
overall effectiveness of the visualization. The level in the
hierarchy, start and end times, and descriptive labels for
each subtask block are imported from a task description
file. There is one description file for each user performing
a task, and it must be defined prior to using our tool.
4.2.3. Overview + detail frames

Given a high sampling rate or lengthy experimental trial,
a linear visualization quickly becomes very dense, inhibit-
shows the task model aligned to the pupillary response graph, integrated
mes are paired, with the detail frames located above the overview frames.
he range of data shown in the detail frames. The analyst can click on the

eft. Multiple views can be created on the data set, which correspond to tabs
eft) shows the minimum, maximum, and mean values for data within the
ht) shows the user’s screen interaction and is synchronized to the response
video. The Notes window (bottom right) allows the analyst to enter notes
o color in this figure legend, the reader is referred to the web version of this
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ing inspection of details. To enable examination of details
while maintaining global context, the tool offers an over-
view + detail metaphor, which was inspired by work on
other high-resolution temporal data (Casares et al., 2002;
Mills et al., 1992; Stolte et al., 1999).

The overview frame shows the task model aligned to the
response graph for the entire data set, which is useful for
identifying patterns across different subtasks and locating
areas of potential interest. The detail frame shows a specific
range of the global data, which is useful for closer inspec-
tion of areas of interest.

A magnification lens is shown as a blue rectangle in
the overview frame and defines the temporal span of
the data shown in the detail frame as well as the temporal
span of the video of the user’s screen interaction. Ana-
lysts can stretch, shrink, and position the lens to tempo-
rally zoom the data in the detail frame. A temporal zoom
can also be performed from within the detail frame itself.
This is done by pressing the mouse button and selecting
an area of interest. Once released, the view in the detail
frame (and lens) is adjusted to reflect the new selection.
This interaction allows analysts to explore the data at
various levels of detail while still maintaining global
context.

4.3. Video of screen interaction

The video of a user’s on-screen interaction can be
imported and played in a separate window. The video
is aligned to the same timeline as the response data. Dur-
ing playback, a vertical red line is shown moving across
the corresponding parts of the response graph and task
model in both the overview and detail frames. This
allows the analyst to review the current state of the task,
better identify a user’s location in the task, quickly nav-
igate to locations of interest, and gain confidence when
attributing changes in the response data to specific parts
of the task.

The start/stop times of the video are defined by the cur-
rent left/right edges of the magnification lens, allowing the
analyst to use the lens to zoom in and out of specific parts
of the video. The video window itself has controls for play-
ing, pausing, and scrubbing the video.

4.4. Statistical information

Statistical information can be interactively retrieved for
any part of the response graph (and task model). Opened
through a menu control, the statistics window shows
descriptive statistics for the overview and detail frames,
and the currently selected region within the detail frame.
Statistics for the overview frame are persistent while statis-
tics for the detail frame are updated in response to the user
controlling its temporal range. By pressing a modifier key
(Æshiftæ) while selecting an area of interest, an analyst can
retrieve statistics for a range of data within the detail frame
itself. This is useful to retrieve statistics for different parts
of the data without having to adjust the lens. Holding
the modifier disambiguates this particular interaction from
the interaction of performing a temporal zoom within the
detail frame (see Section 4.2.3).

The descriptive statistics include the mean, standard
deviation, minimum, and maximum values, all of which
are summarized in a 2D table in the statistics window
(see bottom left of Fig. 4). This feature helps the analyst
determine if salient features in the visualization may be sta-
tistically meaningful and should be subjected to more
detailed analysis using existing software packages.

4.5. Points of interest

During the exploration process, the analyst will likely
find and want to visually mark notable points of interest
on the response graph, as typified in many of the response
diagrams shown in (Beatty, 1982; Iqbal et al., 2005; Schlur-
off et al., 1986; Verney et al., 2001). This allows the analyst
to quickly refer to those salient points for later review,
comparison, and collaboration.

A marker is a thin vertical line overlaid onto the
response graph. To insert a marker, the analyst clicks at
the desired point on the timeline in the detail frame. Any
number of markers can be added and whether markers
are visible can be toggled with a menu control.

4.6. Multiple views and notes

TAPRAV allows analysts to save specific views of the
data and return to them later. A new view tab is created
through a menu control and, when created, the tool records
the position and size of the magnification lens, visual mark-
ers, recorded notes, and current selection in the detail
frame. Views are navigated via a tabbed interface, which
is shown at the bottom of the visualization panel. This fea-
ture allows analysts to save snapshots of interesting parts
of the data while continuing to explore other parts in the
same session. For each view, the analyst can enter com-
ments into a Notes dialog and these are available whenever
that particular view is active.

4.7. Data for multiple users

A data set (response data, task model, and video) can be
imported for any number of users. User data sets can be
accessed through a tree view on the left panel and new ones
can be added using a menu control. Once a data set is
imported, all the interactions previously described are
available. Our ongoing work is investigating how to visual-
ize data sets that have been aggregated across users, which
is challenging because the durations of subtasks are almost
always different.

The current state of the analysis can be saved into a ses-
sion file. Loading the session file into the tool at a later time
enables the analyst to quickly continue from where they
last left off.
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4.8. Putting it all together

We now elaborate on how TAPRAV can be used to
explore the data discussed in Section 4.1. After launching
the tool, the task model and pupil data are imported via
Fig. 5. (a) The initial state of the tool after data sets for multiple users were im
interaction. The dashed rectangles were superimposed to show where pupillary r
the entire overview frame, thus the detail frame matches the overview. (b) T
response value within the detail frame is 12.2%, indicated in the second row o
adding subtask, and the average response value within the detail frame is just o
the boundary between the first and second routes. The boundary region has be
are retrieved from the first row of the statistics window. (e) The lens has bee
second route and making the selections, and the specific boundary region has
menu controls. The tool filters eye blinks and saccades,
keeping just the fixations, and linearly interpolates any
missing values (which appear as 0’s in the pupil data file).
It then retrieves the baseline value, guided by user input,
and computes relative differences at each sample point.
ported, each consisting of the pupil data, task model, and video of screen
esponse is noticeably higher for this particular user. The lens initially spans
he lens has been adjusted to cover the first adding subtask. The average
f the statistics window. (c) The lens has been adjusted to cover the second
ver 14%. (d) The lens has been adjusted to span an area slightly larger than
en selected within the detail frame (shown in grey), and the relevant values
n adjusted to span an area around the boundary between completing the
been selected within the detail frame.



Fig. 5 (continued)
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From a menu control, the view is trimmed to show only the
pupil data within range of the task’s execution. The video is
imported and an offset is entered synchronizing it to the
global timeline. This process is repeated to import data sets
for multiple users and results in the basic visualization
shown in Fig. 5a.

For this analysis, we wanted to know which parts of the
task had higher and lower workload and whether workload
decreased at any particular subtask boundaries. A bound-
ary is the short period between any two adjacent subtasks.
From the detail frame, which currently shows the entire
data set as the lens initially spans the entire overview frame,
we observe that the two adding subtasks appear to have
higher workload (highlighted in Fig. 5a). To explore this
further, we position the lens around the first Add Data sub-
task and the statistics window shows that the average value
of the pupil data within the detail frame is about 12.2%
over the baseline (see Fig. 5b).

To allow later review, the current view tab is named
(Add Data 1) and a new view tab is created (Add Data
2). The lens is positioned over the second Add Data sub-
task and the average response is 14% (see Fig. 5c), mean-
ingfully higher than the first adding subtask. Reviewing
the video of screen interaction at both subtasks, which
can be done quickly by navigating the view tabs, offers a
plausible explanation; the second adding subtask required
more complex calculations. This explanation is entered into
the Notes window. We also find that workload is lower
when the user entered data into the first (6.98%) and sec-
ond (6.73%) tables and when selecting the shorter and
cheaper routes (5.84%).

Further inspection of the overview frame shows that the
response data noticeably decreases at two boundaries;
between Complete Route 1 and Complete Route 2, and
between Complete Route 2 and Select Answers. Following
a similar process (see Figs. 5d and e), we find that the aver-
age response during each boundary (9.74% and 6.13%,
respectively) is lower than the preceding subtask. Note that
in Figs. 5d and e, statistics are retrieved by sweeping an
area within the detail frame itself, allowing statistical data
to be retrieved without having to adjust the magnification
lens. By switching among the data sets for the other users,
we are able to quickly determine that this pattern is fairly
consistent. These boundaries thus seem to represent cogni-
tive breakpoints in the task and may represent lower cost
moments for interruption (Miyata and Norman, 1986),
which we were able to empirically confirm in a later exper-
iment (Iqbal and Bailey, 2005).

Realizing this scenario with existing tools would be
cumbersome since the tools either do not support a
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visualization of the aligned data sets or the resulting visu-
alization is not interactive. In contrast, TAPRAV allows
this scenario to unfold seamlessly, as the analysis process
is directly supported by the visualization and interaction
design of the tool. This meaningfully reduces the effort
required to explore relationships among the pupil data,
task model, and interaction video.

The use of TAPRAV was described only for our data
sets and analysis needs, but it could also be leveraged to
conduct exploratory analyses of other similar data sets,
such as those reported in (Beatty, 1982; Granholm et al.,
1996; Hyona et al., 1995; Schluroff et al., 1986).
4.9. Implementation

TAPRAV was written in Java and consists of about
5,000 lines of code. Java was chosen because it executes
on multiple platforms and has numerous external APIs
available. The task model and response graph are drawn
using Java2D, the interface controls use Java Swing, and
video is handled using QuickTime for Java. The tool has
been tested on both Mac and PC machines.

The task model is parsed from a description file that
must be defined by the analyst using the notation expected
by our tool. The notation consists of a single Ætaskæ tag
that can be arbitrarily nested and sequenced to define
the hierarchical and sequential structure of a task’s execu-
tion. For example, Fig. 6 shows part of the file describing
one user’s execution of the route planning task. The level
of detail specified in the task description is determined by
the analyst based on the types of research questions being
posed.

The Ætaskæ tag supports attributes for specifying the start
and end timestamp of the containing subtask and these
timestamps index the pupillary response data. To deter-
mine these values, the cursor and gaze cues in the interac-
<!--  User task model; video offset = 643250 --> 
<task name = "Complete Map Task" offset = "2506686"> 
 <task name = "Complete Route 1"> 
  <task name = "Enter data for segment 1"> 
   <task name = "Identify segment"> 
    <start>28483</start> 
    <end>29687</end> 
   </task> 
   <task name = "Retrieve segment"> 
    <task name = "Locate segment in map"> 
     <start>29845</start> 
     <end>30629</end> 
    </task> 
    <task name = "Store data"> 
     <start>30849</start> 
     <end>33389</end> 
    </task> 
   </task> 
   ... 

</task>
</task>

</task>

Fig. 6. Part of a task description file for one user’s execution of the route
planning task.
tion video must be carefully analyzed to determine
precisely when each subtask starts and ends. This analysis
must be performed prior to using our tool.

Because users typically perform tasks at different speeds,
a separate description file needs to be created for each user/
task combination. Similar description files would be creat-
ed for other experimental tasks, e.g., to indicate phases of
sentence comprehension (Schluroff et al., 1986).

The pupillary response data is parsed from a known
data file containing time-stamped samples of pupil size,
which is generated by the eye tracking system. To enable
video synchronization, the eye tracker records a start event
into its data file and overlays the value of its system clock
onto the video. Once the frame of video showing the time-
stamp of the start symbol is located, the offset (current
media time of the video) is entered into the tool, synchro-
nizing the video to the global timeline.

5. User study

A user study was conducted to assess how well users
could utilize TAPRAV to explore and understand rela-
tionships between pupillary response and a model of task
execution for an ecological data set, study how users inter-
act with the tool during the analysis process, gain high-
level reactions about different parts of the interface, and
identify additional usability issues. We felt that assessing
and improving the interaction design of the tool through
a controlled study was an important and necessary first
step in preparing to later study the use of the tool in the
field.

5.1. Users and tasks

Eight users (1 female) participated in the study and the
average age was 25 (SD = 2.8). All users were either under-
graduate or graduate students in Computer Science at our
institution. Most users had at least some experience analyz-
ing large data sets using various visualization tools, but
none had specific expertise in this particular task domain.
However, we did not believe that this would be a significant
limitation, as our focus was on assessing the basic utility of
the tool.

User tasks consisted of interacting with the tool to
answer a given set of analysis questions pertaining to an
existing data set (pupil data, task model, and interaction
video), which was similar to the data set described in Sec-
tions 4.1 and 4.8. Three types of questions were posed;
(D) directed questions, where users determined the average
pupillary response (workload) during specific subtasks or
boundary regions within the task model; (E) exploratory

questions, where users compared workload at various parts
of the task to determine where workload was lower/higher
and to offer a plausible explanation; and (O) open-ended

questions, where users freely explored the data set and iden-
tified any interesting relationships or patterns. Users could
use either the Notes window in the tool or a supplied paper



Table 1
User responses to analysis questions compared to correct solutions

Question (Mean,
SD) or
number
correct

Correct solution

Average workload when adding
fare information in the first table

(11.8, 1.04) 12.1

Average workload when adding
distance information in the second
table

(13.3, 1.44) 13.7

Workload at the boundary between
finishing the second table and
selecting shorter route

(6.7, 1.25) 6.6

L2 subtask with lowest workload 5/8 Entering data for
the third segment
in the first table

L2 subtask with highest workload 6/8 Adding distance
and fare data in
the second table

Is the workload at the boundary
(from previous question)
less than the workload
during its preceding subtask?

8/8 Yes
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notebook to record their solutions, explanations, and
observations. The specific analysis questions were:

• (D) What was the user’s average workload when adding
fare information in the first table?

• (D) What was the average workload when adding dis-
tance information in the second table?

• (E) Which subtask at Level 2 had the lowest workload?
Can you explain why?

• (E) Which subtask at Level 2 had the highest workload?
Can you explain why?

• (D and E) What was the average workload at the
boundary between finishing the second table and start-
ing the selection of the shorter route? Is this value less
than the preceding subtask?

• (O) Are there any other interesting patterns of workload
that you see in the data set?

These questions were based on those asked in our prior
work (Iqbal et al., 2005), and are representative of the types
of questions asked in other related work, e.g., (Backs and
Walrath, 1992; Granholm et al., 1996; Schluroff et al.,
1986; Verney et al., 2004). The questions were carefully
constructed to prompt the user to interact with each of
the major interface components of the tool, but without
needing to specifically instruct users to do so.

5.2. Procedure and measurements

Upon arriving at the laboratory, we went through an
informed consent process with the user. The user was then
seated at a desk with a standard desktop computer running
TAPRAV. The data set was already imported into the tool.
We provided a brief overview of the various interface com-
ponents and gave an explanation of the data set. The user
was allowed to practice using the tool and ask any ques-
tions. The user then began interacting with the tool to
answer the analysis questions, which were provided on a
sheet of paper. The user’s screen interaction was recorded
using Camtasia, a commercial software tool that captures
the video frame buffer.

Once finished with using the tool, the user filled out a
paper questionnaire. The user was asked to rate the useful-
ness of the main components of the interface; including the
aligned visualization, overview + detail metaphor, syn-
chronized video window, ability to retrieve statistical data,
and ability to create multiple views on the data. Responses
were structured using a 7-point Likert scale, ranging from
Not Useful (1) to Very Useful (7). Users were also asked
to explain their reasoning for each rating. Finally, users
were asked to describe any particular strengths or weak-
nesses of the tool. The entire experimental session lasted
less than 60 min.

Measurements included the correctness of users’
answers to the analysis questions, observations of how
the tool was utilized, and users’ ratings and responses on
the post-task questionnaire.
5.3. Results

All of the users were able to derive answers for the anal-
ysis questions in the allotted time. Users interacted with the
tool in a common and expected pattern. They would use
the overview frame to determine the next target subtask
or boundary area, size and position the magnification lens
around an area slightly larger than the target area, move
the cursor to the detail frame, select a more specific region
and record the statistical values, review the video (if neces-
sary), and repeat. TAPRAV thus seemed to facilitate a nat-
ural problem solving strategy for analyzing the data.

As indicated in Table 1, nearly all of the users were able
to produce correct solutions. If an error was made, it was
usually because the user did not notice or forgot that each
subtask block was associated with a specific level in the
task model. This property needs to be made more salient
in the visualization, e.g., by highlighting the text label
and border for a level whenever the cursor enters any of
its subtask blocks. For the open-ended question, users gen-
erally responded with which types of subtasks had the high-
est (e.g., adding) or lowest (e.g., selection of routes)
workload. One user also noticed that workload seemed to
momentarily decrease at boundaries higher in the task
model; a result that we reported in prior work, but that
required several weeks of laborious analysis effort to deter-
mine. Overall, these results show that users, who have lim-
ited or no experience in this particular domain, are able to
successfully interact with our tool to answer realistic anal-
ysis questions and discover meaningful relationships in the
data.

Users rated the overview + detail model (l = 6.4,
SD = 1.1), aligned visualization (l = 6.0, SD = 1.4), and
ability to retrieve descriptive statistics (l = 5.7, SD = 1.6)
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as the more useful parts of the tool; while rating the ability
to create multiple views (l = 4.9, SD = 1.9) and view the
video of the user’s interaction (l = 4.5, SD = 2.3) as the
less useful parts. This pattern was likely due to users need-
ing to use the first three components more than the latter
two in the study. User feedback highlighted the utility of
using different components of the interface to explore rela-
tionships in the data:

‘‘Having the task model aligned with the data allowed
an easy way to match changes in the pupil size to the
tasks in which they occurred.’’

‘‘It was useful that the program automatically calculated
statistics based on the user selection. This was fast, con-
venient and easy to learn/use.’’

‘‘The pupil data and task model aligned together was
useful because it tags the data with semantic informa-
tion that are too hard (or impossible) to extract from
the raw data.’’

‘‘It was very useful to see detailed information. What
made it more useful was to see it in the overall context
of the entire data set. This gave the user a better ground-
ing of the detail model with respect to the overview.’’

‘‘[The synchronized video] allowed me to go back and
see specifically what the user was doing. For example,
I was able to see the data the user saw without having
to ask for it or look it up.’’

Several lessons were learned about how to improve the
interaction design of the tool. First, analysis notes entered
into the Notes dialog should be globally available. Current-
ly, notes shown within the dialog are associated with the
current view and change each time a different view is select-
ed. However, users wanted the notes to be linked directly to
the data, not to the current view, and explained that this
was mostly why they preferred the use of the paper note-
book. For example, one user stated, ‘‘I did not like that
my notes went away when I switched view tabs’’ while
another user stated ‘‘. . .while working and comparing data
sets I expected my notes to ‘travel’ with me. Each view
seemed to have its own notepad. . .’’ Among several alter-
native designs, our tool now allows note icons to be insert-
ed within the detail frame via a menu control and the icons
initially appear at the current position of the time marker.
Users are then able to enter the associated text and later
review it by positioning the cursor over the icon, causing
a tool tip to appear. This re-design has replaced the current
Notes window.

Second, the user should not have to press and hold the
modifier key while selecting an area of interest within the
detail frame to retrieve statistics. When an area within
the detail frame is selected without the modifier key, the
interface zooms to that area. However, users almost never
used this feature; rather, they almost always used the mag-
nification lens to adjust the area of detail and were often
confused when the interface jumped to another range of
data. As a result, we modified our tool such that the more
common case of selecting an area of interest to retrieve sta-
tistics no longer requires the use of a modifier key, while
zooming into the data does.

Third, the summary statistics for the selected area within
the detail frame should be displayed with a integrated cal-
lout or similar technique. Users disliked the current display
configuration, as they had to repeatedly switch their visual
attention from the area of interest to the statistics window.
For example, one user commented, ‘‘it was useful to know
the statistical numbers, but it was sometimes difficult to
contextualize them.’’ Several users noted that the statistical
data would be easier to attend to if it were placed closer to
the selected area within the detail frame.

Finally, users should be able to select multiple areas of
interest within the detail frame. The concept of creating
multiple views was generally liked, as this would allow
workload at different parts of the task to be compared.
The problem was that only one view (and summary statis-
tics) could be seen at any given time. Consistent with sug-
gestions from several users, our future work seeks to
address this and the previous issue by allowing multiple
selections within the detail frame to be active at once and
showing a visual callout with statistical information for
each one.

6. Discussion and future work

We describe how our current implementation has
heretofore met our project design goals. To allow pupil-
lary response to be explored in relation to a task model,
we developed an interactive visualization that shows the
model temporally aligned to the response data. The
aligned data set was integrated within an interactive
overview + detail metaphor. This allows the data to be
examined at various levels of detail while maintaining
context of the overview data. To facilitate discovery
driven analysis, the tool includes interaction for marking
points of interest, creating views, recording notes, load-
ing data sets for multiple users, and saving/loading anal-
ysis sessions.

The tool offers an XML-based notation for describing
models of task execution at various levels of detail, from
flat execution sequences to those with hierarchical goal
structures. Start and end times are assigned to each sub-
task, allowing the task’s execution structure to be clamped
to the response data. Timestamps are determined indepen-
dent of using our tool at the present time, but our future
work seeks to allow interactive construction of the task
models and specification of the start/end timestamps for
the subtasks. Though relatively simple, our notation is cur-
rently sufficient for describing most of the tasks that have
been reported for experiments involving pupillary
response, e.g., see tasks used in (Backs and Walrath,
1992; Iqbal et al., 2004, 2005; Schluroff et al., 1986; Verney
et al., 2001, 2004).
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In terms of pupil data formats, our tool currently parses
the data format for a specific, but commonly used eye
tracking system (Eye Link II), while the architecture of
our tool allows for plug-ins to parse different file formats
and load the data into a common data structure. To extract
workload from the raw pupil and gaze data, our tool
implements known algorithms for filtering eye blinks, inter-
polating missed values, applying various smoothing filters,
and computing increases relative to a given baseline or
deriving it from a given time span. By integrating these
algorithms, however, our tool can help facilitate the use
of accepted practices for analyzing this type of data. Over-
all, we have made significant strides towards meeting our
design goals.

Interpreting pupillary response data can be challenging,
as there is no commonly accepted scale of mental work-
load. Recent research shows promise for addressing this
issue. For example, Marshall has recently proposed the
Index of Cognitive Activity (ICA), which is computed from
pupillary response (Marshall, 2002). An exciting possibility
is that our tool could use the ICA as the scale for the Y-axis
and automatically map the raw response data to this scale.
This would facilitate common interpretation of the data
and enable analysts to utilize this new metric without need-
ing to know its algorithmic details.

Our tool currently supports pupillary response as the
measure of workload. However, many other physiological
measures such as electroencephalogram (Schacter, 1977),
heart rate variability (Rowe et al., 1998), and event-related
potential (Kok, 1997) can also provide an effective measure
of workload. If these measures could be mapped onto the
ICA or other common scale, then our tool could be extend-
ed to support them. Otherwise, the visualization and inter-
action demonstrated in our tool could serve as a template
for designing similar tools for these measures.

Our visualization uses a single overview and detail
frame. While this has proven sufficient for our data, other
tools for exploring high-resolution temporal data (e.g., vid-
eo) allow users to create a hierarchy of detail frames, where
each subsequent frame shows successively narrower ranges
of the data (Casares et al., 2002; Mills et al., 1992; Stolte
et al., 1999). If necessary, this interface feature could be
integrated into future iterations of our tool.

Though we presented results from a user study, we have
not yet conducted a formal comparison between the use of
our tool and existing methods of exploring pupillary
response in relation to models of task execution. However,
as part of our ongoing research in this area, we have gained
considerable experience in using both existing tools and
TAPRAV to analyze dozens of data sets. Based on this
experience, we believe that the use of our tool can indeed
reduce the effort required to analyze this type of data and
communicate results among the research team; but the dif-
ferences need to be quantified in an empirical study. It is
also important to point out that the use of our tool is
expected to complement existing practices for analyzing
this type of data, not replace them; and its use should be
most beneficial during the exploratory stages of data
analysis.

Beyond fixing known usability issues, we have several
directions for future work. First, we want to conduct field
studies to better understand how well our interactive tool
supports analysis of pupillary response relative to task
execution and how its use fits into existing work practices.
Second, we want to include a direct manipulation interface
for constructing the task models, as the current method
requires them to be defined offline. In addition, we would like
to explore the value of extending the description language
and corresponding visualization to support more complex
execution sequences. Finally, we want to implement addi-
tional algorithms for smoothing and analyzing the response
data as well as for aggregating data sets across users.

7. Conclusion

As a reliable indicator of mental workload, pupillary
response is being increasingly leveraged as a research
instrument, e.g., to identify lower cost moments for inter-
ruption, evaluate complex interfaces, and understand psy-
chological processes. Yet existing software tools are not
sufficient for analyzing pupillary response data, as it typi-
cally needs to be explored in relation to a model of the cor-
responding task’s execution. To address this emerging
need, we have developed a new interactive analysis tool,
TAPRAV. The tool demonstrates an effective technique
for visualizing a hierarchical model of task execution
aligned to a continuous measure of workload, integrated
within an overview + detail metaphor. This visualization
was fully implemented in the tool along with user interface
controls supporting discovery driven analysis. TAPRAV is
publicly available at: http://orchid.cs.uiuc.edu/projects/
TAPRAV. The use of this tool can considerably reduce
the effort needed to analyze pupillary response in relation
to models of task execution, which may further enable
and encourage the use of this type of data in both research
and practice.
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