
Usable Autonomic Computing Systems: the Administrator’s Perspective

Rob Barrett Paul P. Maglio Eser Kandogan

IBM Almaden Research Center

650 Harry Rd.

San Jose, CA 95120 USA

{barrett, pmaglio}@almaden.ibm.com, eser@us.ibm.com

John Bailey

IBM WebSphere

4205 S. Miami Blvd.

RTP, NC 27709 USA

baileyj@us.ibm.com

Abstract

One of the primary motivations behind autonomic

computing (AC) is the problem of administrating

highly complex systems. AC seeks to solve this problem

through increased automation, relieving system

administrators of many burdensome activities.

However, the AC strategy of managing complexity

through automation runs the risk of making

management harder. We performed field studies of

current administrator work practices to inform the

design of AC in order to ensure that it simplifies

system management. In this paper, we analyze what

system administrators do in terms of three important

activities: rehearsal and planning, maintaining

situation awareness, and managing multitasking,

interruptions and diversions. We provide guidelines

for constructing AC environments that support these

activities.

1. Introduction

Autonomic computing (AC) will fundamentally

transform interaction between system administrators

and computer systems. In particular, AC seeks to shift

the specification of system behavior from low-level

configuration settings to high-level business-oriented

policies [7]. Such supervisory control will allow

systems to be much more dynamic (changing more

rapidly) and of much larger scope (administrator

controls affecting more systems and more diverse

systems) than today’s systems. As a result,

administrator controls will be both more powerful and

more dangerous than existing controls [7]. It is well-

known that poorly designed interfaces to automation

can have disastrous results [13], and so it is critical that

administrators have effective tools for managing this

increased power (see also [12]).

Because AC is based on improving the

administrator experience, we sought to understand

current work practices and problems (see also [2]). To

this end, we conducted a series of ethnographic field

studies of database and web system administrators at

large industrial computer service delivery centers in

the US to observe and begin to understand work

practices [8]. Two researchers participated in each

visit, which lasted three to five days. Typically, we

followed the work activities of one administrator per

day. One researcher took notes and occasionally asked

questions, while the other videotaped human-computer

interactions and other activities. In all, nearly 200

hours of videotape were collected, reviewed, and

analyzed to varying degrees.

In this paper, we detail three aspects of

administrator experience culled from our observational

data: (1) rehearsal and planning, (2) situation

awareness, and (3) multitasking, interruptions and

diversions. First, we describe in general terms the tools

and practices of system administrators. Next, we

analyze our observations according to these three

aspects, detailing ways in which AC should be careful

to enhance rather than hinder the work of

administrators. Finally, we present a brief case study of

how a specific application server is beginning to

incorporate AC technology to improve manageability.

2. Administrators and their Tools

Computer system administrators face many kinds

of technical problems when installing, configuring,

deploying, and updating computer systems. The

current toolset for the system administrator includes

command-line interfaces (CLIs), standalone graphical

applications (graphical user interfaces or GUIs), and

web-based management tools. Sometimes

administrators must use several tools together, as one

administrator explained to us, “I can't think of one

GUI or CLI tool that could do 10% of what I do

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

today”. Another was even more explicit:

It is rarely the case that syadmins do most of their

work through a unified tool. At best, they use a

handful of various tools for specific functionality.

Especially in UNIX®, there is rarely an admin UI

that can address the various tasks a sysadmin

need perform.

Command-line based consoles are favored by

system administrators for a variety of reasons. First,

administrator multitasking is nicely supported by

command-line interaction, which can be used to run

tasks simultaneously on multiple open terminal

sessions and supports quick switching between them.

The history feature of a terminal session is of further

help for administrators, reminding them of context as

they can see previous commands and previous output.

A second reason administrators like to use

command-line consoles is that they tend to support fast

and reliable probing of disparate parts of a system and

let them drill down on details. During problem solving

(an almost continual aspect of administrator activity),

being able to move about a system in a dynamic

fashion is helpful. However, many CLIs fail to provide

dynamic peripheral information while administrators

work on individual tasks, as some GUI applications do.

Command-line tools also support scripting better

than graphical tools, which is especially important for

large installations, as one administrator noted: “GUIs

also don’t allow you to automate, which seems

problematic – as if the vendor expects one sysadmin to

manage a handful of machines each (the Windows®

admin model) .”

By contrast, GUI tools tend to support novice

users in complex system administration. Through a

variety of wizards and advisors, such as the DB2®

Performance Advisor, system administrators can

engage in a structured conversation with the system by

following a series of dialogues and answering

questions related to difficult problems or tasks. As one

administrator put it, “CLI is faster for familiar tasks.

GUI is faster for rarely performed tasks.”

One concern among system administrators is the

correctness of what tools or interfaces display, which

is necessary for establishing trust. One of our

administrators described his concern this way: “I

prefer the CLI. These tools seem to be the most truthful

and accurate for administration. GUI's seem to be

buggy, and do not update state as often”.

Another problem with GUIs results from the lack

of systems support for graphics. One of our

administrators told us,

In unix production land, servers are deployed

without graphical cards or X window system.

Additionally, firewalls are often configured to

block forwarding of X system calls. Essentially,

our only interface to applications is through the

CLI which is attained either by direct console

access, console server access, or secure shell.

More and more vendors are providing web-based

system management tools. These tools do not depend

on graphics support on the managed systems, yet can

display information graphically. Another advantage of

web-based tools is that they can be easily integrated to

provide an organized suite of web pages that can be

used for daily tasks. Nevertheless, such interfaces may

not provide sufficient support for multitasking,

suffering from the same problems as GUIs.

Finally, administrators use their own scripts to

automate monitoring of system health, to perform

operations on a large number of systems, and to try to

eliminate errors on common tasks that take many steps.

One of our administrators explained it this way:

“Many administrators build their own scripts to

manage the daily routines, but often these could be

included in a GUI.” The very existence of

administrator-authored scripts might seem to be

evidence that supplied tools are inadequate in

supporting the work of system administrators.

Customized tools and automation are a normal part of

the work and professional tool designers simply cannot

foresee all possible tasks, needs, and requirements.

Many tools fail to support activities that result from the

scale, complexity, and risk of operations. System

administrators often apply long-running operations to

very large numbers of objects, making automation and

scripting crucial. Most GUIs we observed fail to

support this. CLIs offer more power, but with less ease

of use. At one site, we observed a database

administrator who had developed a set of monitoring

scripts that periodically gathered data from a large

number of databases, created web pages with status

reports, and triggered alarms under certain conditions.

A web administrator at another site had configured a

similar system that regularly checked servers, sending

e-mail or pager messages in case of errors. In essence,

these administrators created their own tools,

determining what information they needed and when

and how to present it. However, most system

administrators we observed did not have the skills or

time to build most of the tools they would need.

3. Analysis and Guidelines for AC

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

We have observed that system administrators face

daunting challenges when managing large and

complex computer installations. AC addresses this

problem through high levels of computer automation.

However, there are enough examples of automation

actually making complex systems less reliable that

some thought must be put into creating the kind of

automation that will be most helpful [13]. To structure

our analysis, we consider system administrator work

practices according to three particular challenges that

administrators face. Clearly they face many other

challenges, but these three are both significant across

many kinds of administrator work, and could become

more difficult with the introduction of AC

technologies rather than easier. Because AC is about

making system administrator easier, designers of AC

technologies should actively seek to ease: (1)

rehearsing and planning for changes that are to be

made on critical production systems, (2) maintaining

situation awareness over systems and environments

that are too complex to fully understand, and (3)

working on multiple lengthy tasks while being diverted

by unexpected interruptions. We examine each in turn.

3.1. Rehearsing and Planning

Administrators often work with production

systems that should never go down except during

narrow time windows of scheduled maintenance. Even

brief system failures are often intolerable, and loss of

data is never acceptable. Therefore, we found that most

actions are carefully planned and rehearsed before they

are performed on production systems. The amount of

time devoted to this preparatory work should not be

underestimated, as a week of preparation may go into

the execution of a handful of commands during a

maintenance window.

3.1.1 Rehearsing Database Operations. Database

administrators we observed had the most extensive

planning and rehearsal procedures, but we observed

web administrators also doing considerable planning

before system changes. In the case of database

systems, three levels of servers were typical. In one

case, we observed four: sandbox systems that allowed

experimentation without any limitation but that had no

data; test systems that had sample data and

applications; and staging servers that were exact

replicas of production servers. Changes were most

often promoted from staging to production by semi-

automated processes, with very few people having

access to production servers. Updates typically worked

their way through rehearsal on each system before

being done on the production server during a time

window designated for system maintenance.

Rehearsals not only gave administrators opportunities

to demonstrate correctness of operations, but also

practice at solving problems and timing steps to could

accomplish tasks during allotted time windows.

Nevertheless, planning and rehearsing sometimes

leads to problems. Consider the case of Christine, a

database administrator we observed perform a database

operation that she had never done before. The task

included moving a number of database tables to a new

file system on the production server to manage disk

space. Her colleague, Mike, helped her through the

task using notes and executable scripts created the last

time he had done it. As the task involved production

servers and a limited maintenance window, they

rehearsed operations on test servers first. Mike sat with

Christine during rehearsal and verified each operation

she typed. The instructions included specific

commands to run as well as notes such as “Check that

the tables were created properly.” As commands and

scripts were tested on each system, they were manually

edited in a text editor to modify server names.

In the final rehearsal, errors appeared during the

execution of one script because a semicolon was

deleted accidentally when the script was edited. The

script was aborted by hand, but several commands in it

had run nonetheless. Mike and Christine thought the

script had created an incorrect database table though in

fact it had not. When they tried to delete the

nonexistent table, they received error messages that

suggested they had made syntax errors in the table-

delete command. They looked up documentation and

manually executed many different commands to try to

delete the table. It took them a long time to realize that

the table had not been created.

3.1.2 Error and Misunderstanding. Rehearsing and

planning of changes to critical systems are necessary

because of both the chance for human error in

effecting the change and the danger of unforeseen

consequences resulting from even a perfectly executed

change. Autonomic systems may increase both of these

dangers. First, human error in working with

conventional computer systems is limited to such

mundane mistakes as mistyped commands, omitted

steps, misreading system responses, and so on. But

with autonomic systems that are driven by high-level

policies, there is the additional problem of

misunderstanding between human and computer.

Second, even if changes are executed flawlessly,

autonomic systems will have a greater risk of

unintended consequences resulting from changes

because of the greater scope of autonomic systems. As

the scale and degree of coupling within complex

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

systems increases, new patterns of failure may develop

through a series of several smaller failures [17].

Conventional systems are controlled largely in a

component-by-component manner, with most

problems occurring at interfaces between components.

Nevertheless, system-wide problems do occur and are

some of the more difficult ones to solve. For example,

improving end-to-end performance in a complex

system can be difficult simply because so many

components are involved that it may be difficult to find

the slow culprit. In autonomic systems, it will be

commonplace for autonomic managers to control a

wide variety of components based on the policies that

administrators specify. As these autonomic managers

automatically reconfigure subsystems, the results on

the overall system may be difficult to predict.

3.1.3 Guidelines. Rehearsing and planning will be

even more critical for ensuring proper operation of

autonomic systems than of conventional ones.

Autonomic systems must provide facilities that make

rehearsing and planning easy. There are several ways

to do this. First, it should be easy to build test systems

with various degrees of fidelity to production systems,

and to verify that such systems remain configured

consistently with the production systems they simulate.

Because no simulation is perfect—especially for large

complex systems—many test systems will likely be

needed to simulate different aspects of the full system.

Second, systems should be designed to allow

administrators to quickly undo changes, making

operations (whether on production systems or test

systems) less risky and therefore easier [3]. In the case

of Christine’s missing semicolon, it took over an hour

to bring the system back to its starting point so the

corrected script could be run. Unfortunately, providing

undo capabilities can be a technical challenge, such as

when administrator commands lead to reorganization

of large amounts of data. When undo capabilities will

not be available after a particular command,

administrators need to be aware of this ahead of time.

Third, rehearsals are only useful if the results of

rehearsed operations can be tested. Autonomic systems

will need to have enhanced capabilities for testing

complex end-to-end systems so that administrators will

be confident that their changes are not having

unintended consequences. Because autonomic systems

(like conventional systems) will be deployed for

accomplishing tasks that component designers cannot

imagine, testing will best be enabled by providing

administrators with facilities for developing their own

tests, as well as for running common system tests.

Simulation stubs for complex components would

facilitate testing of partial systems.

 One possibility is to introduce automation changes

gracefully as in Sheridan’s degrees of automation [13].

Here, changes to automation would first come in the

form of recommendations. As the administrators

become comfortable with applying these

recommendations, changes can be put into automation

where execution is carried out fully automatically.

Rehearsing and planning will grow in importance

for AC. Even self-configuring systems need to have

their goals tested. Autonomic systems must facilitate

this activity so that administrators will have confidence

that production systems will perform correctly.

3.2. Situation Awareness

Having good situation awareness is vital for making

decisions and quickly reacting to changing

environmental and system conditions [4]. Simply put,

having situation awareness means knowing how to

answer three questions [16]: What is it doing? Why is

it doing that? What will it do next? Much is known

about how to provide awareness for automated control

systems, but less is known about providing situation

awareness for computer systems more generally [1].

3.2.1 What’s going on? It is easy to find examples of

poor situation awareness leading to problems in

computer system administration. For instance,

Oppenheimer [9] recounts how an operator reformatted

a database backup disk assuming there was a

secondary backup. In fact the secondary had failed

long ago and was never repaired. As fate would have

it, the main database crashed at the same time the

backup was being reformatted, leading to significant

data loss.

Administrators deal with dynamic and complex

processes at many different levels of abstraction. They

need to be aware of systems that are not only complex,

but that also change frequently. Furthermore,

administrators must share situation awareness across

shifts and areas of responsibility. In one

troubleshooting case, an administrator we observed

discovered that a change in a product made at the

customer site had caused a problem—but because the

administrator was unaware of what the customer had

done, it took a long time to find the cause. Yet for

administrators, having incomplete mental models of

the systems they manage is normal. As one put it, “If

understanding the (whole) system is a prerequisite for

operating the system, we are lost.”

We saw many problems caused by faulty situation

awareness in our observations. For example, in one

case, communications were blocked between one

server and another because of a misconfigured

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

firewall. In this instance, situation awareness depended

on understanding the interaction between several

components in an overall system. Each system had its

own management interface and so gaining overall

situation awareness was very difficult. The

administrators managed this complexity by rapidly

moving among multiple tools and working together

with many experts in the absence of a single view of

the entire system [8]. A simple drawing of the entire

configuration would have made the situation clear and

avoided hours of troubleshooting.

3.2.2 Guidelines. Automation has a history of

negatively affecting situation awareness by reducing

operator vigilance, encouraging operator passivity, and

reducing system feedback [4]. Typically, vigilance is

replaced by complacence when operators begin

trusting systems to perform properly. Exacerbating

complacence is the fact that system operators shift

from actively being involved with the system to

passively observing the system, reducing their ability

to detect and intervene when problems arise. Finally,

automated systems typically hide details of system

operation from operators because designers conclude

that such details are no longer relevant to operators.

The result of such automation is that operator

workload decreases during normal operating

conditions, but increases during critical conditions

[10] as operators must quickly intervene into a

complex system running in an unexpected state. When

something goes wrong, operators must quickly acquire

situation awareness.

Autonomic systems must address these potential

situation awareness liabilities of automation. It is

counter to the goals of AC to insist that operators

maintain active vigilance over autonomic systems, as

decreasing overall workload is a driving concern.

However, systems can make situation awareness more

attainable through two approaches. First, systems

should represent operations in a manner that prompts a

sufficiently complete mental model in the operator for

normal operations. Second, even systems that do well

at representing normal operations must also provide

facilities for rapidly gaining deeper situation awareness

when problems arise. Because complex computer

systems cannot be comprehended in full by

administrators, when problems occur, they must

provide the ability for learning on-the-fly, for drilling

down into and integrating details of suspected problem

areas, and for developing an understanding of what is

going on, why it is going on, and what will soon be

going on. Administrators will sometimes need to know

arbitrary levels of detail about systems’ inner

workings.

3.3. Multitasking, Interruptions, Diversions

Because of the nature of their environments,

administrators have a complex interleaved workflow

with multiple tasks conducted in parallel—yet their

workflow is often diverted because of missing

information, unfulfilled prerequisites, broken tools, or

required expertise. Multitasking is particularly an issue

for administrators, as they routinely manage a large

number of long-running tasks but they must be quite

efficient overall.

3.3.1 Managing Multiple Tasks. When tasks are only

loosely related, multitasking seems to work without

much trouble. For example, we observed a database

administrator occasionally monitor the status of a long-

running database task in a terminal session while

updating some documentation. Yet when tasks are

related and attention needs to be divided between

tasks, problems may arise. We observed one case

where an administrator launched the wrong type of

backup because she was discussing a related topic

while working at her console. Administrators develop

techniques to avoid such problems. We observed a

case where a database administrator, during a lull in

the middle of a complex and critical task, asked a

colleague to go to his office and perform a simple

procedure on a test system. The administrator was

worried about mixing up her two tasks and typing a

command into the wrong console. One group of

administrators joked that they had a standing award for

the one who had most recently made this kind of error!

When an administrator is multitasking, control

consoles should allow simultaneous operations on

different systems with enough contextual cues to avoid

confusion. As discussed previously, command

consoles tend to do this better than GUI control

consoles, which often assume that the operator only

needs a single instance of the workspace at a time.

Diversions are a common and expected part of the

work. Our analysis of administrators solving problems

during routine work suggests that much

troubleshooting centers on tools, infrastructures,

environments, and other people that are not directly

related to the problems at hand, but that must be dealt

with nonetheless. That is, while solving specific

computer system problems, administrators often must

solve problems that arise outside the scope of the

initial problems themselves. For instance, we observed

an administrator trying to fix a misconfigured web

server. To do this, he needed access to the server

machine, which in turn required finding the person

responsible for controlling access and convincing her

to grant permission. In this case, the original problem

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

concerned software configuration parameters, but the

solution required dealing with other sorts of systems

and people. And this is not an isolated incident:

Observational data from three of our troubleshooting

episodes show that about 25% of time was spent on

these sorts of diversions.

Usable systems are designed to be flexible,

avoiding the trap of assuming and enforcing a

particular workflow. Nevertheless, wizards are

common artifacts in contemporary GUI applications

with such potential usability problems [14]. A wizard

provides a multi-step interface for performing a

complex task. Unfortunately, many wizards require the

user to complete or cancel the wizard to work with

another part of the system. It is an unfortunate user

who has struggled through a complex wizard to reach

the last step only to discover the need for a piece of

information that is stored in another part of the

application.

3.3.2 Guidelines. The administration of autonomic

systems may require significantly more multitasking,

interruptions, and diversions from straight-line

workflows than conventional systems, as components

of autonomic systems will be more tightly

interconnected. Administrators will be concerned

about diverse components that are currently divided

between towers of responsibility. This is one natural

result of administrators becoming more efficient

through AC: a single administrator will be empowered

to control an entire end-to-end application, switching

focus between network, storage, database, web server,

and countless other parts of the system. Yet all of this

power may come at the cost of more multitasking (e.g.,

as there are more simultaneous problems to solve) and

more diversions (e.g., as more problem-solving trails

will end up in unexpected places). Even if autonomic

computing systems present proper cues to inform

administrators of problems (maintaining situation

awareness), the sheer scale and scope of such systems

may encourage administrators to do more at once and

to become lost more easily when troubleshooting than

with conventional systems.

Furthermore, autonomic systems will have more

levels of control than conventional systems because of

the addition of hierarchical autonomic managers.

Administering conventional systems means working

with many components, but each component works

relatively independently. Autonomic systems will

consist of basic components, their autonomic

managers, and higher-level autonomic managers that

manage the managers [7]. (Conventional systems

exhibit some hierarchical control when clusters and

other virtualized subsystems present themselves as a

single system). Because each level affects a

component’s operation, it will be difficult to design a

general workflow for debugging. Therefore AC

interfaces should allow multiple simultaneous views of

system components and aggregates to support

interaction at multiple levels (knowledge, rule, and

skills [11]), with rapid navigation between the views to

compensate for the volume of components and

complexity of the system.

4. Case Study: Web Application Server

Issues in planning and rehearsing operations,

maintaining awareness of tasks and situations, and

managing activities given interruptions are mitigated

or exacerbated to varying degrees by available system

management tools. In this section, we take a look at the

IBM® WebSphere® Application Server (WAS)

software as a case study.

As the Internet has grown in technical

sophistication, web application hosting has evolved

through a number of technologies. From the very basic

management of HTML files, to CGI scripting, to the

Java™ 2 Enterprise Edition (J2EE) standard [15], web

application servers continue to evolve, but at the cost

of added complexity. WAS is IBM’s product for

serving Java web applications [6]. Like other

application servers, WAS v5.1 adds proprietary

capabilities to the J2EE standard for market

differentiation. All the features and capabilities in

WAS, coupled with the database management systems,

load balancers, messaging servers, etc. that constitute

the web application infrastructure, are well beyond the

comprehension of a single person. In this section, we

consider the evolution of the administration functions

of WAS, paying particular attention to situation

awareness, planning and rehearsal, and managing

multiple tasks, diversions, and interruptions.

4.1. WAS Administrative Console

The WAS administrative console is the primary

graphical interface into the WAS environment. The

WAS console has evolved over the past four major

product releases from a Java-installed client to a web

browser-based thin console that can be used across all

product editions and all operating systems, including

the IBM mainframe platform. This is an improvement

for WAS users because in previous releases, users

were forced to deal with different consoles across

editions (a web browser-based console for a single

server, and the installed-Java console for the advanced

edition) and with different consoles across platforms

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

(distributed and mainframe used different consoles and

systems management infrastructure). The benefits of a

single WAS administrative console are noteworthy.

First, the user has a consolidated view of all

applications, application servers, messaging servers,

and resources. This is a step toward enabling situation

awareness by aggregating constituent parts of the

application server environment. By eliminating

distractions of negotiating multiple administrative

views and systems management tooling, the

administrator has more cognitive bandwidth to focus

on information necessary for achieving situation

awareness.

Beyond controlling the server, there is also a need

for administrators to monitor activity and performance.

In our field studies, we rarely saw administrators sit in

front of a console navigating among various system

views to monitor status. Instead, we observed a lot of

reactive responses to system failures. Thus,

notification mechanisms could further improve

situation awareness by alerting administrators via

pager, cell phone, or email when a predetermined

event occurs. Indeed, as described previously, this

capability has been deemed important enough by some

administrators that they have written custom tools and

interfaces.

The WAS administrative console offers wizards to

help administrators perform complex tasks, e.g.

application deployment, that have optional steps and a

variable number of steps depending on application

type and prior choices. The wizard design identifies

each step clearly and allows users to browse task steps

without committing to them. This greatly improves

activity management over earlier standalone client

wizards, where administrators could only view one

wizard panel at a time, with no composite view of all

the steps. Unfortunately, interruptions and diversions

are not gracefully supported, because if an

administrator is multi-tasking and the console session

times-out or if they switch to another task in the

console, wizard steps completed thus far are not

preserved, and the user must start from the beginning.

Performance data provided with WAS has become

more functionally complete, and can provide detailed

insights into the current state of servers and

applications. Nevertheless, it is only with considerable

effort and experience that an administrator can retrieve

detailed information by launching free-standing tools,

and taking steps to locate and retrieve what is relevant.

To further improve situation awareness in a WAS

environment, the administrative console should

provide the most important health indicators by default

while making detailed metrics available by drilling

down. An aggregate layer across multiple instances

and abstracted metrics that convey a high-level health

summary should also assist in more quickly

comprehending what is going on. Furthermore, as

mentioned previously, many administrators prefer (or

require) command line tooling, which suggests that

CLI equivalents to all GUI functions must be provided.

4.2. WAS Autonomic Capabilities

Autonomic capabilities are being added to WAS to

support the management of complex installations. For

example, the WAS Performance Advisor is an AC

feature that acts as a performance analysis expert. As a

planning tool, the Performance Advisor assists

administrators in understanding run-time performance

characteristics of their system configuration in a test

environment. It eliminates the complex drudgery of

manually collecting relevant system performance data,

and provides the capability for automatically analyzing

the data and suggesting actions.

Another WAS AC feature is the Log and Trace

Analyzer (LTA) [5]. The LTA is a standalone tool that

imports activity logs from application server, web

servers, and backend databases. Because it extends

beyond the application server, LTA begins to assist

administrators in understanding what is happening in a

larger part of their overall systems. The LTA allows an

administrator to correlate events from different logs

(e.g., application server and web server). Using this, an

administrator can track a series of events as they occur

across system components. Correlated logs can be

useful for diagnosing problems. In addition, log entries

can be compared to symptom databases that contain

diagnostic information. The symptom database entries

can provide insight into causes of an event that have

been determined from previous diagnostic activities.

As AC matures, WAS will incorporate

increasingly capable features for information

gathering, analysis, and eventually proactive actions on

behalf of system administrators. These capabilities will

be necessary for managing increasingly complex

installations. However, caution must be exercised to

avoid the problem of distancing system administrators

from the workings of their systems, alienating the very

ones who are responsible for their correct function.

5. Conclusions

System administration is a difficult task and is

rapidly becoming more difficult as systems relentlessly

grow more complex. The autonomic computing

initiative aims to dramatically transform the way

systems are managed by introducing automation at

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

every level. Automation can greatly ease human

burdens, but also carries risks if it is not implemented

well. Rehearsal and planning will become even more

necessary in autonomic systems, necessitating the

creation of test replicas of production systems, fast

backtracking from errors, means for building common

ground between the system and the administrator about

the meaning of high-level commands, and the ability to

test the system-wide implications of changes.

Maintaining situation awareness over systems too

complex to comprehend means that the representation

of the system to the user should be sufficiently

complete for all normal operations while providing

access to arbitrary degrees of detail in unusual

situations. Handling multitasking, interruptions and

diversions in autonomic computing operations means

that interfaces must allow fluid movement throughout

the system and maintain enough contextual clues so

that administrators can easily shift between tasks.

These guidelines for the design of human interfaces to

autonomic computing, even if difficult to implement in

full, are a step toward minimizing its risks and

maximizing its potential for relieving system

administrator workloads.

6. References

[1] Bailey, J., Etgen, M. & Freeman, K. Situation awareness

and system administration. In Barrett, R., Chen, M., &

Maglio, P. P. (Eds). System Administrators are Users, Too:

Designing Workspaces for Managing Internet-scale Systems,

CHI 2003 Workshop.

[2] Barrett, R., Chen, M., & Maglio, P. P. System

Administrators are Users, Too: Designing Workspaces for

Managing Internet-scale Systems, CHI 2003 Workshop.

[3] Brown, A. B. & Patterson, D. A. Undo for operators:

Building an undoable e-mail store. In Proceedings of the

USENIX Annual Technical Conference, San Antonio, TX,

2003.

[4] Endsley, Mica R., Automation and Situation Awareness.

In Parasuraman, R., Mouloua, M., (Eds). Automation and

Human Performance – Theory and Applications, Lawrence

Erlbaum Associates, New Jersey, 1996.

[5] IBM, Log and Trace Analyzer for Autonomic

Computing, AlphaWorks Release, available at

http://www.alphaworks.ibm.com/tech/logandtrace.

[6] IBM, WebSphere Application Server, available at

http://www.ibm.com/software/webservers/appserv/

[7] Kephart, J. O., Chess, D. M. The Vision of Autonomic

Computing, IEEE Computer, January 2003, 41-51.

[8] Maglio, P. P., Kandogan, E., & Haber, E. Distributed

cognition and joint activity in collaborative problem solving.

In Proceedings of the Twenty-fifth Annual Conference of the

Cognitive Science Society. Boston, MA, 2003.

[9] Oppenheimer, D. The importance of understanding

distributed system configuration. In Barrett, R., Chen, M., &

Maglio, P. P. (Eds). System Administrators are Users, Too:

Designing Workspaces for Managing Internet-scale Systems,

CHI 2003 Workshop.

[10] Parasuraman, R., Mouloua, M., Molloy R., Hilburn, B.,

Monitoring of Automated Systems. In Parasuraman, R.,

Mouloua, M., (Eds). Automation and Human Performance –

Theory and Applications, Lawrence Erlbaum Associates,

New Jersey, 1996.

[11] Rasmussen, J. Information processing and human

machine interaction. New York, North Holland, 1986.

[12] Russell, D. M., Maglio, P. P., Dordick, R., & Neti, C.

Dealing with ghosts: Managing the user experience of

autonomic computing. IBM Systems Journal, 42, 2003, 177-

-188.

[13] Sheridan, T. B. Humans and Automation: System

Design and Research Issues. Wiley-Interscience, 2002.

[14] Spool, J. M., Snyder, C., Designing for Complex

Products, Proc. ACM SIGCHI, Tutorials, 1995, pp. 395-39.

[15] Sun, Java 2 Platform Enterprise Edition (J2EE),

available at http://java.sun.com/j2ee/.

[16] Wiener, E. L. (1989). Human factors of advanced

technology (“glass cockpit”) transport aircraft (TR 117528).

Moffett Field, CA: NASA – Ames Research Center.

[17] Woods, D. D., Decomposing Automation: Apparent

Simplicity, Real Complexity. In Parasuraman, R., Mouloua,

M., (Eds). Automation and Human Performance – Theory

and Applications, Lawrence Erlbaum Associates, New

Jersey, 1996.

7. Acknowledgments

We thank Chris Campbell, Steve Farrell, Eben

Haber, Madhu Prabaker, Anna Zacchi, and Leila

Takayama for help collecting and analyzing data, and

the many system administrators who let us watch.

8. Trademarks

IBM, WebSphere, and DB2 are trademarks of IBM

Corp. in the US, other countries, or both. Java and all

Java-based trademarks are trademarks of Sun

Microsystems, Inc. in the US, other countries, or both.

UNIX is a registered trademark of the Open Group in

the US and other countries. Windows is a trademark of

Microsoft Corp. in the US, other countries, or both.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

