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A B S T R A C T

Aim: This study aimed to determine the impact of alert frequency and relevance on alert dwell time.
Method: A 2×3 design was used where 127 university students completed 60 prescribing tasks and were
presented with a variable frequency of computerized alerts (low, medium and high) with variable relevance (low
and high). Participants were instructed to override an alert if it was not relevant to their prescription, and to
cancel the order if the alert signalled an error in their order.
Results: Participants presented with a small number of alerts spent more time attending to alert content than
participants presented with a medium or high number of alerts (respectively median 15.6 s vs 10.8 vs 10.2 s).
Alert relevance had no impact on alert dwell time. Alerts requiring an override response were 4.5 times more
likely to be correctly actioned than alerts requiring the order to be cancelled.
Discussion: Dwell time was influenced by alert frequency, with greater exposure to alerts associated with shorter
dwell times. We hypothesize that this was because participants came to learn that spending time on alert in-
formation was unnecessary. We propose that when users experience no consequences or feedback from over-
riding alerts they quickly learn that this action is more efficient and so more rewarding than taking any other
action.

1. Introduction

Alerts in computerized provider order entry (CPOE) systems can
have a positive impact on prescribing behaviors [1–3]. However, there
is also a large body of work demonstrating that providers override
alerts, up to 95% of the time [4–6]. A recent systematic review of the
effectiveness of medication alerts in hospital CPOE systems revealed
that approximately half of the studies examining the impact of an alert
set (e.g. drug-drug interaction alerts, dose-range alerts) on prescribing
found a positive effect; the remainder found no impact or a detrimental
impact of alerts on prescribing behaviors [7].

Research evaluating alert effectiveness has largely comprised as-
sessments of alert overrides, with override rate viewed as a surrogate
inverse indicator for alert effectiveness. If an alert is frequently over-
ridden, then it naturally follows that the alert is not providing

prescribers with useful or relevant information. More recently, re-
searchers have cautioned against using override rates as a means of
assessing alert effectiveness [8,9]. This is primarily because an override
does not tell the full story about an alert’s impact on prescribing (e.g.
changes that are made to prescriptions long after the alert is triggered
and clicked past). In a study that used field observations of prescribers
to explore prescriber-alert interactions, it was discovered that some
alerts that were overridden were still useful as they prompted pre-
scribers to discuss information with patients [10]. This positive effect
would not have been captured if alert override had been used as the
only indicator of effectiveness.

Relying on override rate to assess computerized alerts also assumes
that alerts are being read and determined to be irrelevant by users. Our
research suggests that this is unlikely to be the case when users are
experiencing alert overload [11]. We shadowed teams of doctors as
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they prescribed medications on ward-rounds using a CPOE and ob-
served a very large number of alerts being triggered (approximately
half the medication orders triggered one or more alerts). We noticed
that system users not only overrode most of the alerts triggered, but
rarely read the alert content [11].

Alert dwell time is a relatively under-explored outcome measure that
provides useful information about an alert’s impact on prescribing.
Alert dwell time is the time elapsed from the generation of an alert (i.e.
alert presentation) to dismissal of the alert window (i.e. cancel medi-
cation order or override alert) [12]. Thus, in instances where alerts are
not being read or read fully, one would expect alert dwell time to be
shorter than in cases where alerts are being attended to completely.

To date, few studies of alert dwell time have been undertaken. In a
US study, dwell time for over 100,000 computerized alerts generated
over a three-year period in a children’s hospital was calculated [12].
Median dwell time was determined to be 8 s with more frequently oc-
curring alerts acted on faster than those that were presented only once
(7 s vs. 11 s). In experimental studies, alert dwell time (representing
‘efficiency with which alerts are dealt with’) has been used to examine
the impact of alert interface design on prescribing behavior [13,14].
These studies have shown that improving the design of alerts (by ap-
plying human factors principles) results in faster responses to alerts
[13,14].

In this experimental study, we set out to explore the impact of two
alert characteristics, frequency and relevance, on alert dwell time.
These two constructs were selected because they have been reported to
influence users’ attitudes and behaviour towards computerized alerts
[6,11,15,16]. That is, when users experience a large number of alerts
and alerts that are not clinically relevant to their patients, this has been
reported to lead to frustration and annoyance, and to users dismissing
alerts without fully attending to alert content.

2. Method

2.1. Design

This study employed a 3×2 design, including three levels of alert
frequency (low, medium, and high), and 2 levels of alert relevance (low
and high) as shown in Fig. 1.

We defined a relevant alert as one that conveyed an error in a
medication order, based on the patient’s characteristics (e.g. age, al-
lergies, etc) and medications. For example, if a patient was allergic to
penicillins, prescribing a medication containing a penicillin would
trigger a relevant alert.

2.2. Testing environment

Participants completed the study using the training module of the
commercial CPOE system, MedChart® (http://www.dxc.technology/
providers/offerings/139499/140202-medchart_electronic_medication_
management). MedChart® is an end-to-end medication management

system currently in use in several leading tertiary care hospitals in
Australia, New Zealand and the United Kingdom. The study was con-
ducted in a simulated environment, with fictional patient information.
Scenarios were developed by a clinical pharmacist highly experienced
in using the CPOE system and the alerts. During the study, participants’
interactions with the system (i.e. their screens) were video recorded
using Morae® software (http://www.techsmith.com/morae.asp).

2.3. Participants

127 university undergraduate students, including medicine, medical
science, clinical science, psychology and science students (87 females,
40 males; average age 20.8, range 17–49 years) were recruited via
advertisements in student newsletters and mailing lists, and through
posters around university campuses. Students were intentionally re-
cruited for the study because they had no prior experience prescribing
using a CPOE system and no previous exposure to medication alerts. We
pilot tested all scenarios with non-clinical participants and sought stu-
dent feedback to ensure that scenarios and alert content were under-
standable. An example alert appears in the Appendix (Figure A1).

To minimise participants focusing on alerts during the experiment,
students were blinded to the true purpose of the study (i.e. to examine
alert dwell time). Instead, participants were informed that the study
aimed to evaluate the usability of the CPOE system. To simulate a real-
life, time-pressured prescribing environment, participants were also
instructed to complete the prescribing tasks as quickly as possible.

2.4. Study procedure

Students received a 15-minute demonstration on how to prescribe
using the CPOE system and how to respond to alerts. The same in-
vestigator (WYZ) delivered this one-on-one training to all participants,
facilitated by a series of short training videos. During training, parti-
cipants were instructed to override an alert and continue with their
order if they believed the alert was not relevant to their prescription,
and to cancel or remove the order (i.e. not proceed with the prescrip-
tion) if they believed the alert signalled an error in their order. Thus,
overriding alerts resulted in orders being prescribed, and adhering to
alert recommendations resulted in orders being cancelled. Alert over-
rides were used to determine the proportion of correct responses to
alerts. All information required to make an assessment of alert re-
levance (e.g. patient allergy status) was made available to participants
on the prescribing screen and on the task sheets for each of the six
scenarios (see Figures A2a and A2b in the appendix).

Training was directly followed by Phase 1, during which partici-
pants were required to order 60 medications using the CPOE system and
to respond to any computerized alerts that were triggered. As shown in
Fig. 1, students were exposed to a variable rate of alerts and a variable
rate of relevant alerts during Phase 1, depending on their allocated
group. For orders that triggered an alert, only one computerized alert
was displayed per order.

Fig. 1. Study procedure. Participants received a variable number of alerts during Phase 1 but the same alerts during Phase 2.
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To assess the impact of alert frequency and relevance on alert dwell
time, all participants then completed Phase 2, where they were required
to prescribe 20 medications and experienced an alert rate and relevance
rate of 50%. Participants completed the same scenarios and were ex-
posed to the same computerized alerts during Phase 2. Phase 2 allowed
a comparison between participants’ behaviors in the six different
groups (who were exposed to variable levels of alerts in Phase 1) when
subsequently exposed to the same level and type of alerts (see Fig. 1).

Following completion of the study, participants were informed of
the true purpose of the study and any questions they had were an-
swered by the researcher.

This study was approved by Macquarie University and University of
New South Wales Human Research Ethics Committee.

2.5. Statistical analysis

Only data from Phase 2, where all participants were exposed to the
same computerized alerts, were analysed. Our primary outcome mea-
sure was alert dwell time for participants in each of the six groups
exposed to different alert frequency and relevance. Distribution of alert
dwell time data was checked and non-parametric tests were deemed to
be appropriate. We examined whether there were differences between
groups in alert dwell time using a Kruskal-Wallis Test. Our secondary
outcome was accurate responses to alerts. We tested for differences
between groups in correct responses to alerts using a logistic regression
analysis. The relationship between alert dwell time and correct re-
sponses to alerts was examined using a logistic regression analysis, with
alert dwell time as the independent variable and response to alerts
(correct or incorrect) as the dependent variable. Descriptive statistics
were presented for demographic data. All analyses were carried out
using IBM SPSS Statistics 25 (IBM SPSS Statistics for Windows, Version
25.0. Armonk, NY: IBM Corp).

3. Results

We found no association between alert relevance and alert dwell
time (all p > 0.05) or correct responses to alerts (Wald= 0.2,
p=0.7), thus we collapsed the relevance groups into one. All sub-
sequent analyses were performed on the three groups which experi-
enced different levels of alert frequency (high, medium and low).

3.1. Alert dwell time during Phase 2

Median dwell time during Phase 2 was 12 s (IQR: 6.6–19.8 s). We
found statistically significant differences in dwell time by alert fre-
quency (X2(2)= 72.6, p < 0.001). As shown in Table 1, participants
who were presented with a low rate of alerts during Phase 1 displayed
longer dwell times in Phase 2 than those who were presented with a
medium (mean rank=745.6 vs. mean rank= 580.9, p < 0.001) or
high rate of alerts in Phase 1 (mean rank = 745.6 vs. mean rank =
544.4, p < 0.001). There was no difference in alert dwell time be-
tween those in the medium frequency group and those in the high
frequency group (p = 0.418).

3.2. Accuracy of responses to alerts during Phase 2

We found no significant differences between alert frequency groups
in accurate responses to alerts (Wald= 0.08, p= 0.8). Alert dwell time
was also not associated with correct responses to alerts (Wald = 0.02,
p= 0.9).

Fig. 2 shows the rate of correct responses to alerts for participants in
each group, by type of response required to alerts. As shown in Fig. 2,
when participants were required to cancel an order in response to an
alert, they made fewer correct responses than when they were required
to override the alert and continue with their order. Alerts requiring an
override were 4.5 times more likely to be correctly responded to than
alerts requiring the order to be cancelled (Wald=51.0, p < 0.001).

4. Discussion

This experiment showed that varying the alert frequency experi-
enced by participants resulted in significant differences in alert dwell
time. Participants presented with a large number of alerts spent less
time attending to alert content than participants presented with a small
number of alerts. However, alert relevance appeared to have little im-
pact on alert dwell time or correct responses to alerts.

Previous studies have shown that an individual’s attitude towards
automation and subsequent use of a system is influenced by their trust
in automation, which is impacted by the reliability or accuracy of the
automation [17]. Interestingly, we found that alert relevance (i.e. ac-
curacy of automation) had no impact on alert dwell time or on correct
responses to alerts. We hypothesize that this was because participants
received no feedback on whether their responses to alerts were correct
or incorrect. As a result, they were unable to ascertain how reliable the
automation was, that is, how accurate the alerting system was in
identifying errors in patients’ orders. This is not inconsistent with what
occurs in practice. Feedback is rarely provided to hospital doctors on
prescribing in general [18–20], and even less so with respect to their
responses to computerized alerts. Equipped with limited information on
the consequences of their alert overrides, doctors quickly learn that the
override response is an action which allows them to proceed with their

Table 1
Comparison of dwell times and correct responses to alerts in the Low, Medium and High alert frequency groups during Phase 2. All participants prescribed 20
medications and were presented with the same 10 computerized alerts.

Alert frequency group Median dwell time (seconds) Interquartile rangec (seconds) Number of alerts responded to correctly (%)

Low alert ratea,b (10%) 15.6 9.0 – 25.8 346 (86.7)
Medium alert ratea (50%) 10.8 6.0 – 18.6 387 (91.1)
High alert rateb (80%) 10.2 5.4 – 16.8 361 (86.2)

a Significant difference in median dwell time between low group and medium group.
b Significant difference in median dwell time between low group and high group.
c The interquartile range represents the 25th percentile and the 75th percentile.

Fig. 2. Percentage of correct responses to alerts during Phase 2 by alert fre-
quency group and type of response required.
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order rapidly and efficiently.
Supporting this hypothesis is our finding that participants, in re-

sponse to alerts, were more likely to correctly override an alert com-
pared to correctly cancelling an order. This could suggest that the act of
overriding an alert produced a more favourable outcome (i.e. a com-
plete list of medications as per the task sheet) for participants than the
alternative. Again, this aligns with research which has shown that alerts
are often viewed as a barrier to doctors quickly prescribing an appro-
priate medication for their patients [6,21].

Importantly, the notion of participants learning the value of over-
riding alerts also explains our key study result, that participants in the
low alert rate group displayed longer dwell times than those in the
medium and high alert rate groups. Following greater exposure to
alerts, participants could have come to learn that spending time on alert
information was unnecessary to complete the task.

Our study was limited in that we explored alert dwell time in a small
number of participants in a simulated environment. The practicalities of
running a study of this nature (i.e. reasonable length of time for each
session and adopting real-life alerts that were not too difficult) pre-
vented us from exposing students to a very large task burden. We did
not monitor whether participants read all relevant patient details on
screen and in the study packs, preventing us from knowing whether
alert relevance was accurately determined by users. Recruitment of
students was intentional to control previous exposure to alerts, but in
doing so, our results, especially those related to clinical relevance of
alerts, are likely to have been influenced by their limited clinical
knowledge and understanding.

Overall, this study showed that exposure to a low frequency of alerts
resulted in users spending more time attending to alert information
than exposure to a high frequency of alerts. We hypothesize that this is
because participants exposed to frequent alerts learnt the value of not
attending to alert content so they could proceed with their orders.
When users receive no consequences or feedback from overriding alerts
they quickly learn that this action is more efficient and so more re-
warding than taking any other action. Thus, providing feedback to
prescribers with respect to the consequences of their alert responses is
likely to lead to greater attention directed to alert content. In designing
effective alerting systems, organizations should consider reviewing and
removing alerts where an override response from the user consistently
has no consequence.
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Summary Points
What was already known on the topic

• Computerised alerts have the potential to impact on pre-
scribing behavior, but most alerts are overridden by users

• When presented with too many irrelevant alerts, users report
that they stop reading the alert information

What this study has added to our knowledge

• Users presented with a large number of alerts spend less time
reading alerts than users presented with a small number of
alerts

• In this simulated setting, alert relevance had no impact on
time spent attending to alert content

• Participants made more correct responses to alerts when they

were required to override the alert compared to when they
were required to cancel the order

Declaration of Competing Interest

The authors have no conflicts of interests.

Acknowledgement

This research was supported by NHMRC Program Grant 1054146.

References

[1] A. Schedlbauer, V. Prasad, C. Mulvaney, S. Phansalkar, W. Stanton, D.W. Bates,
A.J. Avery, What evidence supports the use of computerized alerts and prompts to im-
prove clinicians’ prescribing behavior? J. Am. Med. Inform. Assoc. 16 (2009) 531–538.

[2] A.X. Garg, N.K.J. Adhikari, H. McDonald, M.P. Rosas-Arellano, P.J. Devereaux, J. Beyene,
J. Sam, B. Haynes, Effects of computerized clinical decision support systems on practi-
tioner performance and patient outcomes: a systematic review, J. Am. Med. Assoc. 293
(2005) 1223–1238.

[3] W.L. Galanter, R.J. Didomenico, A. Polikaitis, A trial of automated decision support alerts
for contraindicated medications using computerized physician order entry, J. Am. Med.
Inform. Assoc. 12 (2005) 269–274.

[4] T.C. Hsieh, G.J. Kuperman, T. Jaggi, P. Hojnowski-Diaz, J. Fiskio, D.H. Williams,
D.W. Bates, T.K. Gandhi, Characteristics and consequences of allergy alert overrides in a
computerized physician order entry system, J. Am. Med. Inform. Assoc. 11 (2004)
482–491.

[5] S.N. Weingart, M. Toth, D.Z. Sands, M.D. Aronson, R.B. Davis, R.S. Phillips, Physicians’
decisions to override computerised drug alerts in primary care, Arch. Intern. Med. 163
(2003) 2625–2631.

[6] H. van der Sijs, J. Aarts, A. Vulto, M. Berg, Overriding of drug safety alerts in compu-
terized physician order entry, J. Am. Med. Inform. Assoc. 13 (2006) 138–147.

[7] N. Page, M.T. Baysari, J.I. Westbrook, A systematic review of the effectiveness of inter-
ruptive medication prescribing alerts in hospital CPOE systems to change prescriber be-
havior and improve patient safety, Int. J. Med. Inform. 105 (2017) 22–30.

[8] T.H. Payne, L.E. Hines, R.C. Chan, S. Hartman, J. Kapusnik-Uner, A.L. Russ, B.W. Chaffee,
C. Hartman, V. Tamis, B. Galbreth, P.A. Glassman, S. Phansalkar, H. van der Sijs,
S.M. Gephart, G. Mann, H.R. Strasberg, A.J. Grizzle, M. Brown, G.J. Kuperman, C. Steiner,
A. Sullins, H. Ryan, M.A. Wittie, D.C. Malone, Recommendations to improve the usability
of drug-drug interaction clinical decision support alerts, J. Am. Med. Inform. Assoc.
(2015).

[9] A.B. McCoy, L.R. Waitman, J.B. Lewis, J.A. Wright, D.P. Choma, R.A. Miller,
J.F. Peterson, A framework for evaluating the appropriateness of clinical decision support
alerts and responses, J. Am. Med. Inform. Assoc. 19 (2012) 346–352.

[10] A.L. Russ, A.J. Zillich, M.S. McManus, B.N. Doebbeling, J.J. Saleem, Prescribers’ inter-
actions with medication alerts at the point of prescribing: a multi-method, in situ in-
vestigation of the human-computer interaction, Int. J. Med. Inform. 81 (2012) 232–243.

[11] M.T. Baysari, J.I. Westbrook, K.L. Richardson, R.O. Day, The influence of computerized
decision support on prescribing during ward-rounds: are the decision-makers targeted?
JAMIA 18 (2011) 754–759.

[12] R.B. McDaniel, J.D. Burlison, D.K. Baker, M. Hasan, J. Robertson, C. Hartford,
S.C. Howard, A. Sablauer, J.M. Hoffman, Alert dwell time: introduction of a measure to
evaluate interruptive clinical decision support alerts, J. Am. Med. Inform. Assoc. (2015).

[13] A.L. Russ, S. Chen, B.L. Melton, E.G. Johnson, J.R. Spina, M. Weiner, A.J. Zillich, A novel
design for drug-drug interaction alerts improves prescribing efficiency, Comm. J. Qual.
Patient Saf. 41 (2015) 396–405.

[14] A.L. Russ, A.J. Zillich, B.L. Melton, S.A. Russell, S. Chen, J.R. Spina, M. Weiner,
E.G. Johnson, J.K. Daggy, M.S. McManus, J.M. Hawsey, A.G. Puleo, B.N. Doebbeling,
J.J. Saleem, Applying human factors principles to alert design increases efficiency and
reduces prescribing errors in a scenario-based simulation, J. Am. Med. Inform. Assoc.
(2014).

[15] J.E. van Doormaal, P.G. Mol, R.J. Zaal, P.M. van den Bemt, J.G. Kosterink,
K.M. Vermeulen, F.M. Haaijer-Ruskamp, Computerized physician order entry (CPOE)
system: expectations and experiences of users, J. Eval. Clin. Pract. 16 (2010) 738–743.

[16] K. Cresswell, J. Coleman, A. Slee, R. Williams, A. Sheikh, Investigating and learning
lessons from early experiences of implementing ePrescribing systems into NHS hospitals:
a questionnaire study, PLoS One 8 (2013) e53369.

[17] R. Parasuraman, V. Riley, Humans and automation: use, misuse, disuse, abuse, Hum.
Factors 39 (1997) 230–253.

[18] M.T. Baysari, J.I. Westbrook, R.O. Day, Understanding doctors’ perceptions of their
prescribing competency and the value they ascribe to an electronic prescribing system,
Stud. Health Technol. Inform. 178 (2012) 1–6.

[19] J. Bertels, A.M. Almoudaris, P.J. Cortoos, A. Jacklin, B.D. Franklin, Feedback on pre-
scribing errors to junior doctors: exploring views, problems and preferred methods, Int. J.
Clin. Pharm. 35 (2013) 332–338.

[20] M. Reynolds, S. Jheeta, J. Benn, I. Sanghera, A. Jacklin, D. Ingle, B.D. Franklin, Improving
feedback on junior doctors’ prescribing errors: mixed-methods evaluation of a quality
improvement project, BMJ Qual. Saf. 26 (2017) 240.

[21] M.T. Baysari, J. Del Gigante, M. Moran, I. Sandaradura, L. Li, K.L. Richardson, A. Sandhu,
E.C. Lehnbom, J.I. Westbrook, R.O. Day, Redesign of computerized decision support to
improve antimicrobial prescribing. A controlled before-and-after study, Appl. Clin.
Inform. 8 (2017) 949–963.

M.T. Baysari, et al. International Journal of Medical Informatics 133 (2020) 104027

4

http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0005
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0005
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0005
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0010
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0010
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0010
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0010
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0015
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0015
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0015
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0020
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0020
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0020
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0020
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0025
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0025
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0025
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0030
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0030
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0035
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0035
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0035
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0040
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0040
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0040
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0040
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0040
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0040
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0045
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0045
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0045
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0050
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0050
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0050
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0055
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0055
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0055
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0060
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0060
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0060
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0065
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0065
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0065
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0070
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0070
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0070
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0070
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0070
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0075
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0075
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0075
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0080
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0080
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0080
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0085
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0085
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0090
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0090
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0090
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0095
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0095
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0095
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0100
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0100
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0100
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0105
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0105
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0105
http://refhub.elsevier.com/S1386-5056(18)31123-7/sbref0105

	An experimental investigation of the impact of alert frequency and relevance on alert dwell time
	Introduction
	Method
	Design
	Testing environment
	Participants
	Study procedure
	Statistical analysis

	Results
	Alert dwell time during Phase 2
	Accuracy of responses to alerts during Phase 2

	Discussion
	Authors’ contributions
	mk:H1_13
	Acknowledgement
	References




