
 Interruptions on Software Teams:
A Comparison of Paired and Solo Programmers

Jan Chong, Rosanne Siino
Center for Work, Technology and Organization

Department of Management Science and Engineering
Stanford University

380 Panama Way, Stanford, CA 94305, USA
{jchong, rsiino}@stanford.edu

ABSTRACT
This study explores interruption patterns among software
developers who program in pairs versus those who program solo.
Ethnographic observations indicate that interruption length,
content, type, occurrence time, and interrupter and interruptee
strategies differed markedly for radically collocated pair
programmers versus the programmers who primarily worked
alone. After presenting an analysis of 242 interruptions drawn
from more than 40 hours of observation data, we discuss how team
configuration and work setting influenced how and when
developers handled interruptions. We then suggest ways that
CSCW systems might better support pair programming and, more
broadly, provide interruption-handling support for workers in
knowledge-intensive occupations.

Categories and Subject Descriptors
H5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Collaborative Computing.

General Terms
Management; Human Factors

Keywords
Pair programming, collaborative work, ethnography, interruptions,
eXtreme programming

1. INTRODUCTION
Interruptions are increasingly recognized as a natural and
inevitable feature of collaborative work. Workers in virtually all
industries and work settings must contend with all manner of
disruptions to their work routines in the course of a day.
Interruptions come from various sources and occur for many
reasons [20], yet as we try to understand interruption dynamics and
build systems to ease their handling, our general conception of
interruptions has remained fairly narrow. Research has primarily
considered externally-driven intrusions on individual workers, but

the nature of work, the work environment and team configuration
all may influence how workers handle both externally and self-
initiated interruptions.

Knowledge-intensive work is a particularly interesting case for
study because of its complexity. Interruptions are at times essential
for swapping or gaining information required for high quality
work. Software developers, for example, are subject to
interruptions that may help them as they program, giving them
insight into teammates’ work or access to critical data. Given the
mentally intensive nature of this work and our nascent
understanding of interruption dynamics in such an environment,
direct observations of a natural work setting have the potential to
better inform further study and system design.

The work presented in this paper is drawn from a larger
ethnographic study of software development practices. We studied
two teams, one which practiced eXtreme programming (XP), a
relatively new methodology that includes such unconventional
practices as pair programming and radical collocation [6], and a
team with more conventional practices, such as independent
programming in individual cubicles. In the course of our
observations, we noticed that interruptions and interruption-related
behavior on the XP team differed markedly from that of the non-
XP team. In this paper, we first present a description of the teams’
configurations and an analysis of the differences in interruption
dynamics. We then suggest how these insights might inform
technology design to support this new form of work and, more
broadly, improve availability awareness and interruption handling
in computer supported collaborative work.

2. RELATED WORK
Observations of interruption activity in the workplace have been
quite effective in helping us build an understanding of interruption
dynamics. We will here review some of the existing studies of
interruption behavior among knowledge workers as a basis for our
current work.

Taken together, previous research reveals that collaborative
knowledge work, as it occurs in the “wild”, is a complex and
fragmented activity in which workers must negotiate multiple tasks
simultaneously and where interruptions are not only inevitable but
necessary for work completion. An early study by Bannon et al.
[4] of the command history of a research group observed that these
computer users did not complete tasks in an orderly, linear fashion,
but rather took on multiple tasks and switched between them.
Czerwinski, Horvitz and Wilhite [10] found similar behavior in
their diary study of task switching behavior, as did Gonzalez and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’06, November 4–8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011…$5.00.

29

Mark [13]’s study of analysts, developers and managers at work.
Czerwinski, Horvitz and Wilhite’s [10] participants reported an
estimated 0.7 interruptions per task and indicated that they not only
switched tasks of their own accord but were also frequently
externally interrupted.

Studies in the workplace have consistently found interaction to be
a significant component of knowledge work. Hudson et al [15]
found that managers spent 46 percent of their time communicating
with others and 19 percent of their time in unplanned
communication. Whittaker, Frohlich and Daly-Jones [27], tracking
two mobile knowledge workers, found that informal interactions
were a significant component of the work, comprising 31 percent
of total work time. They also noted that these interactions tended
to be brief, context-dependent and opportunistic in nature.
O’Conaill and Frohlich [21], drawing on the same data to look at
disruptive, unscheduled interactions, concluded that such
interactions were beneficial for the interrupted party but disturbed
work flow, as workers often failed to resume the interrupted task.
In Perlow’s [22] ethnography of software engineers, interruptions
were also found to be critical to work, but the high volume of
interruptions coupled with a lack of control over interruption
incidence led workers to report high levels of stress and
frustration.

Taken together, these studies suggest that interruptions are a
natural and necessary component of collaborative knowledge
work. Although research seeking to understand task organization
has noted that workers interrupt their own tasks to switch to
another, many existing workplace studies, which focus on
interactions rather than tasks, consider external interruptions only.
Our study offers a look at both self and externally-initiated
interruptions, defining an interruption instance to be any instance
in which workers turn attention away from their primary work
task, either on their own or in response to others’ actions.

Although workers observed in previous studies took part in
collaborative interactions, they primarily worked alone and were
interrupted while engaged in independent work. By contrast, the
programmers we observed fall into two categories: those that
primarily worked alone and those that consistently worked in pairs,
a practice called pair programming. Developers in the latter
category formed ad hoc pairs each morning, each pair sitting side
by side at a shared computer, developing code together throughout
the day.

Working in pairs presents an interesting case for a study of
interruptions. Unlike previous studies of joint work [14, 17], the
paired programmers share a single task, a single machine and, for
the most part, the same role on a continuous basis. While pair
programmers claimed to have two separate roles – the driver, who
controlled keyboard input and primarily considered issues of
immediate implementation, and the navigator, who provided more
strategic feedback and guidance – in practice, we found that the
term “driver” was used largely to denote keyboard and mouse
control. Outside of keyboard and mouse duties, the paired
programmers occupied much the same role, with no distinct gap in
the level of abstraction at which they considered their
programming problem (as noted through conversational content
and observed interaction). We know of no prior studies of pair
programming as it occurs in situ or of how interruptions might
affect knowledge workers configured in pairs rather than
individually. Our current study therefore aims to increase

understanding of paired work and to inform tool design to support
this new work form.

3. RESEARCH SITE
Our data is drawn from ethnographic observations of two software
development teams at a mid-sized startup company in Silicon
Valley, California. The programmers on one team, which we will
call “Team Pair,” worked in pairs as a part of the team’s use of the
XP software development methodology. Team Pair was radically
collocated, working in a large, open, bullpen-like space, giving
team members both visual and aural access to the actions and
dialogue of other members of the team. Programmers consulted
with teammates throughout the day, almost exclusively through
face-to-face communication. The developers had e-mail, but e-mail
use was extremely limited, primarily for purposes of
communicating with members of the company outside of the team.
Programmers did not generally use the telephone for work
purposes, but frequently received personal calls throughout the
day. These programmers almost never worked from home,
partially due to the requirement that code be written in pairs.

The programmers on a second team, which we will call “Team
Solo,” worked primarily alone, but frequently consulted with
others on the team through face-to-face communication, e-mail,
telephone and lily, a computer mediated communication tool
designed and developed at Rensselaer Polytechnic Institute.
Programmers on Team Solo worked in individual cubicles in the
same area of the building. This configuration allowed team
members to overhear dialogue and conversation taking place in
adjacent cubicles, even though other team members were not
visually accessible. Unlike Team Pair, e-mail was an important
means of inter-team communication. It was also common practice
for the Team Solo programmers to work from home several days a
week, using the lily to maintain contact with team members at
work. Lily is a text-based chat service that allows users to log in
and communicate with other users, either via private message or
shared discussion lines. The tool was widely adopted within the
company, and was used not only by Team Solo but by other
functional groups and several members of management (although
notably, it was not used by Team Pair). Solo developers used lily
daily, often logging into the tool whenever they were engaged in
company-related work regardless of where and when that might
be. The more enthusiastic users logged on upon waking up and
logged off right before heading to bed. Team Solo developers also
commonly called into team meetings via telephone when working
remotely. Outside of team meetings, they used the phone primarily
for personal communication.

Both the work structure and environment made work more visible
and more social for programmers on Team Pair than for those on
Team Solo. Writing code in pairs meant that programmers on Pair
were engaged in constant interaction with their pair partners. The
need to communicate as a part of this interaction meant that
programmers generated a steady stream of conversation during
work. Pair programmers also shared a physical space, a rich
sensory environment that allowed for physically and temporally
immediate interactions in the course of work. By contrast, Team
Solo programmers were more physically isolated from each other
but consistently shared a virtual space. Thus, their work
interactions were asynchronous and text-based – widely accessible
across geographic and temporal distance, but more limited in
sensory context.

30

Both Solo and Pair generally held a morning status meeting where
all team members gave a brief update on the previous day’s
progress as well as on any issues that had developed in the course
of work. We watched both teams release a version of their
products to customers and then engage in planning activities for
the next release. Consequently, our observations of each team
spanned a “crunch” period of intense pressure, as the team tried to
make release deadlines, and a more leisurely planning period,
reducing the chance that the observed behaviors were exclusive to
activities associated with a particular project phase.

4. METHODOLOGY
We conducted ethnographic observations of the developers at work
approximately once a week for a total of seven months. Each
observation session tracked activities of either a particular
programmer (for Team Solo) or a particular pair of programmers
(for Team Pair). We sat physically behind the programmers as they
worked, taking extensive notes throughout the session. Whenever
possible, we audio recorded dialogue that transpired, and then
transcribed and integrated it into the field notes to produce a
detailed description of both action and dialogue.

Across both teams, we gathered more than forty hours of
observation data, with a total of 242 observed interruptions. We
had 21 hours and 41 minutes of observation data for Team Pair and
18 hours and 29 minutes of observation data for Team Solo.
During this time, we observed 138 interruptions on Team Pair and
104 interruptions on Team Solo. All subjects explicitly identified
their primary work task for us as each observation session began,
which allowed us to easily identify interruptions instances. Primary
work tasks included such activities as adding new functionality to
the software code base, optimizing project code to performance
expectations and fixing software bugs.

Drawing on the taxonomy presented by Jett and George [18], we
categorized each interruption as either an intrusion, break,
distraction or discrepancy. Due to the nature of our data,
discrepancies, defined by Jett and George as “perceived
inconsistencies between one’s knowledge and expectations and
one’s immediate observations that are perceived to be relevant to
the task at hand and personal well-being”, were difficult to
conclusively detect; thus, this category was subsequently dropped
from our analysis. For each interruption instance, we noted the
source of the interruption, the duration of the interruption, the
activities being conducted before the interruption, the content of
the interruption and the pair or the individual’s activities
immediately after the interruption.

In the following section, we present a descriptive portrait of
interruption characteristics, content and behavior across the two
teams. We will then argue that these differences are caused by
differences in work and team configuration and discuss the
implications for the design of systems that might help decrease
negative effects of interruptions.

5. FINDINGS
Our analysis of the ethnographic data revealed numerous
differences in interruption instances between the two teams. Pair
and Solo’s interruptions differed by length, content, type, time of
occurrence, interrupter strategy and interruptee strategy.

5.1 Interruption Length
Interruptions on Team Pair were consistently shorter than on Team
Solo, regardless of interruption type and interruption source (see
Table 1 for details). The average length of an interruption on Pair
was 1 minute and 55 seconds. The average interruption length on
Solo was 2 minutes and 45 seconds.

5.2 Interruption Content
To analyze each interruption’s content – the activities comprising
each interruption – we categorized interruptions by type using the
taxonomy proposed by Jett and George [18].

5.2.1 Intrusions
Jett and George define an intrusion to be “an unexpected encounter
initiated by another person that interrupts the flow and continuity
of an individual’s work and brings that work to a temporary halt.”
Intrusions tend to be immediate in nature and much of their
disruptive impact derives from the perceived need to respond
promptly to the needs of interrupter.

On Team Pair, intrusions initiated by other team members were
primarily functional in nature, consisting mainly of requests for
information, requests for help, delivery of task-relevant
information, efforts to coordinate actions or information across the
team and, occasionally, requests for status updates. These
intrusions varied greatly in length and scope, and discussions
between group members could come to involve the entire group if
the issue had implications beyond original discussants. In the
following excerpt from our data, Dana interrupts Ben and Carlos,
who are working as a pair, to ask a question about locking, and the
ensuing discussion grows to encompass the entire team. Andy and,
later, Eric, both working in separate pairs, join the conversation.
Notice that neither Andy nor Eric is explicitly asked to give an
opinion; they simply join the conversation because they overhear it
and have relevant questions:

Dana: [to Ben and Carlos] Did you stop with the locks?
Carlos: Kevin said something about just adding some methods

somewhere to lock an entity.
Ben: For each operation factory, isn’t there a common object

factory it extends?
Carlos: Yeah.
Ben: So we can have common generic test methods and stuff.
Andy: [joining the discussion from his seat] As far as the

methods – what semantics are you using?
Dana: What’s not, as far as semantics, is if you lock and

another user – does it prevent you from updating?
Carlos: No, you should be able to update.
Ben: One would think it would and we don’t check for that

right now.

Table 1. Average Interruption Length by Team
 Team Pair Team Solo
 # Average Length

(M:S)
Average Length

(M:S)
Self-initiated 39 2:39 41 3:46
Externally-
initiated

99 1:38 62 2:23

Distraction 20 0:58 21 1:28
Intrusion 94 1:40 51 2:17
Break 24 3:42 30 5:08

31

Dana: [agreeing with Ben] We don’t have that right now.
Eric: [joining in the discussion] We don’t have what? The edit

entity update test?
Ben: Well, what’s cool about the generic API integration is

that we can automatically have tests everywhere.
Dana: If you go to the UI and you lock and object, and I try to

update an object-
Ben: It’s the same lock.
Eric: Yeah, but I don’t know if that’s the best response.

Some intrusions on Team Pair were purely social in nature, but
these were rare and, by comparison to the functional intrusions,
relatively short – usually a two- or three-line conversational
exchange. In the following example, Andy, Ben and Carlos joke
about Andy’s initials. After the exchange, the three developers,
who are working in separate pairs, return promptly to their
respective tasks:

Andy: Ah, no, it’s like my first name is Walter, but nobody
knows that so when I do my initials, people are like,
huh?

Carlos: [looking up] So, you’re Wally?
Andy: Yeah, I’m Wally. I’m Wak. [Someone chuckles] Yeah, I

got a lot of abuse for that.
Ben: W-A-K?
Andy: Wak, yeah.
Ben: It’s like Yak, except with a W.
Andy: I make milk. [Ben laughs]

All Team Pair members carried cellular phones, which were
another major source of intrusions. Team members usually
answered phone calls immediately, leaving the work area if the
conversation showed signs of continuing beyond a few seconds.

On Team Solo, by contrast, intrusions were both functional and
social in nature. Intrusions were longer and generally involved
movement – team members physically visited another team
member’s cubicle. Here, Feroz and Henry arrive at Grant’s cubicle
to ask him about the gag gifts that Grant brought back from a
conference. In the course of the intrusion, their discussion moves
from talk about the gifts (datagram pads) to a discussion of the
current product release status. The intrusion draws Ingrid over to
Grant’s cubicle roughly halfway through the interruption, and she
relays the fate of some cake in the office kitchenette, which she
had accidentally dropped on the floor earlier.

Feroz: [to Grant] So I was wondering. You were handing out
these pads of datagrams. And it occurred to me, "Huh.
Grant hasn't give me one. But Grant left two in Henry's
cube. And I was sitting in Henry's cube at the time…"

Grant: [teasing him] You know, Feroz, if you want, you can ask
Henry if he wants both of those pads.

Henry: You can have one if you want.
Feroz: I was wondering and I was thinking, "Maybe that's why

he left two? Maybe Henry's just special.”
Grant: Henry is special. I figured he would get the joke first and

laugh the hardest so. And he did.
Henry: If they ever have a IPV6 version of it, it won't fit.
Grant: [picks up the note pad and reads] Refer to RFC 6121c!

Maybe next year we'll see if they have a bigger one.
Henry: [changing the subject] Should I check in code to work

with the scanning stuff?
Grant: You seem to have gotten it working haven't you?

Henry: I've seen RTS use it and it works on my machine…
Grant: So, on the platforms that don't support it…
Henry: It does support it everywhere now.
Grant: Linux… and FreeBSD?
Henry: Not that I've tried. But it should work.
Grant: We're going to release this Wednesdays.
Ingrid: [Appearing at the cubicle entrance] I just found out that

the XP guys [Team Pair] aren't on lily.
Feroz: Took you long enough.
Ingrid: I was realizing that as I was walking back to the kitchen

and saw one of them eating the caramel tart.
Feroz: Ooops! [laughing]
Ingrid: On the other hand, it's almost finished, so I'm guessing

there wasn't too much dirt on it.

Team Solo programmers, like those on Team Pair, also received
phone calls frequently during work – calls that were almost always
social in nature. Unlike the pair programmers, however, solo
programmers remained in their workspace while on the phone,
even though these conversations were frequently audible to all
team members due to the proximity of their cubicles.

5.2.2 Distractions
Distractions are “psychological reactions triggered by external
stimuli or secondary activities that interrupt focused concentration
on a primary task.” [18] We identified instances in the data where
subjects’ attention was diverted from the primary task by noting
when they physically paused their work activity, either turning
their heads towards the external stimuli or making a comment
regarding the distraction.

Team Pair programmers worked in the midst of multiple
overlapping ambient conversations because of the team’s open
shared workspace. These conversations served as an easy source of
distraction. In the following example, Eric and Nathan are working
as a pair, next to Levi and Mark. When Kevin begins to converse
with Levi and Mark, Eric and Nathan will become distracted by
the conversation:

Kevin walks over to talk to Levi and Mark. Levi says that a
dialog box is too small and is cropping text. Eric and Nathan
stop working and listen in to the conversation.

Eric: [vaguely directed to Levi] You’ve got to make shorter

names. [Nathan chuckles]

Levi does not seem to have heard. Eric turns back and opens the
application on his computer. Nathan continues to listen,
watching Kevin and Levi until Kevin walks away.

On the whole, however, pair developers were accustomed to their
work environment, and conversations of others only became
problematic when they were held at particularly high volume.
Developers seemed to find irregular noises far more distracting:

Eric gets up and walks over to his machine. He picks up a
sandwich wrapper from the table and begins to fold it; the
sound is very loud. Eric walks behind Owen and Dana, still
folding. Owen and Dana look up at him, annoyed at the noise.
Eric walks over to the trash can and throws away the wrapper.

Pair programmers also appeared to get distracted by physical
objects in their work environment. The developers quite
deliberately displayed the current project build status on a large

32

monitor, visually available to the entire room. The monitor
displayed a large rectangle that was green if the build had passed
all unit tests, yellow if the build was currently running and flashing
red if any tests failed, in order to attract the attention of team
members and alert them to news of the failure:

Eric, sitting at his computer looks up at the build monitor. It's
flashing red for three out of the five builds.

Eric: Is anyone fixing the build?

People, particularly those unfamiliar to the team, served as another
source of distraction. With seven team members working in the
same room, Team Pair programmers were accustomed to each
other’s movements in and out of the work room, but visits from
members of other teams were unusual and attracted attention.
Team Solo’s programmers, however, worked in cubicles, both
increasing the physical space between team members and blocking
easy views of teammates. Although (or perhaps because)
conversation and noises carried easily over cubicle walls, the area
was extremely quiet, particularly in contrast to Team Pair’s work
area. Team members found unusual computer or telephone noises
(beeps, buzzes, unusual ring tones) quite distracting; when they
occurred, at least one team member would generally comment.
Extended conversations were tolerated if they were technical in
nature. Extended social conversations, however, were either
shushed or seemed to serve as a beacon, bringing other team
members out of their cubicles to join in.

Team Solo’s programmers extensive use of lily, the CMC tool,
served as another source of distraction. Lily had a host of public
(public within the company) chat lines, as well as dedicated team
discussion chat lines. Consequently, the lily window was almost
constantly displaying a stream of new messages as various
company employees posted to the chat forums. Changes in the
window, when it was visible on the desktop, frequently drew
developers’ attention as they worked, particularly because group
announcements and technical discussions often occurred on the
team chat line during the day.

5.2.3 Breaks
Jett and George define breaks as “planned or spontaneous recesses
from work on a task that interrupt the task’s flow and continuity.”
The developers on both Team Solo and Team Pair took frequent
breaks in the course of work.

On Team Pair, most breaks involved physically leaving the
workspace. Developers would leave to make personal phone calls,
run errands (usually requiring them to leave the office entirely), go
to the restroom or retrieve drinks and snacks from the company
kitchenette. When they were physically in the work area,
developers took breaks by checking e-mail or looking at web pages
when they had no immediate tasks assigned to them or if they were
waiting for another developer.

On Team Solo, in contrast, breaks included a broader scope of
activities. In addition to those listed above, developers also took
breaks to write e-mail or chat on lily, sometimes as a respite from
their current task. In the following, Feroz grows frustrated with the
interface to a bug report database and stops to send a series of
rapid online messages to the team discussion line:

Feroz switches to his lily window and begins to type:

From feroz to team-rds:

Okay.

From feroz to team-rds:
It's going to be… hard to set the priority of a ticket to 10 or 5

From feroz to team-rds:
The priority field appears to only offer 1, 2, 3, 4 as options.

Feroz re-examines the bug report interface and notices that
there are multiple fields labeled “priority”. He switches to his
lily window again and types:

From feroz to team-rds:
Oh no wait, it's just STUPID

From feroz to team-rds:
List of fields: "Priority", "Final priority", "Priority"

Team Solo developers also took breaks for social purposes, by
physically visiting other developers in their cubicles to chat or by
sending messages over lily. Physical visits, in particular, seemed to
draw the attention of other developers nearby, frequently causing
multiple team members to join in. In the following example, Paul
is perusing a lily conversation while waiting for a build to
complete. He follows a web link posted on the chat forum, which
leads to a music video. As the video begins to play, Feroz and
Grant come to the cubicle to watch as well.

Paul, reading through his lily window, suddenly laughs.

Paul: Oh my god, I might have seen that.

Paul moves to his other machine and opens a web browser. He
types in the URL. As music begins, Feroz enters the cubicle.

Paul: Oh, I have seen this! [Grant arrives in the cubicle]
Grant: What have you seen?
Paul: This horrible Bilbo Baggins movie.

The video plays. Then Grant suggests they watch another.

Overall, Team Solo’s breaks were more likely than Team Pair’s to
have a recreational or social dimension and to involve multiple
group members, while breaks on Team Pair seemed to primarily
serve as periods of individual physical or mental refreshment or
opportunities to attend to personal non-work related activities.

5.2.4 Summary of Content Differences
Patterns of interruption types were far more varied for Solo
developers than for Pair developers. Some Solo developers took
many breaks, for example, while others took very few. On Team
Pair, distribution of interruption types was fairly consistent from
day to day and from pair to pair. Overall, Team Pair’s breaks and
intrusions were functional, with individuals using them to gather
task knowledge or to get personal work done during the paired
task. For Team Solo, by contrast, breaks and intrusions were both
functional and social. Finally, intrusions from team members
occurred primarily through face-to-face communication on Team
Pair, while intrusions occurred through e-mail, through lily and
face-to-face for Team Solo members.

5.3 Interruption Incidence
On both teams, how interruptions occurred and the points at which
they occurred differed depending on whether the interruption was
externally initiated or self-initiated. Still, Team Pair generally
responded quite differently than Team Solo to interruptions. We

33

will first present the two differing strategies for handling
externally-initiated interruptions, and then, second, the strategies
used for internally-initiated interruptions.

5.3.1 Externally Initiated Interruptions
Developers on both teams had little control over the times at which
external interruptions occurred, but had strategies for both
interrupting others and handling interruptions.

5.3.1.1 Interruptor Strategies
On Team Pair, programmers attempted to leverage the physical
visibility of their team members to choose better times to interrupt.
Interrupters could often be seen scanning the room (if they needed
to make an announcement to the group) or monitoring a particular
pair’s activities and conversation in an attempt to minimize the
disruptive effect of intruding. Their ability to wait for a good time
to interrupt, however, was limited by the time pressure they felt to
complete their work; at some point, the need for information would
drive them to interrupt regardless of the status of the programmer
to be interrupted. This situation was particularly true if both pair
members were stymied in their task by lack of information; the
pair would then often interrupt the programmer with the
information, regardless of that programmer’s current state of
preoccupation.

On Team Solo, lack of visibility and the general silence in which
work was done made it more difficult to determine “good
interruption points.” When a developer made the effort to
physically visit another, he or she almost always immediately
interrupted the person visited, unless the visitee was already
occupied with another person (and sometimes the developer
interrupted anyway). If the person sought was not physically in the
office or if the question was of lower priority, the interrupter
generally used lily to reach that person. In these cases, the
interrupter often began by checking the status of the interruptee
(connected and/or active) both to determine interruptee availability
and to estimate how rapidly a response might come.

5.3.1.2 Interruptee Strategies
Developers on both teams used several strategies to handle
interruptions when they were the ones being interrupted.

On Team Pair, developers had little control over intrusion timing
and when intrusions could be addressed. The physical immediacy
of the intrusion generally meant that handling could not be
deferred. Pairs minimized an interruption’s disruptive impact by
having one member continue working while the other addressed
the interruption. If the intrusion were directed at the entire group,
pairs would assess if it was relevant to them and if they decided it
was not, they would ignore it. In the following, Eric directs a
question to the entire team, which Dana and Levi will assess and
then proceed to ignore:

Eric: Is anyone fixing the build?
Dana: Not us. [turning back to Levi] Is that a zone file?
Eric: [to the group] Is anyone fixing the build?
Dana: [to Eric] Not us.
Ben: Yes, it's fixing itself.
Kevin: I've heard that a couple of times [he laughs]
Dana: [to Levi, ignoring the larger conversation] So that's...
Ben: I deleted a test.

The group debates Ben’s decision to delete a test. Dana and
Levi work quietly together, ignoring the entire conversation.

Unlike Team Pair, Team Solo programmers could minimize the
impact of intrusions by limiting their own availability. Several solo
programmers worked from home frequently, citing lack of
disruptions as a reason for this practice. Queries to those
programmers would then come through lily, where, due to the
asynchronous nature of the chat medium, they could be ignored.
Intrusions that came through lily could also be more easily filtered
or addressed only in a cursory manner. Although programmers
might intend to follow up later, these requests would frequently be
forgotten without explicit reminders from the person asking the
question. Team Solo programmers sometimes also opted to work
through an interruption – turning back to their computers and
resuming their tasks, even as social conversation was directed at
them or went on around them. This multitasking was not possible
when the intrusion came through lily, as the need to read messages
in the lily window made it difficult to simultaneously work and
monitor the interruption.

Team Pair programmers had less control than Solo members over
interruption incidence, but they had more control over interruption
duration. Because Team Pair programmers worked in pairs, the
person being interrupted generally traveled to the site of the
interruptor to handle the interruption. This left the interruptee free
to depart the area when he or she felt that the interrupting issue had
been adequately addressed, a determination that might vary with
the import of his or her primary task. On Team Solo, however,
physical intrusions involved the interruptor traveling to the cubicle
of the interruptee; thus, when the interruptee felt that the
interruption had been resolved, he or she could only signal to the
interruptor that that he or she wished to return to work – but it was
the interruptor who decided when to leave. Thus, if the interruptor
ignored or was oblivious to the signal, the interruptee’s only
recourse was to resume work, despite the ongoing interruption.

5.3.2 Self-initiated Interruptions
On Team Pair, programmers took breaks as they saw fit. Breaks
were slightly more frequent between tasks, when both members
might take a break, or at stages when work could be handled by
one of the pair. Breaks were distributed, however, rather randomly
through the day. Developers often simply stood up and walked
away, with little or no warning to their pair partners:

Dana: This doesn't work for relative links, so let's go to java.
Eric: Oh, they're not URLs. It's the URL class.
Dana: Let's see, do we want to start extracting or is this the

class?

Eric suddenly gets up and bolts from his chair. Dana looks at
the code and begins to create another class.

Periods of downtime – such as during test runs or the code check-
in process where no interaction or input was required of
programmers for several minutes – frequently led a member of the
pair to take a break while the remaining member attended to the
running process, doing little but waiting for it to complete.

Similarly on Team Solo, many self-initiated interruptions were
also triggered by periods of downtime in their primary work task.
While pair programmers could send off one developer to take a
break while the other continued to monitor the task’s progress, solo
programmers did not have this luxury. Unlike Team Pair
programmers, Team Solo developers rarely sat and waited for the
primary task process to complete. Instead, developers guessed at
when the process might complete and did something else in the

34

meantime. In addition to such activities as trips to the kitchenette
or bathroom, the programmers would often take up a secondary
task such as checking e-mail and lily or even working on a
completely new task.

For Solo programmers, switching between a secondary and
primary task was sometimes problematic, particularly when both
tasks involved digital interfaces on the same display. The
secondary task window often partially or fully obscured the
primary, impairing the developer’s ability to monitor primary task
progress. This situation sometimes led to delays in primary task
resumption as the solo programmer became engaged in break
activities. In the following example, Henry decides to run the
project’s test suite to check on test failure status, a process that
takes approximately five minutes. As he waits for the test suite to
complete, he checks lily and then e-mail:

Henry: So I think that's… that may be the last thing I need to do
to make the rtests. Now I think I'll run the rtests and see
what else breaks.

He runs them and looks over his lily window while he waits.
There is a private message from Feroz to Henry about a bug.

Henry: Huh? I don't want to know what's going on.

Nevertheless, he scrolls back to read over the conversation that
Feroz’s message references on the team-rds line. New messages
from Paul to the team line appear at the bottom of the window.
Henry turns to his e-mail.

Henry: Oh right, there was something I had to look at…

Henry types out a response to an e-mail; Ingrid, Paul and Feroz
appear, ready to leave for lunch. After some discussion, Henry
leaves for lunch as well.

As Henry grows more engaged in secondary tasks, he forgets to
check his test run, which will remain unchecked until after lunch.
Lacking an easy mechanism for tracking both tasks, solo
programmers such as Henry resorted to polling, transitioning
rapidly between two tasks in order to check on the primary task’s
progress. In contrast, this behavior was rarely seen on Team Pair,
where one of the pair simply sat and waited out the process.

6. DISCUSSION
Our analysis indicates significant differences between the pair
programmers (Team Pair) and solo programmers (Team Solo) in
length, content, type, time, context of occurrence and strategies for
handling work interruptions. We will now explore these
differences before discussing implications for system design.

6.1 Why Interruptions Differed by Team
As noted above, interruption times were shorter for Pair vs. Solo
programmers, regardless of interruption time or source (self-
initiated or external). Research has shown that social exchanges
and relational contracts can develop between individuals who work
closely together, creating a sense of mutual obligation [8, 24].
Because their work was highly cooperative in nature, Pair
programmers may therefore have felt a strong social obligation to
their pair partners, leading them to handle interruptions quickly so
that they could return to the primary task they shared with their
pair partner. The programmers on Team Pair were much more
likely to stay on task than the Solo programmers. Social
interruptions for the pair programmers were also shorter in

duration than those on Team Solo and they were less prone to
picking up the secondary tasks that interfered with primary task
resumption.
Several previous studies indicate that a work environment’s
physical artifacts can function as cues for interrupted tasks [23, 11,
13]. For Pair members, the uninterrupted programmer seemed to
serve as that cue – a cue that was visible, audible and immediately
present in the physical workspace, and which therefore maintained
the interrupted task’s salience for the interrupted programmer. The
pair partner may reduce the time required to recover state by acting
as a source of richer and more easily interpreted task information.
Pairs can make greater use of multiple modalities such as speech
and gesture to augment perception and understanding of the
current task state, rather than relying primarily, as the solo
programmers must, on interpretation of the incomplete task as
presented by the application interface. Speech and gesture may
also provide information to the returning programmer in a more
accessible and potentially more parsimonious representational state
[16]. Much the same way that conversational partners work
“moment by moment, to identify and remedy inevitable troubles
that arise” in conversation [26], pair programmer interactions
provide a natural and seamless means for interruption recovery.
Because Pair members worked in an open, shared workspace, the
interrupted programmer could also easily monitor his or her
partner’s primary task progress during the interruption. Thus, if the
partner programmer appeared to be struggling or stuck, the
interrupted programmer could hurry or attempt to end the current
interruption in order to return to the task. Pair programmers may
also have been more motivated to respond promptly to
interruptions because their actions were so visible to the entire
team. Thus, these programmers may have felt a pressure to balance
being seen as a knowledgeable “team” player with the need to be
an attentive and available pair partner.
Interruption content for Team Solo programmers also differed
from that of Team Pair programmers. Team Solo interruptions,
particularly intrusions, had a significant social as well as functional
component, while Team Pair’s interruptions were primarily
functional in nature. For Solo programmers, the primary work
mode was alone, either at home or within a cubicle. Thus,
interruptions for Solo programmers likely served as a mechanism
not only for gathering information but also for social interaction. In
contrast, because pair programming requires constant
communication between the pair, Team Pair members were
engaged constantly in social interaction and seemingly had little
need to interrupt others for social purposes.
The notion that Solo programmers used interruptions as a source of
social interaction is also supported by the difference between the
two teams in interruption-type variability among team members.
Because individuals vary in social interaction needs, we would
expect to see variation in the amount and types of interruptions
across individuals on a team as those who need high levels of
social interaction use interruptions more for that purpose than
those with lower social needs. Indeed, we found that Team Solo
members varied widely in types and quantity of interruptions
across the group. Pair programmer interruptions, in contrast, were
fairly similar in types and quantity across pairs, supporting the
notion that they did not use interruptions for social interaction.
Intrusions occurred frequently for programmers on both teams, and
individuals creating interruptions were largely insensitive to the
current state of interruptees. For interruptors on Team Pair, time
pressure and need for information generally outweighed significant

35

consideration of an interruptee’s task status. Even when the
relatively low priority of an interruption’s content made
consideration possible, many interruptions required the entire
team’s attention, limiting the impact of a particular pair’s status on
the decision to interrupt. On Team Solo, the programmers
generally checked availability (via lily) before interrupting, but
gave little to no consideration to the interruptee’s status.
The physical configuration of Team Pair’s work environment gave
pair programmers a broad context for their interruption activities.
Not only could interruptors see and hear activities of programmers
they intended to interrupt, but also the interrupted programmers
had rich information about the interruptor’s situational context.
This rich awareness likely increased programmers’ willingness to
respond quickly to external information requests (a common
reason for intrusions); they possessed the situational awareness to
make their own determination of the interruption’s importance to
the interruptor. Thus, if lack of response rendered an interrupting
pair unable to continue work, a programmer being interrupted
could see this situation and might be more willing to respond. Solo
programmers, however, relied on the interruptor’s estimation and,
if they wished to make their own determination of an interruption’s
criticality, had to explicitly request context from the interruptor.
These differing contextual considerations are reflected in the two
teams’ differing interruption handling strategies. Team Solo
programmers generally employed strategies that would benefit the
interruptee, such as deciding to defer or ignore an interruption.
Team Pair programmers, meanwhile, although often unable to
avoid an immediate response to an intrusion, had greater recourse
in influencing how the interruption unfolded. They had
substantially more control over when and how to end physical
intrusions: because Team Pair interruptees generally traveled to the
interruptor, they had the ability to end an interruption simply by
returning to their own space. And because work was done in pairs,
these programmers could leverage obligations to their pair partners
to manage interruption duration. This ability was reflected in
differences between Pair members’ responses to group-wide
intrusions and pair-to-pair intrusions. Pair programmers had little
control over group-wide intrusions and could only attempt to
ignore them and carry on with their work. In pair-to-pair
intrusions, however, Pair programmers frequently paused to
monitor their partners’ progress and, if they were needed, to act
quickly to end the intrusion.
For self-initiated interruptions, both the sense of accountability to
the pair partner and the visibility of their actions to the entire team
likely kept Pair programmers from adopting secondary tasks or
from taking long breaks. In contrast, primary task resumption lags
occurred more frequently among Solo programmers, because they
lacked immediate accountability to their teammates.
Finally, unlike Solo programmers, Pair programmers shared tasks
between partners. This task sharing seemed to reduce the time
required for interrupted partners to recover from the interruption,
because the task itself was often not interrupted: one member of
the pair generally continued to work while the partner handled the
interruption. Thus, while Solo programmers were drawn out of
their task and had to switch cognitive gears during an interruption,
Pair programmers could rely on their partners to continue the
primary task and to bring them back to it upon the interruption’s
conclusion. Previous studies document the adverse effects of
interruptions on individuals [25, 3], but pair work seemed to allow
the Pair programmers to reduce somewhat the derogatory effects
of interruptions by dulling potential losses in productivity.

6.2 Implications for Design
As our analysis reveals, interruption patterns and dynamics for
paired programmers differed in numerous ways from those of solo
programmers. Our findings suggest a number of potential
directions for the design of computerized work support systems.
Support Self-Interruptions. Many systems for interruption support
primarily address deleterious effects of intrusions [11, 5, 7]. Our
data indicate, however, that many interruptions during the workday
are not from external sources but are in fact self-initiated. Our
findings suggest that self-interruptions are a natural part of
knowledge-intensive work. Systems to support knowledge work
(including systems for interruption support) should therefore
consider self-initiated as well as external interruptions, taking into
account when and why people pause in the course of their tasks.
Provide contextual information for the interruptee. Prior work on
interruption systems has focused either on when and how to
present interruption information to the interruptee or providing
contextual information about the interruptee to the interruptor [12].
The dynamics of interruption response among the radically
collocated programmers on Team Pair suggest that providing the
interruptee with easily processed, easily accessible and
independent contextual information about interruptor may ease the
adverse affects of intrusions [20]. Interruptees can weigh the need
for information on the part of the interruptor with their own
schedule and priorities and against the activities of the team as a
whole. In teams and organizations where cooperation is necessary
for work, this may facilitate cooperation and reduce annoyance at
intrusions.
Refine contextual information for the interruptor. The pair
programmers in this study had available both the visual and aural
context of the person or pair they intended to interrupt, but they
rarely postponed intrusions for significant amounts of time. Most
pairs appeared to use a rough and potentially inadequate heuristic
for interruptability, waiting for particularly animated conversations
to die down before calling over to the pair in question, if they
chose to wait at all. This finding suggests that if contextual
information is to be useful in guiding the timing of interruptions, it
must be refined so that interruptors can better weigh the urgency of
their requests against the interruptees’ sense of their own
interruptability at a particular time.
Ease awareness of multiple tasks. For the solo programmers in our
study, interruptions were often occasioned by the need to wait for
long-running processes, such as compilations or test runs, to
complete. While waiting, the solo programmers commonly took
breaks or engaged in secondary tasks. The programmers often
found it difficult to monitor the status of a primary task while
engaged in a secondary one, frequently leading to unnecessary
delays in primary task resumption or a rather frenetic polling of the
primary task application. Our observations suggest that these
programmers, along with knowledge workers in similar task
environments, would benefit from improved system support for
maintaining general awareness of changes in application state,
along the lines of Matthews et al.’s work on clipping lists [19].
Providing a consistent, generalizable interface for monitoring state
changes in multiple applications would reduce time and energy
spent polling for primary task progress and facilitate task
resumption after mental breaks.
Give interruptees greater control over interruption duration and
conclusion. As with much knowledge work [27, 22], interruptions
are a critical part of programming, facilitating communication of

36

key information across a team. Differences in interruption duration
and conclusion across the two teams suggest that giving
interruptees control of when and how interruptions end may help
attenuate interruptions’ disruptive effects. An interface, for
example, that sounds an alert when a specified time has passed in
which the computer is idle might provide a graceful “excuse” for
interruptees to turn back to their own tasks and signal interruptors
that an intrusion should end.
Increase task salience and interactive cues to ease task
resumption. On Team Pair, partners played an important role in
helping programmers return to their primary tasks after
interruptions. Pair partners served to make relevant components of
the task salient to the returning partner and acted as an interactive,
easily accessible means for the programmer to recover current task
state. By contrast, solo programmers had no such resource, bearing
the full burden of remembering their task state prior to interruption
and increasing the need for such strategies as rehearsal [1, 9] and
physical cues [2]. Applications could potentially facilitate task
resumption in similar ways, perhaps by emphasizing recently
accessed or particularly relevant task elements upon a return from
an interruption or by providing programmers and other knowledge
workers with an easy means to visualize work history.
Consider the special needs of pair programmers. Our study
provides a window into the interruption implications and practices
of workers engaged in a relatively new form of cooperative work.
As noted above, pair programming differs from forms of
cooperative work previously studied [14, 17] in that workers are
jointly oriented about a single physical artifact (the computer) in a
shared physical space and do not divide task labor into distinct
roles. Because pair programmers differ markedly from solo
programmers in their interruption behavior, systems to support this
brand of collaborative work must incorporate substantially
different considerations from those for either more traditional
forms of collaborative work or individual work. These systems
might, for example, provide a simple means by which a member of
a pair when left alone could record his or her actions so that the
pair partner can review them quickly, when necessary, upon
returning from an interruption, or so that subsequent pairs can
review work done by others on previous days.

7. CONCLUSIONS
The consideration of how interruptions may be supported has
centered primarily on a conception of knowledge work as
individually conducted and of interruptions as externally triggered
disruptive tasks. Our data shows that a substantial number of
interruptions during the workday are self-initiated. Interruptions
are a natural and sometimes essential part of work, particularly
knowledge intensive work. Our comparison of interruption
behaviors in a solo programming team and pair programming team
demonstrates that joint work may have different implications for
the impact of and potential support for interruption handling.

8. ACKNOWLEDGMENTS
We are grateful to Diane Bailey for her guidance during the
formative stages of this work, and to Pamela Hinds and Scott
Klemmer for their feedback and input on this paper. We thank our
informants for participating and for their kind tolerance while
being observed. This work was partially supported by a gift from
the Microsoft Corporation.

9. REFERENCES
[1] Altmann, E.M. and W.D. Gray. Managing attention by

preparing to forget. In Proceedings of the International
Ergonomics Association and Human Factors and
Ergonomics Society (IEA '00/HFES '00) (Santa Monica, CA,
July 31, 2000). 2000, 152-155.

[2] Altmann, E.M. and J.G. Trafton. Task interruption:
Resumption lag and the role of cues. In Proceedings of the
26th annual conference of the Cognitive Science Society,
2004.

[3] Bailey, B.P., J.A. Konstan, and J.V. Carlis. The effects of
interruptions on task performance, annoyance and anxiety in
the user interface. In The Proceedings of INTERACT 2001
(Tokyo, Japan, July 9, 2001). IOS Press, 2001, 593-601.

[4] Bannon, L., A. Cypher, S. Greenspan, and M.L. Monty.
Evaluation and analysis of users' activity organization. In
Proceedings of the ACM conference on human factors in
computing systems (CHI'83) (Boston, MA, December 12,
1983). ACM Press, 1983, 54-57.

[5] Bardram, J.E. and T.R. Hansen. The aware architecture:
Supporting context-mediated social awareness in mobile
cooperation. In Proceedings of the ACM conference on
computer supported cooperative work (CSCW'04) (Chicago,
IL, November 6, 2004). ACM Press, 2004, 192-201.

[6] Beck, K., Extreme programming explained. Addison Wesley,
Reading, MA, 2000.

[7] Begole, J., N.E. Matsakis, and J.C. Tang. Lilsys: Sensing
unavailability. In Proceedings of the ACM conference on
computer supported cooperative work (CSCW'04) (Chicago,
IL, November 6, 2004). ACM Press, 2004, 511-514.

[8] Blau, P., Exchange and power in social life. Wiley, New
York, NY, 1964.

[9] Clifford, J.D. and E.M. Altmann. Managing multiple tasks:
Reducing the resumption time of the primary task. In
Proceedings of the 26th annual conference of the Cognitive
Science Society, 2004.

[10] Czerwinski, M., E. Horvitz, and S. Wilhite. A diary study of
task switching and interruptions. In Human factors in
computing systems: Proceedings of CHI'04 (Vienna, Austria,
April 24, 2004). ACM Press, 2004, 175-182.

[11] Dey, A.K. and G.D. Abowd. Cyberminder: A context-aware
system for supporting reminders. In Proceedings of the 2nd
international symposium on handheld and ubiquitous
computing (HUC '00) (Bristol, UK, September 25, 2000).
Springer, 2000, 172-186.

[12] Fogarty, J., A.J. Ko, H.H. Aung, E. Golden, K.P. Tang, and
S.E. Hudson. Examining task engagement in sensor-based
statistical models of human interruptibility. In Proceedings of
the ACM conference on human factors in computing systems
(CHI'05) (Portland, Oregon, April 2, 2005). ACM Press,
2005, 331-340.

[13] Gonzalez, V.M. and G. Mark. "Constant, constant, multi-
tasking craziness": Managing multiple working spheres. In
Human factors in computing systems: Proceedings of CHI'04
(Vienna, Austria, April 24, 2004). ACM Press, 2004, 113-
120.

[14] Heath, C. and P. Luff, Convergent activities: Line control and
passenger information on the London Underground, in

37

Cognition and communication at work, Y. Engestrom and D.
Middleton, Editors. 1996, Cambridge University Press, New
York, 97-129.

[15] Hudson, J.M., J. Christensen, W.A. Kellogg, and T. Erickson.
"I'd be overwhelmed, but it's just one more thing to do":
Availability and interruption in research management. In
Human factors in computing systems: Proceedings of CHI'02
(Minneapolis, MN, April 20, 2002). ACM Press, 2002, 97-
104.

[16] Hutchins, E., Cognition in the wild. The MIT Press,
Cambridge, MA, 1995.

[17] Hutchins, E. and T. Klausen, Distributed cognition in an
airline cockpit, in Cognition and communication at work, Y.
Engestrom and D. Middleton, Editors. 1996, Cambridge
University Press, Cambridge, 15-35.

[18] Jett, Q.R. and J.M. George, Work interrupted: A closer look
at the role of interruptions in organizational life. Academy of
Management Review, 28, 3 (2003), 494-507.

[19] Matthews, T., M. Czerwinski, G. Robertson, and D. Tan.
Clipping lists and change borders: Improving multitasking
efficiency with peripheral information design. In Proceedings
of the SIGCHI conference on human factors in computing
systems (CHI'06) (Montreal, Quebec, Canada, April 22,
2006). ACM Press, 2006, 989-998.

[20] McFarlane, D., Comparison of four primary methods for
coordinating the interruption of people in human-computer
interaction. Human-Computer Interaction, 17, 1 (2002), 63-
139.

[21] O'Conaill, B. and D. Frohlich. Timespace in the workplace:
Dealing with interruptions. In Proceedings of the ACM
conference on human factors in computing systems (CHI'95)
(Denver, CO, May 7, 1995). ACM Press, 1995, 262-263.

[22] Perlow, L., The time famine: Toward a sociology of work
time. Administrative Science Quarterly, 44, 1 (1999), 57-81.

[23] Rouncefield, M., J.A. Hughes, T. Rodden, and S. Viller,
Working with "constant interruption": CSCW and the small
office. The Information Society, 11, 3 (1995), 173-188.

[24] Rousseau, D.M. and J.M. Parks, The contracts of individuals
and organizations, in Research in organizational behavior,
B.M. Staw and L.L. Cummings, Editors. 1993, JAI Press,
Greenwich, CT, 1-43

[25] Speier, C., J.S. Valacich, and I. Vessey. The effects of task
interruption and information presentation on individual
decision making. In Proceedings of the 18th international
conference on information systems (Atlanta, GA, December
14, 1997). 1997, 21-36.

[26] Suchman, L.A., Plans and situated actions: The problem of
human machine communication. Cambridge University Press,
New York, 1987.

[27] Whittaker, S., D. Frohlich, and O. Daly-Jones. Informal
workplace communication: What is it like and how might we
support it? In Proceedings of the ACM conference on human
factors in computing systems (CHI'94) (Boston, MA, April
24, 1994). ACM Press, 1994, 131-137.

38

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

