
Eclipse as a Platform for Research on
Interruption Management in Software Development

Uri Dekel
ISRI, School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

udekel@cs.cmu.edu

Steven Ross
Collaborative User Experience Group

IBM Research Cambridge
1 Rogers St., Cambridge, MA 02138

steven ross@us.ibm.com

Abstract
Automated tools for mediating incoming inter-

ruptions are necessary in order to balance the con-
centration required for software development with
the need to collaborate and absorb information. At
present, there is no design knowledge for building
such tools for programmers. The abundant liter-
ature on the general problem of interruptions and
awareness does not address the unique characteris-
tics of software development, and the few studies
which do are restricted to simpli ed tasks or en-
vironments. We attribute this scarcity to dif cul-
ties in conducting empirical studies in real settings,
because of the need to implement appropriate re-
search tools.

Eclipse is poised as an ideal platform for such
research thanks to its popularity, plug-in model,
and observation hooks. This paper presents Gate-
Keeper, a plug-in based framework for managing
interruptions, allowing the rapid implementation of
different interruption and awareness models, and
their integration within actual collaboration tools.
To validate our framework, we implemented a rule-
based interruption management system, and inte-
grated it with Jazz, an Eclipse-based collaboration
tool.

1 Introduction
1.1 The problem of interruptions

Distractions incur mental context switches
which slow and introduce errors into cognitively-
complex tasks [1], a phenomenon which appears
to apply to software development as well [8]. Pro-
gramming is a delicate and error-prone process, but
developers do not operate in a vacuum: they must
receive information and alerts about their project,
and collaborate with their peers. Ideally, distrac-

tions should occur only if the importance of the in-
formation outweighs the cost.

In a co-located team, social cues help deter-
mine whether a peer can be interrupted [5]; these
cues are missing in distributed teams. Synchronous
means of communications, such as instant mes-
saging, facilitate interaction between remote team
members. However, since they provide no aware-
ness about the recipient’s activity, the initiator must
 rst attempt the communication, causing an imme-
diate distraction, and only then negotiate the in-
terruption. If such attempts become too frequent,
they can negatively impact a person’s ability to get
their own work done. Frustrated users might block
incoming communications, reducing their value to
the team and possibly missing important develop-
ments.

One approach to this problem is providing
awareness to peers. In the simplest form, adapted
by most IM tools, users manually set their status.
While useful for planned and prolonged periods of
unavailability, the need for manual set-up makes
this inadequate for the rapid context-switching of
software development. For example, it is unaccept-
able for a programmer who only wants to block
interruptions while debugging to manually set this
status prior to every launch. More advanced aware-
ness tools use physical sensors, video or voice anal-
ysis to determine interruptability [4, 5]. However,
while there is a taxonomy of activities that occur
during the design process [9], a similar classi ca-
tion for actual programming would require identi-
fying relevant events in the IDE.

Clearly, simply increasing awareness is not
enough because it leaves control of distractions in
the hands of others, while raising a myriad of pri-
vacy issues [6]. Awareness also fails to affect au-
tomated external agents, such as context-sensitive

12

OOPSLA'04 Eclipse Technology eXchange (ETX) Workshop,
Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM

assistants [3, 8], source control monitors [10] and
bug-database monitors. The complimentary ap-
proach involves an automated agent working on be-
half of the user. This agent buffers between in-
terruption sources and the user, and mediates in-
coming interruptions by deciding where, when, and
how to present the information.

1.2 Previous research
In his fundamental work on interruption coor-

dination, McFarlane [7] identi ed four methods of
coordination, means in which UIs can support in-
terruptions: The immediate style presents the in-
coming interruption instantly, without regard for a
person’s status; it often requires immediate action.
The negotiated approach peripherally announces
the existence of an interruption, but allows the user
to choose when to devote attention to absorbing the
details. A mediated style involves the agent de-
scribed above. The scheduled style allows inter-
ruptions only during speci c time windows.

McFarlane’s taxonomy gave rise to works that
compared these interruption styles. His own lab
experiments with cognitively-simple game tasks
showed that negotiated (and mediated) interrup-
tions are usually preferable, especially when ac-
curacy on the primary task is important. The im-
mediate style was only useful when promptness in
responding to the interrupting task was necessary.

Robertson et al. [8] strove to obtain design
knowledge for programming environments. They
compared the effects of immediate and negotiated
interruptions from an assistance agent on the de-
bugging of spreadsheet programs. Their experi-
ments showed that the negotiated style is always
preferable, although they did not have interruptions
which required prompt response and did not at-
tempt to mediate interruptions. Clearly, more ex-
periments are necessary to obtain design knowl-
edge for real development scenarios.

The key to successfully mediating interruptions
lies in balancing the user’s current activity and the
relevance of the information. The techniques used
to obtain awareness information can be used by me-
diating agents. Horvitz’s attentional user interface
and noti cation platform projects [4] developed a
generic framework for mediated interruptions. In-
coming interruptions are handled by a noti cation
manager which decides how to handle them using
a decision model capable of interrupting through a
variety of mediums. This model uses an attention
model to determine the interruptability of the user
and the preferable interruption medium by relying
on a variety of sensors which report to a context
server. Their published implementation, however,

does not address the speci cs of software develop-
ment, nor can it be easily integrated into IDEs.

1.3 Our work
If we could collect experimental results in

real development settings, we would have de-
sign knowledge for building mediating agents cus-
tomized to the special needs of programmers. We
need to identify the activities and states that oc-
cur in programming, and discover the best ways
to relay information from different sources in each
state. The scarcity in data likely arises from the dif-
 culty in developing appropriate experimentation
tools and integrating them into real development
environments.

Eclipse is well poised as a research platform for
collecting such data. Its popularity and platform-
independence allows experiments to be conducted
within the developer’s native environment. Its ro-
bust plug-in mechanism allows smooth integration
of tools into the environment, as well as integra-
tion between different tools. In addition, Eclipse
provides an extensive set of hooks, allowing ne-
grained monitoring of the user’s interaction with
the IDE.

In this paper we describe GateKeeper, a plug-in
based framework for context-awareness and inter-
ruption management in Eclipse. We aim to promote
research on interruption handling in real develop-
ment settings by providing convenient means for
the rapid development and integration of research
tools such as awareness or decision models. To
validate the usefulness of this framework we de-
veloped three extensions for GateKeeper, reminis-
cent of the research we described above: a sub-
framework for determing context based on multi-
ple sensor feeds, a rule-based decision model, and
integration of our framework into the Jazz collabo-
ration tool [2].

2 The framework
The core of the GateKeeper framework does not

deal with the speci cs of interruption management.
Instead, it provides extension points and relies on
additional plug-ins to contribute con gur ation fea-
tures which build up to an interruption manage-
ment con gur ation.

The fundamental con guration feature is the in-
terruption management scheme, a strategy object
which serves as our decision model. It receives in-
coming interruption request events and returns de-
cision events. A scheme can be as simple as block-
ing or allowing all interruptions, or as complex as a

13

rule-based or learning-based strategy. Only one of
the registered schemes is active at any time.

Every interruption request has an associated in-
terruption type, selected from a hierarchy of reg-
istered types. A scheme can, for example, block
all chat requests, or block speci c ones, such as
voice chats. Every request also has a source agent,
selected from a single-rooted multiple-hierarchy of
registered agents. Concrete agents, such as individ-
uals or automated agents, form the bottom layer of
this lattice, while teams form the abstract internal
nodes. The use of multiple hierarchy accommo-
dates overlapping between teams.

User context in GateKeeper is represented by
a subset of the registered context states, serving
as predicate objects which schemes can query or
watch. The registered states are also arranged in a
semi-lattice.

The collections of features constituting the con-
 guration are populated when the interruption
manager object is rst created. The framework
publishes extension points for each kind of con-
 guration feature, using them to obtain suppliers
that provide the objects and their placement in the
hierarchies. Features can also be added and re-
moved at run time, allowing the system to adjust to
changes such as programmers leaving and joining
the team. Listeners are noti ed when such con g-
uration changes occur.

We now describe the process of submitting and
handling interruptions when GateKeeper is oper-
ating on the recipient’s machine. We use Jazz
as a running example, demonstrating the handling
of IM interruptions. The Jazz framework has al-
ready contributed the necessary con guration fea-
tures, including an interruption type for IMs, agents
representing teams and individuals, and appropri-
ate context states.

Jazz has a thread which intercepts incoming chat
requests from the server. When such a request
arrives, it starts another thread which would nor-
mally open a chat window displaying the rst mes-
sage. With GateKeeper, however, the thread rst
requests the singleton interruption manager object.
It then creates an interruption request event, spec-
ifying IM as the type and the sending user as the
source agent, and attaches the contents of the rst
message to the request. Since it is an independent
thread, it now makes a synchronous submission of
the event to the interruption manager, blocking un-
til a decision is made.1

The manager sends the request to the scheme,
which it treats as a black box. The decision is re-

1We also support asynchronous submissions using callbacks.

turned in the form of an interruption decision event,
which is classi ed as either an acceptance or a de-
nial, and is relayed back to the submitting code.
In our example, if an acceptance decision is made,
the thread will go on to open the chat window on
the recipient’s side. If the request is denied, the
thread does not open the window and instead sends
an instant message to the original sender party with
an automated response informing of the recipient’s
unavailability.

Our framework is not limited to deciding be-
tween distracting immediate-style interruptions
and complete blocking. We provide inherent sup-
port for negotiated interruptions by storing the sup-
pressed interruptions and presenting them when re-
quested, using the attached messages. Jazz regis-
ters itself as a listener to the manager, and deco-
rates the pictures of the involved parties in the Jazz
band (an iconic “buddy list”) with an envelope icon
when an interruption request is denied; the frame-
work collects these requests and allows users to
view the waiting messages at their convenience.

Decision events also have associated actions, ex-
ecuted by the manager before returning decisions
to the client program. These actions can peripher-
ally notify the user about blocked interruptions, for
example by playing a sound, showing a temporary
pop-up, or, as done in Jazz, brie y ashing the im-
age of the user.

Our framework also supports the implementa-
tion of mediated interruptions. If the time is not ap-
propriate for an interruption, the scheme can post-
pone making the decision. It can also demote an
immediate interruption into a less distracting one
by denying the request and executing an action for
the alternative mode of presentation. Scheduled in-
terruptions can be implemented by delaying deci-
sions until the appropriate time.

Finally, note that client programs can also reg-
ister interruption handlers, rather than handle ac-
cepted requests by themselves. This allows, for in-
stance, for different monitor agents to send one-line
alerts, counting on a single handler to display them
to the user once they are allowed through.

3 A sensor-based context man-
agement framework

The GateKeeper framework represents the cur-
rent context of the user as a subset of the regis-
tered context states. While it is straightforward to
identify relevant states, such as debugging, deter-
mining their semantics is an open research prob-
lem. For example, how do we distinguish between
debugging and testing? The solution is likely to

14

rely on identifying patterns in data captured from
the IDE. In preparation for such research, we added
a sub-framework for sensor-based context states.

At the heart of this framework is a plug-in
for GateKeeper which provides it with a single-
ton context supplier. This supplier obtains atomic
context information templates and context states by
publishing two extension points. Each template can
be thought of as a simple sensor, and is used to in-
stantiate values, typically by hooking into the IDE.
For example, one contributing plug-in tracks the
current perspective and project, unsaved les and
processes under debug. It then provides a debug
context state which uses a complex condition on
these atomic values. Similarly, we have a plug-in
which uses native methods of the Windows API to
 nd which programs and windows are currently ac-
tive. A user who chooses to use this plug-in, in
spite of its privacy implications, can bene t from
context states that involve non-programming activ-
ities. Of course, more complex algorithms can be
used for determining state from atomic informa-
tion.

4 A rule-based interruption
management scheme

As part of our validation of the framework, we
wanted to implement an interruption management
scheme which would mediate some interruptions
from the distracting immediate style to the less dis-
tracting negotiated style. We strove to support cus-
tomization while minimizing user interaction, so
that programmers can incrementally set their pref-
erences. A rule-based scheme, reminiscent of the
 ltering rules of e-mail clients, was therefore devel-
oped. While we are not advocating it as the best ap-
proach, it does demonstrate the capabilities of our
framework. It also has the advantage of being in-
tuitive to programmers and of giving a measure of
accountability, allowing it to justify why it reached
a certain decision, making it easier to rectify prob-
lems.

Our scheme maintains a set of pro les , of which
exactly one is active at any time, Each pro le con-
sists of an ordered list of policies (rules), and a de-
fault action. When an interruption request arrives,
it is tested against each policy in order until the rst
match is found, and the decision is made accord-
ing to the action associated with that policy. If no
match is found in the current pro le, the default ac-
tion takes place.

We demonstrate the use of this scheme on a sce-
nario using Jazz. Suppose that during this morn-
ing’s group meeting we were tasked with xing a

critical bug, and wish not to be interrupted while
doing so. We open the scheme editor and add a
new policy, choosing to suppress all interruptions
from everyone while we are debugging.

We soon realize that we are no longer alerted
when coworkers modify the les we are working
on and create potential con icts. The Jazz con-
cert awareness component which watches the CVS
repository for changes is set to generate distracting
pop-up alerts, but is now blocked. We therefore add
a second policy, asking the system to beep when a
concert alert from the concert agent occurs while
we are debugging; we can view the actual messages
later. The system places this new policy before the
previous one, because it is more speci c.

Later, our department manager instructs us to
provide immediate assistance, if requested, to a
team with a pending deadline. We add a third pol-
icy, stating that all interruptions from that team
shall be accepted automatically. The system real-
izes that this new policy con icts with the existing
policies when we are debugging, and asks for clar-
i cations which help it position it in the list.

We have nished debugging and started writing
new code. A dialog appears a few minutes later,
asking whether to accept an incoming chat request.
Puzzled as to why this interruption was not de-
ferred, we ask the system to justify its decision and
learn that none of the policies apply to our peer
when we are not debugging. We can now decide
whether to accept this request, and can also create
a new policy on the spot.

The default action for each pro le takes place
when no policy matches a request. The two obvi-
ous actions, accept and reject, can be used to eas-
ily adopt a blacklist or whitelist approach, respec-
tively. The prompting option, however, helps to
gently introduce new users to the interruption man-
ager. Upon receiving the rst interruption, they get
a chance to de ne a policy. This can be used to
instruct the system to accept or reject all interrup-
tions, or to start constructing a more elaborate set
of policies.

Note that the scheme listens to con guration
changes, such as additions of new team member.
It uses a variety of principles to adapt the existing
policies to the new state. The policies also persist
across activations of Eclipse, and are adjusted if the
con guration changes.

5 Integration with Jazz
IBM’s Jazz project [2] enhances Eclipse with ex-

tensible collaboration tools for small teams which
interact via a shared-objects server. Its features

15

include a decorated contacts list, IM and VOIP
chats, chats around source code, screen sharing,
etc. A concert awareness module highlights re-
sources based on the risk of merge con icts.

Jazz consists of a core plug-in which de nes ex-
tension points and of plug-ins which extend them
and implement the Jazz features. We thus strove
to minimize changes to the existing code, limiting
them to the core plug-in. We also needed to al-
low Jazz to compile and run even if interruption
management capabilities are not installed.

To this end, we added an interruption man-
agement extension point to the Jazz core, with a
method for each relevant interruption kind. We
then changed certain methods in the core object,
so that for each event we rst try to nd an inter-
ruption management extension and, if found, ask
it whether to allow the interruption. No further
changes were necessary for the existing Jazz code
and plug-ins.

We now created the Jazz connectivity plug-in,
which requires and extends points of both frame-
works. First, it contributes GateKeeper con gura-
tion features, including interruption types, a hierar-
chy of agents, and peripheral noti cation actions.
Next, the plug-in implements the new Jazz ex-
tension point, creating GateKeeper requests from
the Jazz objects, and returning the decision to Jazz.
It also listens for decision events in order to dec-
orate user images with an indication of waiting
messages. Finally, it contributes to the Jazz band
pop-up menu, adding options for changing pro les,
editing the scheme, and viewing incoming mes-
sages.

An additional plug-in extends the sensor-based
context framework with templates for tracking the
status of the Jazz user, and context states represent-
ing each of the prede ned Jazz user states. The Jazz
user study plug-in, used for logging data in an in-
ternal IBM user study is also extended, to record
interruption management events for future analy-
sis.

6 Conclusions
This paper presented the GateKeeper frame-

work, and demonstrated its use by a rule-based
interruption management system which was inte-
grated into Jazz. It is our hope that the capabili-
ties of this framework and Eclipse will assist in re-
search for obtaining the design knowledge which
will enable the development of better mediation
tools for software developers.

Our current research directions include collect-
ing and analyzing in the Jazz user study to learn

how users collaborate and use interruption man-
agement. We are also collecting data from multi-
ple sources in Eclipse, in an attempt to characterize
programmer activities.

About the Authors
Uri Dekel is a doctoral student of software engineer-

ing at the School of Computer Science in Carnegie Mel-
lon University. He holds BS and MS degrees from the
Technion in Israel, and has worked for Intel and IBM
Research.

Steven Ross is a member of the Collaborative User
Experience group at IBM Research in Cambridge, MA.
He holds BS and MS degrees from MIT. He was chief
architect of the Cambridge Speech Initiative and an ar-
chitect on Lotus 1-2-3.

References
[1] I. Burmistrov and A. Leonova. Do interrupted users

work faster or slower? In 10th Int. Conf. on HCI,
pages 621–625, June 2003.

[2] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson.
Jazzing up eclipse with collaborative tools. In Pro-
ceedings of the 2003 OOPSLA workshop on eclipse
technology eXchange, pages 45–49, 2003.

[3] D. Cubranic and G. C. Murphy. Hipikat: recom-
mending pertinent software development artifacts.
In ICSE 2003, pages 408–418.

[4] E. Horvitz, C. Kadie, T. Paek, and D. Hovel. Mod-
els of attention in computing and communication:
from principles to applications. Commun. ACM,
46(3):52–59, 2003.

[5] S. Hudson, J. Fogarty, C. Atkeson, D. Avrahami,
J. Forlizzi, S. Kiesler, J. Lee, and J. Yang. Predict-
ing human interruptibility with sensors: a wizard of
oz feasibility study. In Proc. conf. on Human fac-
tors in computing systems, pages 257–264, 2003.

[6] S. E. Hudson and I. Smith. Techniques for address-
ing fundamental privacy and disruption tradeoffs in
awareness support systems. In CSCW 1996, pages
248–257, 1996.

[7] D. C. McFarlane. Comparison of four primary
methods for coordinating the interruption of people
in human-computer interaction. Human-Computer
Interaction, 17(1):63–139, 2002.

[8] T. J. Robertson, S. Prabhakararao, M. Burnett,
C. Cook, J. R. Ruthruff, L. Beckwith, and A. Phal-
gune. Impact of interruption style on end-user de-
bugging. In Proc. 2004 conf. on Human factors in
computing systems, pages 287–294.

[9] P. N. Robillard, P. d’Astous, F. Detienne, and
W. Visser. Measuring cognitive activities in soft-
ware engineering. In ICSE 1998, pages 292–299.

[10] A. Sarma, Z. Noroozi, and A. van der Hoek. Palan-
tir: raising awareness among con guration man-
agement workspaces. In ICSE 2003, pages 444–
454, 2003.

16

