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BACKGROUND: Operating room (OR) whiteboards (status displays) communicate
times remaining for ongoing cases to perioperative stakeholders (e.g., postanesthe-
sia care unit, anesthesiologists, holding area, and control desks). Usually, sched-
uled end times are shown for each OR. However, these displays are inaccurate for
predicting the time that remains in a case. Once a case scheduled for 2 h has been
on-going for 1.5 h, the median time remaining is not 0.5 h but longer, and the
amount longer differs among procedures.
METHODS: We derived the conditional Bayesian lower prediction bound of a case’s
duration, conditional on the minutes of elapsed OR time. Our derivations make use
of the posterior predictive distribution of OR times following an exponential of a
scaled Student t distribution that depends on the scheduled OR time and several
parameters calculated from historical case duration data. The statistical method
was implemented using Structured Query Language (SQL) running on the
anesthesia information management system (AIMS) database server. In addition,
AIMS workstations were sent instant messages displaying a pop-up dialog box
asking for anesthesia providers’ estimates for remaining times. The dialogs caused
negotiated interruptions (i.e., the anesthesia provider could reply immediately,
keep the dialog displayed, or defer response). There were no announcements,
education, or efforts to promote buy-in.
RESULTS: After a case had been in the OR longer than scheduled, the median remaining
OR time for the case changes little over time (e.g., 35 min left at 2:30 pm and also at 3:00
pm while the case was still on-going). However, the remaining time differs substan-
tially among surgeons and scheduled procedure(s) (16 min longer [10th percentile], 35
min [50th], and 86 min [90th]). We therefore implemented an automatic method to
estimate the times remaining in cases. The system was operational for �119 of each
day’s 120 5-min intervals. When instant message dialogs appearing on AIMS work-
stations were used to elicit estimates of times remaining from anesthesia providers,
acknowledgment was on average within 1.2 min (95% confidence interval [CI] 1.1–1.3
min). The 90th percentile of latencies was 6.5 min (CI: 4.4–7.0 min).
CONCLUSIONS: For cases taking nearly as long as or longer than scheduled, each 1 min
progression of OR time reduces the median time remaining in a case by �1 min. We
implemented automated calculation of times remaining for every case at a 29 OR hospital.
(Anesth Analg 2009;108:929–40)

Operating room (OR) whiteboards (status displays)
are ubiquitous for communicating the times remain-
ing in ongoing cases to the many stakeholders in-
volved in perioperative patient care.1,2 Typically, the
cases scheduled in each OR are represented by a linear
series of bars or circles, with the OR times of com-
pleted cases determined by the actual OR times, and

the times remaining in ongoing cases determined by
the scheduled durations.3,4 Thus, a case scheduled for
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2 h that has been in the OR for 1.5 h is listed as having
0.5 h remaining, even though most of these cases will
take longer than their scheduled 2 h. Once a case’s OR
time exceeds the scheduled duration, many facilities
make arbitrary decisions for the display of the time
remaining (e.g., 15 min is added to the current time
whenever the screen is refreshed).

Although anesthesia providers can be called and
asked for estimates of the times remaining in cases,
there are limitations. Since interruptions may ad-
versely affect OR team performance,5,6 such calls are
made sparingly, resulting in updates being made
infrequently. The intervals at which additional calls
should be placed to update these estimates (e.g., 30
min) are unknown. The estimates often are not added
to the whiteboards. Even if added, each successive 1
min the displays typically reduce 1 min from the
estimate, and whether the estimate then remains ac-
curate is unknown.

Video cameras in ORs can be used to transmit
images that are degraded to mitigate patient or staff
identification but sufficient to allow a viewer to dis-
cern progress in the case.7 However, the resulting
visual information needs to be interpreted by a person
knowledgeable in many types of procedures. We are
not aware of those data being used for on-line decision
support.

In this article, we study the statistical properties of
times remaining in late running cases. We modify the
previously developed Bayesian method to estimate
OR times to update automatically the remaining times
of ongoing cases.8 The method relies on the scheduled
case durations, historical case duration data, and
elapsed times determined9 by using anesthesia infor-
mation management system (AIMS) data. The patient
status is displayed at the anesthesia control desk and
is updated automatically every 5 min for every case.
The method is not dependent on the amount of
historical data that are available, including situations
where a case has never been done before by a given
surgeon, and there is no requirement for human data
entry. In addition, anesthesia providers are occasion-
ally sent “instant messages” that appear on their AIMS
workstation. These are transmitted via a pop-up dia-
log box containing a digital clock control through
which they notify the OR control desk of their estimate
of the time of OR exit (Fig. 1). The anesthesia provid-
er’s estimate is substituted in the Bayesian method to
replace the initial (scheduled) OR time. Thus, 5 min
later, 10 min later, etc., displays for the time remaining
in the case accurately reflect the estimated time re-
maining 5 min, 10 min, etc., after the provider made an
estimate.

METHODS
Appendix 1 describes the mathematics pro-

grammed using structured query language (SQL
Server, Microsoft, Redmond, WA). That Appendix is

the part of the article that describes the underlying
mathematical basis of the intervention. The Appendix
is presented in sufficient detail that other facilities can
implement our methods.

Every 5 min, a stored procedure on the AIMS
database server calculates the elapsed time in each
case from patient entry into the OR, for every case
currently running in all 29 ORs of four physically
distributed suites. The OR director’s status display
(whiteboard) and the managerial decision support
system are updated automatically with these times.
The time of patient entry into each OR is obtained
from the AIMS (see Discussion).9 The surgeon and
scheduled procedure(s) are obtained from the hospi-
tals’ operating room information management system
(ORIMS). Those data are used to choose parameters
from lookup tables that are regenerated using a SQL
procedure that is run quarterly using all data from
January 1, 2001 to the current date. The Results
presented here are based on cases from 2001 to 2007
applied to forecasts for February and March 2008.

The Bayesian method to estimate OR times is
applied regardless of whether the case is of a combi-
nation of surgeon and procedure(s) with no, a few, or
many historical cases of the same type.8 When a case
is of a rare combination with little or no historical
data,10,11 the scheduled OR time is the principal or sole
basis for future predictions of OR time. When a case
has substantial historical data, the scheduled OR time has a
negligible effect on OR time as compared to the
information from the historical OR times. At the
studied hospital, the schedulers add an estimate of
the turnover time to the estimate of the OR time

Figure 1. Unanchored version of the dialog requesting the
remaining time in the case seen by anesthesia providers. The
small arrows changed the clock in 5 min increments, while
the large arrows made changes of 15 min. The minimum
time allowed was the current time, rounded up to the
nearest 5 min. If users attempted to enter the time directly
into the digital area, this was prevented and the text in red
displayed. A message was also displayed if the provider
attempted to change the clock to earlier than the minimum
time allowed. The red text disappeared when any arrow
control was clicked subsequently.
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provided by the surgeon. Therefore, the scheduled OR
time used in the Bayesian method is estimated from
the scheduled case duration (see Appendix 2).

Equation 11 in Appendix 1 gives the automatically
updated estimate of the time remaining in each case.
However, the Bayesian method only uses data avail-
able before the case started and the automatically
determined7,9,12 time from case start. The longer that
each case proceeds, the greater is the expected incre-
mental value of the knowledge of the providers in the
OR. Therefore, occasionally an instant message is sent
to the AIMS workstation to elicit an update from the
anesthesia provider of the remaining OR time (Fig. 1)
(Appendix 3). The elicited time replaces the scheduled
OR time for status displays, the decision support
system, and future elicited times. Appendix 4 de-
scribes how we used the data from 560 such cases to
assess the “up-time” of the system and how long
anesthesia providers took to respond to the dialogs.

RESULTS
Figure 2 shows an example of how the predicted

OR time remaining in cases differs among cases de-
pending on the parameter values of the combinations
of surgeon and procedure(s). Both lines are for cases
with a scheduled OR time of 1 h and a median of
historical OR time of 1 h. After 1 h in the OR, the
updated median time remaining for the two cases are
9 min and 27 min, respectively. Later (e.g., at 1.5 h in
the OR), the median times remaining are persistently
close to a constant of 7 min (12% of 60 min) (– – –) or
28 min (47% of 60 min) (—), respectively. For the latter
case (—), if the surgeon was asked at 1.5 h “how much
longer,” a likely answer would be “a half hour.” At
2.0 h, if the case were still ongoing, a likely answer
would still be “a half hour.” Figure 2 shows that this
commonplace opinion about surgeons’ updated esti-
mates is reasonable, but that the additional OR time
that is needed differs among cases. See the last three
paragraphs of Appendix 2 for statistical details.

Figure 3 expands upon the result of Figure 2 by
showing results for the estimated parameters of 560
cases. The cumulative frequency distribution on the
left shows that, among cases that exceed the 90th
percentile of their predicted OR time distribution, the
median time remaining varies considerably among
combinations. The 10th, 50th, and 90th percentiles are
16 min, 35 min, and 86 min, respectively. The cumu-
lative frequency distribution of the times remaining
each expressed as a percentage of the median of the
predictive distribution is shown in the graph on the
right. The 10th, 50th, and 90th percentiles are 12%,
21%, and 38%, respectively. The importance of the
heterogeneity among surgeons and procedure(s)
shown by Figure 3 is that automatic estimation of
remaining OR time needs to rely on historical case
duration data for each combination (i.e., Eqs. 1–11). It
is inaccurate to consider all cases that have exceeded

their scheduled durations as having either 30 min or
20% of their scheduled durations as their times re-
maining, or any other constant for all cases at a facility.

Figure 4 shows median times remaining as a func-
tion of the elapsed time for all cases of the two most
commonly scheduled durations (see caption). Analy-
sis is nonparametric (i.e., does not rely on the Bayes
method and its statistical assumptions). As each case
progresses, the average time remaining declines, re-
mains moderately constant, and then may increase.
However, increases occur once cases have been on-
going so much longer than scheduled that there are
few such cases. Thus, the 95% confidence intervals
(CI) for the median are wide.

Every 5 min, the SQL implementation of the Bayes
approach updates the estimated times of every case at
the 29 OR surgical suite that is ongoing or not yet
started. The under-estimate for the up-time of this
process of automatic calculation of estimated times
was 99.3% (95% CI: 98.1%–99.9%) (n � 33 days).
Equivalently, for �119 of each day’s 120 5-min inter-
vals, the display was up to date for every case that was
on-going or had not yet started. Appendix 4 has more
details.

Appendix 5 describes some observations and re-
sulting design decisions. Although anesthesia provid-
ers are physically present in ORs, can observe the
actual progress of cases, and ask surgeons for feed-
back on times remaining, elicited estimates were only
4.7 min more accurate than the Bayesian method. In
addition, the “instant message” dialogs are negotiated
interruptions (see Appendix 4). Thus, times remaining
are elicited only for cases that have exceeded their
scheduled durations by more than 13 min. Following
Sandberg et al.13 in their use of AIMS prompts, we
made no announcements, sought no buy-in, and per-
formed no education about the new system. The
percentiles of latencies14 to acknowledgment were 1.2
min (50th), 2.1 min (75th), and 6.5 min (90th). The
corresponding 95% CI were 1.1–1.3 min, 1.9–2.2 min,
and 4.4–7.0 min, respectively (n � 560 cases).

DISCUSSION
Currently, at the studied hospital, the OR directors’

status displays (whiteboard) and the managerial deci-
sion support system are updated automatically, with-
out relying on clinicians for data entry. Every 5 min,
Bayesian estimates are recalculated for every case that
has either not yet started or is on-going. When instant
message dialogs (Fig. 1) are sent (e.g., if resulting
decisions are ambiguous), those elicited responses
replace the scheduled OR time in the Bayesian method
for future whiteboard updates (i.e., if a person esti-
mates 45 min left at 4:30 pm, the boards do not
incorrectly display 15 min left if the case is still
on-going at 5:00 pm). Figures 2–4 capture the principal
results of our article, which show the need for those
updates.
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Since status displays communicate15 publicly the
valued16 work of individuals and the information
affects decisions (e.g., assignment of add-on cases),2

prior ethnographic results apply showing that some
people manipulate15 the data displayed when given
the opportunity. For example, they may indicate that
the case will last longer than expected to reduce the
chance of the late afternoon add-on case from the
intensive care unit being assigned to their OR. Auto-
matic updating is unbiased.

Implementation of the automatic updates of displays
(whiteboards) and the decision support system relies on
knowing what case are underway in each OR at all
times. We automatically infer the actual location of cases
based on the identifier of the AIMS workstation trans-
mitting pulse oximetry, electrocardiogram heart rate,
and end tidal CO2 partial pressures to infer the location
of each case, as previously described.9 That information
is used to identify the historical data for each case to
apply the Bayesian method (Figs. 2 and 3).

Figure 2. Example of the Bayesian updating method for two combinations of surgeon and scheduled procedures. Both
hypothetical cases are scheduled to enter the OR at 9:00 am and last for 60 min. The estimated median end time of the cases
(i.e., d0.50�dmin as calculated in Eq. 11) increase over time (i.e., dmin), as the cases progress. Early in the cases, the effect is minimal,
as shown at 9:15 am, when the cases have been ongoing for 15 min and the estimated durations of the cases are only changed
by 1 min. However, at 10:15 am, when the cases have been ongoing for 75 min (i.e., exceeding the scheduled OR time by 15
min), the new Bayesian end times are either 10:22 (– – –) or 10:42 (—), depending on the surgeon and scheduled procedure(s).
Parameter values used to create the figure are given in the third to last paragraph of Appendix 2.
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The statistical method is applicable for every surgical
case, whether the case has 0 historical data, 99 prior data,
or a value in between. That matters, because many cases
at both tertiary and outpatient facilities have few or no
historical data (e.g., due to rare procedure(s) and new
surgeons).10,11,17,18 Furthermore, increasing the precision
of case duration estimates depends on using all of the

relevant data in OR information systems (e.g., not just
surgeon and scheduled procedure(s), but also type of
anesthetic and surgical team).19 The result of the effort to
increase precision is fewer historical data per case.20

There are three principal limitations to our work.
First, recommendations from decision support sys-

tems improve decision-making on the day of surgery.21

In contrast, decisions made using status displays of
ongoing OR cases, without recommendations, are cor-
rect at a rate no better than by chance alone.21 The
accuracy of estimates of times remaining in cases has no
substantive effect on over-utilized OR time or on over-
time resulting from the decision support system’s rec-
ommendations, because rarely is the inaccuracy of a
sufficiently large magnitude to affect recommenda-
tions.1,2,22–24 Thus, how the estimates of times remaining
are calculated is likely unimportant compared to the
calculations being done systematically and automati-
cally for every case. We could not, however, examine
differences in resulting decisions, because anesthesia
providers’ estimates for time remaining are for single
instants in time, whereas Bayes estimates are updated
continually.

Second, the “instant message” negotiated interrup-
tions from the dialogs and the automatic (Bayesian)
methods are alternatives to using the telephone. Sur-
gical cases studied at a facility averaged 14 and 20
interruptions per case, 1.5 by telephone.5,6 The telephone
results in an immediate interruption (see Appendix 4)
and its elicited time then needs to be typed into the
computer for display or use in decision support. However,
we do not know whether the negotiated interruptions, or

Figure 3. Comparison of automatic estimation of time remaining in cases using the Bayesian approach versus assuming results
that would be obtained if the same absolute or proportional amount of time were used for all cases. The Bayesian parameters
�k

*, �k
*, nk, and �k

* from Eqs. 2–4 were used for each of the n � 560 cases. For each case, we calculated the time at which 90%
of cases with the same scheduled OR time, surgeon and procedure(s) would be completed (d0.90, Eq. 6). The result was used
to calculate the expected (median) time remaining (d0.50�d0.90, Eq. 11). On the left, we show the cumulative frequency
distribution of the additional OR time in units of minutes: d0.50�d0.90 � d0.90. The percentiles (with 95% confidence intervals
given in parentheses) are 16 min (15–17 min) for the 10th percentile, 35 min (33–38 min) for the 50th, and 86 min (76–99 min)
for the 90th. The right-hand side shows the cumulative distribution function of the difference expressed as a proportion of
d0.50: �d0.50�d0.90 � d0.90�/d0.50. The percentiles are 0.12 (0.11–0.13) for the 10th percentile, 0.21 (0.20–0.22) for the 50th, and 0.38
(0.34–0.41) for the 90th.

Figure 4. Median times remaining in cases as a function of
the elapsed time in hours. Results are shown for the two
most commonly scheduled durations at the studied hospital:
75 min and 135 min. The data used were all such cases from
2001 through 2007. There are 4644 such cases for 75 min and
4686 for 135 min. The figure shows that the findings of
Figures 2 and 3 are not aberrancies caused by the assump-
tions of Eqs. 1–12. The analysis in this figure is distribution-
free, with the point estimates and 95% confidence intervals
for the medians estimated using the Hodges-Lehmann
method (StatXact-7).42
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the automatic system’s elimination of interruptions, ben-
efited OR team performance.

Third, status displays are useful not only because
they contribute to decision support, but also because
they facilitate asynchronous communication.3,7,15,25

OR coordinators use them to show the fairness of their
decisions.25 Information is available so that others can
provide suggestions.3,15 Staff know that supervisors
and colleagues are aware of their activities.15 Anesthe-
siologists know when cases that they are medically
directing will soon end.7 Surgeons can obtain infor-
mation about when to-follow cases may start.7 How-
ever, we studied the automatic updating of displays,
not how they are used. We do not know how auto-
matic updating may be influence this use of the
displays.

In summary, we successfully implemented automatic
electronic whiteboard updates at a large surgical suite
and have been using it to date (January 2009). We did
this by deriving the Bayesian lower prediction bounds
of case durations conditional on the minutes that the
cases have been on-going. Every 5 min, estimates of OR
times for cases that have not yet started or are underway
are updated automatically for their status displays
(whiteboards) and decision support systems. The system
is useful, because after a case has been in the OR
substantially longer than scheduled, the median ex-
pected remaining time is relatively constant, but with the
remaining time differing substantially among surgeons
and scheduled procedure(s).

APPENDIX 1: BAYESIAN METHOD
Our notation matches that which we used previ-

ously to describe,8 validate,8 and apply8,26 the Bayes-
ian method. Let the random variable Xk, refer to the
natural logarithm of the OR time of a single case that
is classified19 by its being of the kth combination of
surgeon and scheduled procedure(s), k � 1, 2, . . ., p.
For example, k � 1 might be Dr. Smith scheduled to
perform bilateral myringotomy tube placement and
adenoidectomy in a child (i.e., Current Procedural
Terminology-4 codes 69421 for one ear, 69421 for the
other ear, and 42830 for adenoidectomy). We hence-
forth refer to each of the p combinations as “surgeon
and procedure(s)”. The nk previously observed (histori-
cal) OR times for the kth combination of surgeon and
procedure(s) are exp(xk1),exp(xk2), . . ., exp(xknk). For ex-
ample, the n1 � 87 historical OR times might be 50 min, 30
min, . . ., 40 min, resulting in the log transformed values of
x11 � 3.9, x12 � 3.4, . . ., x1n1 � 3.7. The sample mean of
the nk historical data xk1, xk2, . . ., xknk equals x�k, and the
sample variance equals �̂k

2. The corresponding scheduled
OR times in hours are exp(xsk1), exp(xsk2), . . ., exp(xsknk). We
assume that Xk follows a normal distribution with an
unknown mean and variance. Our objective is to predict
the OR time of the next case, exp(Xk

*) based in part on its log

scheduled OR time, xsk
*, a constant known before the case

begins. The asterisk symbol (*) is used to represent the next
case.

The probability distribution for the next occurrence
of an event after having observed historical data is
called the posterior predictive distribution. We de-
rived in Ref. 8 that the posterior predictive distribu-
tion of Xk

* before the case begins follows (�) a scaled
Student t-distribution with 2�k

* degrees of freedom:

�Xk
* � �k

*� � � �k
*

�k
* �

� 	 nk

1 	 � 	 nk

� t�2�k
*�, (1)

where

�k
* � xsk

* �
�

� 	 nk

	 x�k �
nk

� 	 nk

, (2)

�k
* � � 	

nk

2
, (3)

�k
* � � 	

1

2
�
i�1

nk

�xki � x�k�
2 	

nk ��xsk
* � x�k�

2

2�� 	 nk�
� (4)

The constants � and � are the parameters of an
inverse 
 distribution that represents the prior distri-
bution of the population variance of Xk among the p
combinations of surgeon and procedure(s),8 and has
previously been shown to provide a good fit (e.g., see
Fig. 1 of Ref. 8). The constant � represents the ratio of
the population variance of Xk to the variance of the
prior distribution of the population mean of Xk.

Equation 2 gives the Bayesian weighted median
predicted OR time of the next case. When a case is of
a rare combination with little or no historical data,10,11

the scheduled OR time is the principal or sole basis for

future predictions of OR time, since
�

� 	 nk

� 1 and

nk

� 	 nk

� 0. When a case has substantial historical

data, the scheduled OR time has a negligible effect on
OR time as compared to the information from the

historical OR times, since
�

� 	 nk

� 0 and
nk

� 	 nk

� 1.

Equation 2 shows that � represents the number of
historical cases, of a given combination of surgeon
and procedure(s), for which the median predicted
OR time of the next case is based equally on
historical case duration data and the scheduled OR
time.

The 100 � gth percent lower prediction bound for
the duration of each case, dg, is given by:

P�exp(Xk
*) � dg] � 1 � g, (5)

for 0 � g � 1. For example, when g � 0.05, there is a
5% chance that the OR time of the next case will be
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briefer than the value of dg. This is known as the 5%
lower prediction bound for the duration of the next
case.2,8,27 From Eq. 1, this bound satisfies the
expression8:

dg � exp��k
* 	 T�1�g, 2�k

*	 � ��k
*

�k
* �

1 	 � 	 nk

� 	 nk
� ,

(6)

where T�.,2�k
*	 is the cumulative distribution function

of the Student t-distribution with 2�k
* degrees of

freedom and T � 1�g, 2�k
*	 is its 100 � gth percentile.

For example, for g � 0.05, T � 1�0.05, 2�k
*	 � 
1.65 for

large �k
*. When g � 0.05, there is a 95% chance that

the OR time will be at least as long as the value of
Eq. 6. This lower 5% prediction bound is almost
always less than the scheduled OR time and is
useful for deciding when the next patient in the
same OR on the same day needs to be ready.2,8,28 A
low percentage is used to mitigate delays due to
patient unavailability.

We previously published an empirical study of the
accuracy of Eq. 6.8 For g � 0.05, the result d0.05

exceeded the actual duration of 4.9% of the studied
cases.8 For g � 0.90, d0.90 was exceeded by the actual
duration of 9.7% of cases.8 The absolute errors of the
expected values averaged 3.0 min less than the abso-
lute errors of the scheduled OR times (P � 0.0001). The
term under the square root of Eq. 6 expresses the
uncertainty in the prediction. As we address at
the start of the Results and at the end of Appendix 2,
the term varies substantively among combinations of
surgeon and procedure.8

We next expand upon our prior work.8 Consider a
case that has been on-going for time dmin � 0. The
100 � gth percent conditional lower prediction bound
dg�dmin satisfies

P�exp(Xk
*) � dg�dmin �exp(Xk

*) � dmin] � 1 � g.

(7)

From the definition of conditional probability and the
fact that dg�dmin � dmin, we find

P�exp(Xk
*) > dg�dmin � exp(Xk

*) > dmin	

�
P[exp(Xk

*) > dg�dmin]

P[exp(Xk
*) � dmin]

. (8)

Combining Eqs. 7 and 8,

P�exp(Xk
*) � dg�dmin	

� (1�g) � P[exp(Xk
*) � dmin].

� �1 � g� � P�Xk
* � ln(dmin)].

Substituting Eq. 1 into the right-hand side,

P�exp�Xk
*� � dg�dmin	

� �1 � g� � P	 �Xk
* � �k

*�

� ��k
*

�k
* �

� 	 nk

1 	 � 	 nk

� �ln�dmin� � �k
*�

� ��k
*

�k
* �

� 	 nk

1 	 � 	 nk



� �1 � g� � �1 � T	 �ln�dmin� � �k
*�

� ��k
*

�k
* �

� 	 nk

1 	 � 	 nk

, 2�k
*
�

� 1 � �,

where,2,28

� � g 	 �1 � g� � pk�dmin, (9)

pk�dmin � T	 �ln�dmin� � �k
*� � ��k

*

�k
* �

� 	 nk

1 	 � 	 nk

, 2�k
*
 ,

(10)

and 100 � pk�dmin is the expected percentage of cases
with the same parameters (Eqs. 2–4) that would have
ended by time dmin. Applying Eqs. 5 and 6, the 100g
percent conditional lower prediction bound is given
by the 100� percent lower prediction bound for the
duration of the case before it started:

dg�dmin � exp��k
* 	 T � 1��, 2�k

*	 � ��k
*

�k
* �

1 	 � 	 nk

� 	 nk
� .

(11)

For example, there is a 50% chance that the OR time of
a case that has been on-going for dmin units of time will
be smaller than the value d0.50�dmin in Eq. 11.

Figure 2 shows two examples of d0.50�dmin as a
function of dmin. There are four reasons why we use
g � 0.50 (i.e., the median time remaining). First, using
the median minimizes the mean absolute error.17

Second, when provided anchored values, participants
in experimental studies provide unbiased estimates
for the median.29 Unbiased estimators have the prop-
erty that the sum among cases of the differences
between the actual and estimated values equals zero
(i.e., there is no bias). Third, over 3 yr at the hospital
with previously published results, schedulers who
were supposed to estimate the OR times of cases did
so by providing unbiased estimators for the median
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OR times.8 Fourth, the method is simpler to explain
because the initial estimate is simply exp(�k

*) from
Eq. 2.

APPENDIX 2: IMPLEMENTATION OF
BAYESIAN METHOD

OR information system data at the studied hospital
were available from January 1, 2001 onwards. We
created a lookup table of nk, x� k, and the sum of
squared terms in �k

*, while limiting consideration to
the most recent 99 cases27 of each combination of
surgeon and procedure(s). However, the historical
(2001–2007) raw data contained obvious errors (e.g.,
negatively valued or missing OR times). Therefore,
when setting up the table, we excluded cases for
which the actual OR time divided by the scheduled
case duration was �0.25 or greater than 4.0. Using the
129,380 historical cases, the criteria corresponded to
trimming data 3.1 and 3.3 standard deviations below
and above the mean difference, respectively. The
numbers of cases excluded were 416 cases (0.3%) for
missing (zero valued) actual or scheduled times, 546
cases (0.4%) with ratios �0.25, and 362 cases (0.3%)
with ratios greater than 4.0. The histogram of the
difference of the logarithms of actual and scheduled
OR times in Figure 5 uses 99.0% of all cases. The
information from these 128,056 cases from 2001 to
2007 was used to obtain the forecasts for the Results
(from February and March 2008). However, in prac-
tice, the lookup table is recalculated using a SQL
server procedure that is run quarterly using all data
from January 1, 2001 to the current date.

The nurse manager of the OR information manage-
ment system reported that the schedulers add an
estimate of the turnover time to the estimate of the OR
time provided by the surgeon. If an estimated case
duration is not provided by the surgeon, the sched-
uled duration that they use is the trimmed mean of the

most recent 15 historical OR times for the surgeon
performing the procedure, plus an estimated turn-
over. We therefore needed to analyze the resulting
scheduled case durations and actual OR times to
determine how to estimate scheduled OR times (i.e.,
time in the OR for Eq. 2) from scheduled case dura-
tions (i.e., that from the preceding paragraph). From
among the 128,056 cases, there were 8045 cases (6.3%)
that were combinations of surgeon and procedure(s)
observed only once (i.e., singletons) and 3370 (2.6%)
only observed twice (i.e., doubletons). The scheduled
OR time was set at 96.3% of the scheduled case
duration, because doing so resulted in an unbiased
estimator for the 50th percentile of OR time for these
11,415 cases (for details see Limitations section of Ref.
8). We limited focus on these cases because the impact
of the scheduled OR time is progressively less in Eqs.
2 and 6 for each increase in nk. To check our use of the
scheduled OR times, we then limited consideration to
the 560 singletons and 470 doubletons for which other
surgeons had scheduled the procedure(s) at least 30
times. The mean OR times from the other surgeons
were used as the estimate of the OR time for the
singletons and doubletons.2,30 The mean � se of the
absolute error was just 2.9 � 1.4 min less than for
use of the resulting scheduled OR times. As for the
previously studied hospital, use of scheduled OR
times was essentially no worse than use of other
surgeons’ times, but offered the advantage of there
being a value for every case.8

To estimate the � and � in Eqs. 1–11, we followed
the approach described in the Appendix of Ref. 8 The
actual OR times were obtained and their logarithms
were calculated for the 50,559 cases of 773 combina-
tions of surgeon and procedure(s) with at least 30
cases. The sample variance was determined for each
combination. The inverses of the 773 sample variances
were fit to a 
 distribution using Systat 12 (SYSTAT
Software, San Jose, CA). From the method of mo-
ments, the shape parameter was 2.33 and the scale
parameter was 5.68, giving estimates � � 2.33 and � �
0.176. Those values are close to the � � 2.32 and � �
0.142 published from another hospital.8

Application of the estimated � was an implemen-
tation challenge. The decision support system repeat-
edly calculates percentiles from t-distributions with
noninteger degrees of freedom (i.e., 2�k

* in Eq. 6).2,8–11

We wrote the SQL code to calculate the cumulative
distribution function of the t-distribution using its
relationship with the Incomplete Beta Function.31 The
inverse is obtained iteratively using bisection over a
bracketed interval from values stored in a lookup
table. For example, for g � 0.26 and 2�k

* � 5.72, we
aim to estimate T � 1�0.26, 5.72	. We know a priori
that T�1�0.25, 5	  T�1 �0.26, 5.72	  T�1�0.30, 6	.
The lower and upper bounds both are stored in the
lookup table and are used as the limits of the brack-
eted interval.

Figure 5. Histogram of the difference �xk
* � xsk

*�, where xk
* is the

natural logarithm of the actual operating room (OR) time and xsk
*

is the natural logarithm of the scheduled OR time. The graph is
limited to the 99.0% of cases for which the differences range from
ln(1/4) to ln(4). The graph is symmetric and centered close to zero,
showing conceptually why xsk

* is a reasonable prior estimate for xk
*.
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To estimate the �, we again used the actual and
scheduled OR times for the 50,559 cases of combina-
tions of surgeon and procedure(s) with at least 30
cases. The sample variance of the differences of the
logarithms of the actual and scheduled OR times
equaled 0.158. The variance of a t distribution with 2�

degrees of freedom equals32
2�

2� � 2
. Setting nk � 0 in

Eq. 2, resulting in �k
* � xsk

* in that equation, and

substituting into Eq. 1, Var�Xk
* � xsk

*� �
�

�
�

� 	 1

�

�
2�

2� � 2
�

�

� � 1
�

� 	 1

�
. Solving the equation

Var�Xk
* � xsk

*� � 0.158 for � leads to � � 5.14 cases. In
comparison, we found � � 8.68 cases at the previous
hospital studied.8 The accuracy of the Bayesian estimates
was insensitive to these relatively small differences in the
value of � (see last section of Appendix of Ref. 8). Esti-
mation of � was unaffected by the proportional correc-
tion for bias, because the correction shifted only the
mean of �Xk

* � xsk
*�, not the Var�Xk

* � xsk
*�.

Figure 2 shows an example of the impact of differ-
ences in parameter values among surgeons and proce-
dure(s) on the relationship between d0.50�dmin and dmin. For
simplicity, we set �k

* � ln(60 min). We used nk � �, and
consequently �k

* � � 	 nk/2 � 2.33 	 5.14/2 �

4.90. For �k
*, we used the two values 0.18 and 1.27, which

corresponded to the 10th and 90th percentiles of the
distribution of �k

* for cases with 0  nk  9.
Figure 2 can be interpreted as a survival or reliabil-

ity analysis. The bottom pane shows that after the
patient has been in the OR for exp��k

*� time, the
median residual lifetime is nearly constant. Let
�k

* � ���k
*/�k

*� � ��� 	 nk	/�1 	 � 	 nk	�. For �k
* �

0.18, �k
* � 0.20. For �k

* � 1.27, �k
* � 0.53. Generally, the

hazard rate of the lognormal distribution increases to
a peak and then declines.33,34 However, for our range
of �k

*,18 the time of the peak in the hazard rate
substantially exceeds the median OR time.33,34 Conse-
quently, for times from exp��k

*� to exp��k
*�, the hazard

rate usually increases to a peak,34 and if it declines that
is for a vanishingly small percentages of cases. The
hazard rate can be examined using a statistics pack-
ages by generating log normally distributed random
numbers with parameters �k

* and �k
*, and then apply-

ing the package’s parametric (lognormal) or nonpara-
metric survival analysis.

There were n � 560 cases studied as part of
Appendices 3 and 4. We used the estimated posterior
parameters ��k

*, �k
*, nk, and �k

*) from these cases to
explore simpler (non-Bayesian) estimation of the time
remaining in surgical cases (Fig. 4). In addition, we
used the estimated posterior parameters to generalize
Figure 2 to all cases (Fig. 3). For each case, the 90%
lower prediction bound �d0.90� was calculated using

Eq. 6 and then substituted into Eq. 11 to calculate the
median time remaining conditional on the case al-
ready having taken as long as its 90% lower prediction
bound �d0.50�d0.90�. Figure 3 shows cumulative histo-
grams reporting the difference between d0.50�d0.90 and
d0.90 and the difference reported as a percentage of
d0.50.

APPENDIX 3: “INSTANT MESSAGES” AND
THEIR IMPLEMENTATION

The mean time from the end of surgery to exit from
the OR was determined from an analysis of the 6 yr of
historical data in the hospital’s ORIMS. Conveniently,
the mean was 15 min. Every 5 min, a SQL stored
procedure calculates the elapsed time in each case in
progress from patient entry into the OR. If the elapsed
time exceeds the scheduled case duration plus 10 min,
and the “end of surgery” event has not been docu-
mented by the anesthesia provider, the stored proce-
dure writes a message, addressed to the recipient
workstation, to a database table. Each workstation
queries the database at 1 min intervals and displays
new messages directed to its attention using the dialog
shown in Figure 1. This process resulted in a mean
time from the end of surgery to the message of 12.5
min, since the query interval was 5 min. Because
workstations queried the database for messages every
1 min, there was an additional mean latency of 0.5
min. Together, the earliest that the message could be
sent was 10 min after the scheduled case duration, the
latest was 16 min, and the mean was 13 min.14

When asked, respondents use a digital clock to
respond with an estimate of the time when the patient
will exit from the OR (Fig. 1). The clock is set to the
current time plus 15 min. Buttons are provided to
adjust the clock forward or backward in 5 or 15 min
increments, with the minimum value accepted being
the current time. The properties of this dialog box are
that it remains in front of all other applications, is
partially transparent (i.e., objects behind the dialog are
viewable), and all controls on the screen can
be activated while the dialog remained displayed. The
dialog included a note telling the provider: “If the case
takes 15 min longer than your estimate, you will be
asked again” (Fig. 1). The elicited time is sent back to
the database and replaces the scheduled case duration
for status displays, the decision support system, and
future elicited times.

Our instant messages appeared as dialogs with
forced responses (Figs. 1 and 6). Based on responses to
ad hoc messages sent by the OR director using the
instant messaging system, we expected that availabil-
ity of a free text option would sometimes result in
answers about the time of patient exit that are re-
ported not in units of time (e.g., “as soon as the x-ray
is taken for the missing sponge” instead of “2:35 pm”).
Thus, we do not know what would have been the
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perceptions of a full instant message client with two-
way communication between the OR control desk and
anesthesia provider, or among anesthesia providers.35

APPENDIX 4: ASSESSING SYSTEM “UP TIME” AND
USER RESPONSIVENESS

We analyzed data from the dialogs after a 1 wk test
period. Approximately 75 different anesthesiology resi-
dents and certified registered nurse anesthetists were
doing cases at the studied suite during the period.

First, we estimated the fraction of time that our
implementation of the Bayesian method was running.
The numerator was the sum of the OR times for cases
with an instant message response from the dialogs of
Figure 1 and the denominator was the sum of the OR
times for all cases for which an instant message should
have been sent. The resulting value was equivalent to
the “up-time” of an e-mail server. If the up-time were
99.0%, then 99 times out of 100 that you try to login to
check your e-mail you would be able to do so. Our
estimate for the up-time was, deliberately, an under-
estimate of the true up-time, because the automatic

method did not actually fail for entire cases. Failure
was not caused by characteristics of cases but by
processes on the computer from which the queries
were launched (e.g., system crashes and accidental
interruptions of the program running the queries). No
down time was generated by failures of the Bayesian
program or running the associated queries. In addi-
tion, for the 20 workdays studied, the queries were
being executed from a desktop computer being used
concurrently for other work, whereas a production
server is currently used. Statistical analysis was appro-
priate for the time series of failures. For each of the
workdays, the number of whole minutes of cases with
and without failure was calculated, and from that the
Freeman-Tukey transformation of the proportion up-
time.36 Student’s t-distribution was used to calculate
the mean and 95% CI for the 20 transformed values,
and then the inverse was taken.37

Second, we analyzed the time anesthesia providers
took to respond to the dialog. The interruptions
caused by the dialogs are so called “negotiated” inter-
ruptions.38 This means that first the computer an-
nounces its need to interrupt the respondent, who
then chooses when to deal with the interruption.
Because of the special properties of the dialog, users
can reply immediately, continue to work with the
dialog displayed, or defer their response for 5 min at
which time the dialog reappears (Fig. 1). Alternative
methods of interruptions are “immediate” requiring
response before regular work can proceed, “scheduled”
that occur at prespecified times, and “mediated” that
are held until the estimated workload of the respon-
dent is low.38 We chose to use negotiated interrup-
tions based on experimental findings that negotiated
interruptions permitted the best performance at the
respondent’s primary work, among the different types
of interruptions.38 Furthermore, the accuracy of the
task initiated by a negotiated interruption was as good
as for any of the other types of interruptions.38 Experi-
mental participants said that they preferred the nego-
tiated interruptions over both immediate and scheduled
interruptions, partly based on their feeling less inter-
rupted.38 However, these advantages were obtained at
the expense of the longest latencies14 among the four
different types of interruptions.38 Therefore, we devel-
oped,14 tested,14 and applied a method to examine
percentiles of the times that the anesthesia providers
took to reply to the dialogs, including the times of all
deferrals. However, suppose that a provider receives
the dialog and is about to close the anesthesia record
on the workstation and leave the OR. There is no
reason to reply.14 Thus, the times analyzed were the
earlier of the times of exit from the OR as recorded in
the AIMS and the time that the provider clicked the
“Acknowledge” button (Fig. 1). The 95% CI for the
percentiles were calculated using the conservative
Clopper-Pearson method.39,40

Figure 6. Anchored version of the dialog, eliciting the time
remaining in the case, as seen by anesthesia providers. The
features and controls are similar to those seen in Figure 1. One
addition is the change in the information to the right, which
provides the time anchors. The description of the objectives
behind the dialog box (which was included in Fig. 1) was
omitted because the staff was already familiar with this system
from the previous 4-wk period. The limits of the digital clock
were anchored such that the selected time could not be earlier
than the 5th percentile or later than the 90th percentile. The
90th percentile was displayed after rounding up to the next 5
min. The 5th percentile was displayed after rounding down to
the preceding 5 min. However, since the resulting value could
be sooner than the current time, the minimum value displayed
for the 5th percentile was the current time rounded up to the
next 5 min. The digital clock’s default value (“Estimated Exit
Time”) was set to the median time of OR exit as estimated by
the Bayesian method and rounded down or up to the nearest 5
min. Approximately 85% of default values were changed (95%
confidence interval 79%–90%). The calculations for the dialogs
were performed using SQL server and displayed on the
workstations using VB.net (Microsoft, Redmond, WA). The
figure has been altered in that what the user saw was the word
“estimated” misspelled as “estimated.” No users commented
on the transposition, even though the AIMS administrator is
often informed of other spelling mistakes in the AIMS.
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APPENDIX 5: OBSERVATIONS AND RESULTING
DESIGN DECISIONS

Appendix 1 describes the deletion of 1.0% of cases
based on xsk

* and xk
* applied to the historical data of

128,056 cases from 2001 to 2007, not to the new data
from 2008. For new cases, we considered using proac-
tive alerts. The Bayesian method can detect whether a
new case has a statistically significant (P � 0.05)
chance of taking less or more time than scheduled8,26:

�xsk
* � �k

*�

��k
*

�k
* �

1 	 � 	 nk

� 	 nk

� T�1�1 � 0.05/2, 2�k
*�. (12)

For example, there was a 99.8% chance that the
laparoscopic Nissen fundoplication scheduled for 75
min would take longer than scheduled, based on the
surgeon’s average of 203 min for the previous 97 times
the procedure was scheduled. However, for only 2.7%
of the 129,380 cases was Eq. 12 satisfied (i.e., aberrant
scheduled durations are rare). Furthermore, among
those occurrences, the nk � 16 cases, the 5th percentile
of nk was 30 cases (95% CI 30–30), and the 10th
percentile of nk was 41 cases (95% CI 35–45). Thus, as
for the other hospital at which we applied Eq. 12,26 the
nk sufficiently exceeded � in Eqs. 2 and 4 that the xsk

*

had negligible influence on the resulting prediction
bound of Eq. 11. Therefore, our Results are based on
no alerts being used about the data entered including
outliers in the scheduled duration. Instead, the system
simply ignores scheduled durations of �15 min, set-
ting
xsk

* � �k
* for xsk

* � ln(15 min).
There were n � 373 acknowledgments from the

dialog of Figure 1. We calculated the median pairwise
difference between: i) the absolute error between
the actual time of patient exit and Eq. 11’s estimate of
the median time of patient exit at the time of acknowl-
edgment and ii) the absolute error between the actual
time of patient exit and the time elicited by the dialog
inquiry. The median was used, because there were
some (� 3%) large outliers. As described in the
preceding paragraph, outliers were not excluded be-
cause they do not affect the decision support system’s
recommendations. The absolute error, and not the
proportional error, was used because the absolute
error measures the cost of the forecast error (e.g., for
add-on, moving case, and relief decisions2).17 The CI
for the median was calculated using the Clopper-
Pearson method.39,40

Since the anesthesia providers’ estimates were
more accurate than the Bayesian method, we contin-
ued the use of the dialogs, despite the resulting
interruption. However, because the difference was
only 4.7 min (1.8% of median OR time, 95% CI: 2.0–9.4
min) we limited use of the instant messages to cases
exceeding the scheduled duration plus 13 min (see

Appendix 3). If the studied hospital had been classi-
fying its cases not just based on surgeon and sched-
uled procedure(s), but also based on type of anesthetic
and surgical team,19,20,41 likely the Bayesian method
would have been more accurate.

Spearman rank correlation was tested between the
proportion of like cases completed at the acknowl-
edged time (pk�dmin, Eq. 10) and the case’s difference
between the absolute errors. The CI for the rank
correlation was calculated from the 373 paired values.
There was no significant association between i) the
difference in absolute errors and ii) the number of
historical OR times (Spearman r � 0.09, 95% CI 
0.09
to 0.27). Thus, we based use of the instant messages
solely on exceedance of the scheduled duration plus
13 min (see Appendix 3), not on characteristics of the
case’s estimated parameters.

We used least absolute values regression to estimate
the linear combination of intercept, Bayesian estimate,
and elicited time remaining that minimized the absolute
error in OR time remaining from the time of acknowl-
edgment (Systat 12, simplex method). The use of least
absolute values regression matches the rationale de-
scribed two paragraphs above. The 95% CI of parame-
ters were consistent with a model of the estimate being
1/3rd Bayesian � 2/3rd elicited time. There was only a
0.6 min reduction in error achieved by calculated a
weighted combination of the elicited time and Bayesian
estimate (0.2% of median OR time, 95% CI 
0.4 to 1.5
min). Thus, we decided that each elicited time would
fully replace its case’s (original) scheduled OR time.

The median pairwise difference in absolute error
was calculated between the regression estimate and
that of elicited time alone. The estimated proportions
of cases of the same combination of surgeon and
procedure(s) that were expected to have finished
before the times of acknowledgment were 0.47 (25th
percentile), 0.65 (50th), and 0.80 (75th), respectively.
There was no pairwise association between i) the
proportions of like cases that would be finished by the
time of acknowledgment and ii) the difference in
absolute errors (Spearman r � 0.03, 95% CI 
0.07 to
0.13, n � 373).

For the last 2 wk of the trial period (n � 187 cases),
we tried to elicit more accurate estimates by using
what we thought was a more sophisticated dialog
(Fig. 6). The new display included Bayesian estimates8

for the 5th and 90th percentiles of the time of OR exit
from equation. These were obtained, respectively, by
setting g � 0.05 and g � 0.90 in Eq. 11. The limits of the
digital clock were anchored such that the selected time
could not be earlier than the 5th percentile or later
than the 90th percentile, with times selectable to the
nearest 5 min. The clock’s default value was set equal
to the g � 0.50 Bayesian estimate of the time of OR
exit. We calculated the Hodges-Lehmann estimate for
the median difference in the anesthesia provider’s
absolute errors with (Fig. 6) versus without (Fig. 1) the
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anchors (StatXact-7, Cytel Software Corporation,
Cambridge, MA).42 There was a trend toward larger
absolute errors as when compared with the use of
unanchored dialogs (difference 1.3 min, 95% CI 
1.6
to 4.1 min). Being a process improvement project, we
promptly returned to the use of Figure 1. Perhaps
future experimental studies with OR management
displays21,43 could omit the default value or omit the
anchors while keeping the provided information.
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