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Abstract 
 

Sketchy planners are designed to achieve goals in 
realistically complex, time-pressured, and uncertain 
task environments. However, the ability to manage 
multiple, potentially interacting tasks in such 
environments requires extensions to the functionality 
these systems typically provide.  This paper identifies a 
number of factors affecting how interacting tasks should 
be prioritized, interrupted, and resumed, and then 
describes a sketchy planner called APEX that takes 
account of these factors when managing multiple tasks.  

 
Introduction 
 
To perform effectively in  many environments?,  an agent 
must be able to manage multiple tasks in a complex, time-
pressured, and partially uncertain world. For example, the 
APEX agent architecture described below has been used to 
simulate human air traffic controllers in a simulated 
aerospace environment (Freed and Remington, 1997).  Air 
traffic control consists almost entirely of routine activity; 
complexity arises largely from the need to manage 
multiple tasks.  For example, the task of guiding a plane 
to landing at a destination airport typically involves 
issuing a series of standard turn and descent 
authorizations to each plane.  Since such routines must be 
carried out over minutes or tens of minutes, the task of 
handling any individual plane must be periodically 
interrupted to handle new arrivals or resume a previously 
interrupted plane-handling task. 
 
Plan execution systems (e.g.  Georgoff and Lansky, 1988; 
Firby, 1989; Cohen et al., 1989; Gat, 1992; Simmons, 
1994; Hayes-Roth, 1995; Pell, et al., 1997), also called 
sketchy planners, have been designed specifically to cope 
with the time-pressure and uncertainty inherent in these 
kinds of environments. This paper discusses a sketchy 
planner called APEX which incorporates and builds on 
multitask management capabilities found in previous 
systems.  
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Multitask Resource Conflicts 
 
The problem of coordinating the execution of multiple 
tasks differs from that of executing a single task because 
tasks can interact.  For example, two task interact 
benignly when one reduces the execution time, likelihood 
of failure, or risk of some undesirable side effect from the 
other.  Perhaps the most common interaction between 
routine tasks results from competition for resources.   
 
An agent’s cognitive, perceptual, and motor resources are 
typically limited in the sense that each can normally be 
used for only one task at a time.  For example, a task that 
requires the gaze resource to examine a visual location 
cannot be carried out at the same time as a task that 
requires gaze to examine a different location.  When 
separate tasks make incompatible demands for a resource, 
a resource conflict between them exists.  To manage 
multiple tasks effectively, an agent must be able to detect 
and resolve such conflicts. 
 
To resolve a resource conflict, an agent needs to determine 
the relative priority of competing tasks, assign control of 
the resource to the winner, and decide what to do with the 
loser. The latter issue differentiates strategies for resolving 
the conflict.  There are at least three basic strategies (cf. 
(Schneider and Detweiler, 1988)). 
 
    Shedding: eliminate low importance tasks 
    Delaying/Interrupting:  force temporal separation 

 between conflicting tasks 
    Circumventing: select methods for carrying out tasks  

that use different resources 
 
Shedding involves neglecting or explicitly foregoing a 
task.  This strategy is appropriate when demand for a 
resource exceeds availability.  For the class of resources 
we are presently concerned with, those which become 
blocked when assigned to a task but are not depleted by 
use, demand is a function of task duration and task 
temporal constraints.  For example, a task can be 
characterized as requiring the gaze resource for 15 
seconds and having a completion deadline 20 seconds 



hence.  Excessive demand occurs when the combined 
demands of two or more tasks cannot be satisfied.  For 
example, completion deadlines for two tasks with the 
above profile cannot both be satisfied.  In such cases, it 
makes sense to abandon the less important task.    
 
A second way to handle a resource conflict is to delay or 
interrupt one task in order to execute (or continue 
executing) another.  Causing tasks to impose demands at 
different times avoids the need to shed a task, but 
introduces numerous complications.  For example, 
deferring execution can increase the risk of task failure, 
increase the likelihood of some undesirable side-effect, 
and reduce the expected benefit of a successful outcome.  
Mechanisms for resolving a resource conflict should take 
these effects into account in deciding whether to delay a 
task and which should be delayed. 
 
Interrupting an ongoing task not only delays its 
completion, but may also require specialized activities to 
make the task robust against interruption.  In particular, 
handling an interruption may involve carrying out actions 
to stabilize progress, safely wind down the interrupted 
activity, determine when the task should be resumed, and 
then restore task preconditions violated during the 
interruption interval.  Mechanisms for deciding whether 
to interrupt a task should take the cost of these added 
activities into account.  
 
The third basic strategy for resolving a conflict is to 
circumvent it by choosing non-conflicting (compatible) 
methods for carrying out tasks.  For example, two tasks A 
and B might each require the gaze resource to acquire 
important and urgently needed information from spatially 
distant sources.  Because both tasks are important, 
shedding one is very undesirable; and because both are 
urgent, delaying one is not possible.  In this case, the best 
option is to find compatible methods for the tasks and 
thereby enable their concurrent execution.  For instance, 
task A may also be achievable by retrieving the 
information from memory (perhaps with some risk that 
the information has become obsolete); switching to the 
memory-based method for A resolves the conflict.  To 
resolve (or prevent) a task conflict by circumvention, 
mechanisms for selecting between alternative methods for 
achieving a task should be sensitive to potential resource 
conflicts (Freed and Remington, 1997). 
 
In addition to these basic strategies, conflicts can also be 
resolved by incorporating the tasks into an explicit, 
overarching procedure, effectively making them subtasks 
of a new, higher level task.  For example, an agent can 
decide to timeshare, alternating control of a resource 
between tasks at specified intervals.  Or instead, 

conflicting tasks may be treated as conjunctive goals to be 
planned for by classical planning mechanisms.  The 
process of determining an explicit coordinating procedure 
for conflicting tasks requires deliberative capabilities 
beyond those present in a sketchy planner.  The present 
work focuses on simpler heuristic techniques needed to 
detect resource conflicts and carry out the basic resolution 
strategies described above. 
 
APEX 
 
Our approach to multitask management has been 
incorporated into the APEX architecture (Freed, 1998) 
which consists primarily of two parts.  The action 
selection component, a sketchy planner, interacts with the 
world through a set of cognitive, perceptual, and motor 
resources which together constitute a resource 
architecture.  Resources represent agent limitations.  In a 
human resource architecture, for example, the visual 
resource provides action selection with detailed 
information about visual objects in the direction of gaze 
but less detail with increasing angular distance.  Cognitive 
and motor resources such as hands, voice, memory 
retrieval, and gaze are limited in that they can only be 
used to carry out one task a time 
 
To control resources and thereby generate behavior, action 
selection mechanisms apply procedural knowledge 
represented in a RAP-like (Firby, 1989) notation called 
PDL (Procedure Definition Language). The central 
construct in PDL is a procedure (see figure 1), which 
includes at least an index clause and one or more step 
clauses.  The index identifies the procedure and describes 
the goal it serves.  Each step clause describes a subgoal or 
auxiliary activity related to the main goal.   
 
The planner’s current goals are stored as task structures 
on the planner’s agenda.  When a task becomes enabled 
(eligible for immediate execution), two outcomes are 
possible.  If the task corresponds to a primitive action, a 
description of the intended action is sent to a resource in 
the resource architecture which will try to carry it out.  If 
instead, the task is a non-primitive, the planner retrieves a 
procedure from the procedure library whose index clause 
matches the task’s description.  Step clauses in the 
selected procedure are then used as templates to generate 
new tasks, which are themselves added to the agenda.   
For example, an enabled non-primitive task {turn-on-
headlights}1 would retrieve a procedure such as that 
represented in figure 1. 
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In APEX, steps are assumed to be concurrently executable 
unless otherwise specified.  The waitfor clause is used to 
indicate ordering constraints.  The general form of a 
waitfor clause is (waitfor <eventform>*) where 
eventforms can be either a procedure step-identifier or any 
parenthesized expression. Tasks created with waitfor 
conditions start in a pending state and become enabled 
only when all the events specified in the waitfor clause 
have occurred.  Thus, tasks created by steps s1 and s2 
begin enabled and may be carried out concurrently.  Tasks 
arising from the remaining steps begin in a pending state.  
 

(procedure 
      (index (turn-on-headlights) 
      (step s1 (clear-hand left-hand)) 
      (step s2 (determine-loc headlight-ctl => ?loc) 
      (step s3 (grasp knob left-hand ?loc) 

(waitfor ?s1 ?s2)) 
      (step s4 (pull knob left-hand 0.4) (waitfor ?s3)) 
      (step s5 (ungrasp left-hand) (waitfor ?s4)) 
      (step s6 (terminate) (waitfor ?s5))) 

 

Figure 1   Example PDL procedure 

 
Events arise primarily from two sources.  First, perceptual 
resources (e.g. vision) produce events such as             
(color object-17 green) to represent new or updated 
observations.  Second, the sketchy planner produces 
events in certain cases, such as when a task is interrupted 
or following execution of an enabled terminate task (e.g. 
step s6 above).  A terminate task ends execution of a 
specified task and generates an event of the form 
(terminated <task> <outcome>); by default, <task> is the 
terminate task’s parent and <outcome> is ‘success.’ Since 
termination events are often used as the basis of task 
ordering, waitfor clauses can specify such events using the 
task’s step identifier as an abbreviation – for example, 
(waitfor (terminated ?s4 success)) = (waitfor ?s4). 
 
Detecting Conflicts 
 
The problem of detecting conflicts can be considered in 
two parts:  (1) determining which tasks should be checked 
for conflict and when; and (2) determining whether a 
conflict exist between specified tasks.  APEX handles the 
former question by checking for conflict between task 
pairs in two cases.  First, when a task’s non-resource 
preconditions (waitfor conditions) become satisfied, it is 
checked against ongoing tasks.  If no conflict exists, its 
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state is set to ongoing and the task is executed.  Second, 
when a task has been delayed or interrupted to make 
resources available to a higher priority task, it is given a 
new opportunity to execute once the needed resource(s) 
become available – i.e. when the currently controlling task 
terminates or becomes suspended.  The delayed task is 
then checked for conflicts against all other pending tasks. 
 
Determining whether two tasks conflict requires only 
knowing which resources each requires.  However, it is 
important to distinguish between two senses in which a 
task may require a resource.  A task requires direct 
control in order to elicit primitive actions from the 
resource.  For example, checking the fuel gauge in an 
automobile requires direct control of gaze.  Relatively 
long-lasting and abstract tasks require indirect control, 
meaning that they are likely to be decomposed into 
subtasks that need direct control.  For example, the task of 
driving an automobile requires gaze in the sense that 
many of driving’s constituent subtasks involve directing 
visual attention. 
 
Indirect control requirements are an important predictor of 
direct task conflicts.  For example, driving and visually 
searching for a fallen object both require indirect control 
over the gaze resource, making it likely that their 
respective subtasks will conflict directly.  Anticipated 
conflicts of this sort should be resolved just like direct 
conflicts – i.e. by shedding, delaying, or circumventing.  
 
Resources requirements for a task are undetermined until 
a procedure is selected to carry it out.  For instance, the 
task of searching for a fallen object will require gaze if 
performed visually, or a hand resource if carried out by 
grope-and-feel. PDL denotes resource requirements for a 
procedure using the PROFILE clause.  For instance, the 
following clause should be added to the turn-on-headlights 
procedure described above: 
 
 (profile  (left-hand  8  10)) 
 
The general form of a profile clause is  
(profile (<resource> <duration> <continuity>)*).  The 
<resource> parameter specifies a resource defined in the 
resource architecture – e.g. gaze, left-hand, memory-
retrieval; <duration> denotes how long the task is likely to 
need the resource; and <continuity> specifies how long an 
interrupting task has to be before it constitutes a 
significant interruption.  Tasks requiring the resource for 
an interval less than the specified continuity requirement 
are not considered significant in the sense that they do not 
create a resource conflict and do not invoke interruption-
handling activities (as described further on).   
 



For example, the task of driving a car should not be 
interrupted in order to look for restaurant signs near the 
side of the road, even though both tasks need to control 
gaze.  In contrast, the task of finding a good route on a 
road map typically requires the gaze resource for a much 
longer interval and thus conflicts with driving.  Note that 
an interruption considered insignificant for a task may be 
significant for its subtasks.  For instance, even though 
searching the roadside might not interrupt driving per se, 
subtasks such as tracking nearby traffic and maintaining a 
minimum distance from the car ahead may have to be 
briefly interrupted to allow the search to proceed.   
 
Prioritization 
 
Prioritization determines the value of assigning control of 
resources to a specified task.  The prioritization process is 
automatically invoked to resolve a newly detected resource 
conflict. It may also be invoked in response to evidence 
that a previous prioritization decision has become obsolete 
– i.e. when an event occurs that signifies a likely increase 
in the desirability of assigning resources to a deferred task, 
or a decrease in desirability of allowing an ongoing task to 
maintain resource control.  Which particular events have 
such significance depends on the task domain.   
 
In PDL, the prioritization process may be procedurally 
reinvoked for a specified task using a primitive 
reprioritize step; eventforms in the step’s waitfor 
clause(s) specify conditions in which priority should be 
recomputed.  For example, a procedure describing how to 
drive an automobile would include steps for periodically 
monitoring numerous visual locations such as dashboard 
instruments, other lanes of traffic, the road ahead, and the 
road behind. Task priorities vary dynamically, in this case 
to reflect differences in the frequency with which each 
should be carried out.  The task of monitoring behind, in 
particular, is likely to have a low priority at most times.  
However, if a driver detects a sufficiently loud car horn in 
that direction, the monitor-behind task becomes more 
important.  The need to reassess its priority can be 
represented as follows: 
 
   (procedure 
      (index (drive-car)) 
         … 
      (step s8 (monitor-behind)) 
      (step s9 (reprioritize ?s8) 
          (waitfor (sound-type ?sound car-horn)  

         (loudness ?sound ?db (?if (> ?db 30)))))) 
 
The relative priority of two tasks determines which gets 
control of a contested resource, and which gets shed, 

deferred, or changed to circumvent the conflict.  In PDL, 
task priority is computed from a PRIORITY clause 
associated with the step from which the task was derived.   
Step priority may be specified as a constant or arithmetic 
expression as in the following examples: 
 
    (step s5 (monitor-fuel-gauge) (priority 3)) 
    (step s6 (monitor-left-traffic) (priority ?x)) 
    (step s7 (monitor-ahead) (priority (+ ?x ?y))) 
 
In the present approach, priority derives from the 
possibility that specific, undesirable consequences will 
result if a task is deferred too long.  For example, waiting 
too long to monitor the fuel gauge may result in running 
out of gas while driving.  Such an event is a basis for 
setting priority.  Each basis condition can be associated 
with an importance value and an urgency value.  Urgency 
refers to the expected time available to complete the task 
before the basis event occurs. Importance quantifies the 
undesirability of the basis event.  Running out of fuel, for 
example, will usually be associated with a relatively low 
urgency and fairly high importance.  The general form 
used to denote priority is: 
 
     (priority <basis>  (importance <expression>)  
  (urgency <expression>)) 
 
In many cases, a procedure step will be associated with 
multiple bases, reflecting a multiplicity of reasons to 
execute the task in a timely fashion.  For instance, 
monitoring the fuel gauge is desirable not only to avoid 
running out of fuel, but also to avoid having to refuel at 
inconvenient times (e.g. while driving to an appointment 
for which one is already late) or in inconvenient places 
(e.g. in rural areas where finding fuel may be difficult).  
Multiple bases are represented using multiple priority 
clauses.   
 
   (step s5 (monitor-fuel-gauge) 
      (priority (run-empty) (importance 6) (urgency 2)) 
      (priority (delay-to-other-task) (importance ?x)  

(urgency 3)) 
      (priority (excess-time-cost refuel) (importance ?x)  

(urgency ?y))) 
 
The priority value derived from a priority clause depends 
on how busy the agent is when the task needs the 
contested resource.  If an agent has a lot to do (workload is 
high), tasks will have to be deferred, on average, for a 
relatively long interval.  There may not be time to do all 
desired tasks – or more generally – to avoid all basis 
events.  In such conditions, the importance associated with 
avoiding a basis event should be treated as more relevant 
than urgency in computing a priority, thus ensuring that 



those basis events which do occur will be the least 
damaging.   
 
In low workload, the situation is reversed.  With enough 
time to do all current tasks, importance may be irrelevant.  
The agent must only ensure that deadlines associated with 
each task are met.  In these conditions, urgency should 
dominate the computation of task priority.  The tradeoff 
between urgency and importance can be represented by the 
following equation: 
 
 priorityb  = S*Ib + (Smax-S)Ub 
 
S is subjective workload (a  heuristic approximation of 
actual workload); Ib  and Ub  represent importance and 
urgency for a specified basis (b).  To determine a task’s 
priority, APEX first computes a priority value for each 
basis, and then selects the maximum of these values. 
 
Interruption Issues 
 
A task acquires control of a resource in either of two ways.  
First, the resource becomes freely available when its 
current controller terminates.  In this case, all tasks whose 
execution awaits control of the freed up resource are given 
current priority values; control is assigned to whichever 
task has the highest priority. Second, a higher priority task 
can seize a resource from its current controller, 
interrupting it and forcing it into a suspended state.   
 
A suspended task recovers control of needed resources 
when it once again becomes the highest priority 
competitor for those resources.  In this respect, such tasks 
are equivalent to pending tasks which have not yet begun.  
However, a suspended task may have ongoing subtasks 
which may be affected by the interruption.  Two effects 
occur automatically: (1) subtasks no longer inherit priority 
from the suspended ancestor and (2) each subtask is 
reprioritized, possibly causing it to become interrupted.  
Other effects are procedure-specific and must be specified 
explicitly.  PDL includes several primitives steps useful 
for this purpose, including RESET and TERMINATE.   
 
      (step s4 (turn-on-headlights)) 
      (step s5 (reset) (waitfor (suspended ?s4)) 
 
For example, step s5 causes a turn-on-headlight task to 
terminate and restart if it ever becomes suspended.  This 
behavior makes sense because interrupting the task is 
likely to undo progress made towards successful 
completion.  For example, the driver may have gotten as 
far as moving the left hand towards the control knob at the 

time of suspension, after which the hand will likely be 
moved to some other location before the task is resumed. 
 
 
Robustness against interruption 
 
Discussions of planning and plan execution often consider 
the need to make tasks robust against failure.  For 
example, the task of starting an automobile ignition might 
fail.  A robust procedure for this task would incorporate 
knowledge that, in certain situations, repeating the turn-
key step is a useful response following initial failure.  The 
possibility that a task might be interrupted raises issues 
similar to those associated with task failure, and similarly 
requires specialized knowledge to make a task robust.  
The problem of coping with interruption can be divided 
into three parts: wind-down activities to be carried out as 
interruption occurs, suspension-time activities, and wind-
up activities that take place when a task resumes. 
 
It is not always safe or desirable to immediately transfer 
control of a resource from its current controller to the task 
that caused the interruption.  For example, a task to read 
information off a map competes for resources with and 
may interrupt a driving task. To avoid a likely accident 
following abrupt interruption of the driving task, the agent 
should carry out a wind-down procedure (Gat, 1992) that 
includes steps to, e.g., pull over to the side of the road.  
The following step within the driving procedure achieves 
this behavior. 
 
   (step s15 (pull-over)  
      (waitfor (suspended ?self)) 
      (priority (avoid-accident) (importance 10)  

(urgency 10))) 
 

Procedures may prescribe additional wind-down behaviors 
meant to (1) facilitate  timely, cheap, and successful 
resumption, and (2) stabilize task preconditions and 
progress – i.e. make it more likely that portions of the task 
that have already been accomplished will remain in their 
current state until the task is resumed.  All such actions 
can be made to trigger at suspension-time using the 
waitfor eventform (suspended ?self).  
 
In some cases, suspending one task should enable others 
meant to be carried out during the interruption interval.  
Typically, these will be either monitoring and 
maintenance tasks meant, like wind-down tasks, to insure 
timely resumption and maintain the stability of the 
suspended task preconditions and progress.  Windup 
activities are carried out before a task regains control of 
resources and are used primarily to facilitate resuming 
after interruption.  Typically, windup procedures will 



include steps for assessing and “repairing” the situation at 
resume-time – especially including progress reversals and 
violated preconditions.  For example, a windup activity 
following a driving interruption and subsequent pull-over 
behavior might involve moving safely moving back on to 
the road and merging with traffic. 
 
Continuity and intermittency 
 
Interruption raises issues relating to the continuity of task 
execution.  Three issues seem especially important.  The 
first, discussed in section 4, is that not all tasks requiring 
control of a given resource constitute significant 
interruptions of one another’s continuity.  The PROFILE 
clause allows one to specify how long a competing task 
must require the resource in order to be considered a 
source of conflict. 
 
Second, to the extent that handling an interruption 
requires otherwise unnecessary effort to wind-down, 
manage suspension, and wind-up,  interrupting an 
ongoing task imposes opportunity costs, separate from and 
in addition to the cost of deferring task completion.  These 
costs should be taken account of in computing a task’s 
priority.  In particular, an ongoing task should have its 
priority increased (over what it would be if not yet begun) 
in proportion to the costs imposed by interruption.  In 
PDL, this value is specified using the INTERRUPT-COST 
clause.  For example, the clause  
 
 (interrupt-cost 5) 
 
within the driving procedure indicates that a driving 
interruption should cause 5 to be added to a driving task’s 
priority if it is currently ongoing. 
 
The third major issue associated with continuity concerns 
slack time in a task’s control of a given resource.  For 
example, when stopped behind a red light, a driver’s need 
for hands and gaze is temporarily reduced, making it 
possible to use those resources for other tasks.  In driving, 
as in many other routine behaviors, such intermittent 
resource control requirements are normal; slack time 
arises at predictable times and with predictable frequency.  
A capable multitasking agent should be able to take 
advantage of these intervals to make full use of resources.  
In PDL, procedures denote the start and end of slack-time 
using the SUSPEND and REPRIORITIZE primitives.  
 

   (step s17 (suspend ?self)  
      (waitfor (shape ?object traffic-signal)  

     (color ?object red))) 
   (step s18 (monitor-object ?object) (waitfor ?s17)) 
   (step s19 (reprioritize ?self)  
      (waitfor (color ?object green))) 
 
Thus, in this example, the driving task will be suspended 
upon detection of a red light, making resources available 
for other tasks.  It also enables a suspension-time task to 
monitor the traffic light, allowing timely reprioritization 
(and thus resumption) once the light turns green. 
 
Computing Priority 
 
To compute priority, APEX uses a version of the 
previously described priority equation that takes into 
account two additional factors. First, an interrupt cost 
value is added to priority if an interrupt-cost has been 
specified and the task is currently ongoing.  Second, the 
computation should recognize limited interaction between 
the urgency and importance terms.  For example, it is 
never worth wasting effort on a zero-importance task, 
even it has become highly urgent.  Similarly, a highly 
important task with negligible urgency should be delayed 
to avoid the opportunity cost of execution.  Such 
interactions are represented by the discount term 1/(1+x).  
Thus the priority function2: 
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where IC represents interrupt cost and other parameters 
are as previously described. 
 
Future Work 
 
APEX development has been driven primarily by the need 
to perform capably in a simulated air traffic control world 
(Freed and Remington, 1997), a task environment that is 
especially demanding on an agent’s ability to manage 
multiple tasks.  Applying the model to ever more diverse 
air traffic control scenarios has helped to characterize 
numerous factors affecting how multiple tasks should be 
managed.  Many of these factors have been accounted for 
in the current version of APEX; many others have yet to 
be handled.   
 

                                                        
2 Prioritization mechanisms also incorporate a factor designated  
task refractory-state representing reduced priority for a 
repeating task immediately following execution.  The problem of 
managing repetition is not considered here. 



For example, the current approach sets a task’s priority 
equals the maximum of its basis priorities.  This is 
appropriate when all bases refer to the same underlying 
factor (e.g. being late to a meeting vs. being very late).  
However, when bases represent distinct factors, overall 
priority should derive from their sum.  Although APEX 
does not presently include mechanisms for determining 
basis distinctness, PDL anticipates this development by 
requiring a basis description in each priority clause. 
Other prospective refinements to current mechanisms 
include allowing a basis to be suppressed if its associated 
factor is irrelevant in the current context, and allowing 
prioritization decisions to be made between compatible 
task groups rather than between pairs of tasks.  The latter 
ability is important because the relative priority of two 
tasks is not always sufficient to determine which should be 
executed.  For example: tasks A and B compete for 
resource X while A and C compete for Y.  Since A blocks 
both B and C, their combined priority should be 
considered in deciding whether to give resources to A. 
 
Perhaps the greatest challenge in extending the present 
approach will be to incorporate deliberative mechanisms 
needed to optimize multitasking performance and handle 
complex task interactions.  The current approach manages 
multiple tasks using a heuristic method that, consistent 
with the sketchy planning framework in which it is 
embedded, assumes that little time will be available to 
reason carefully about task schedules.  Deliberative 
mechanisms would complement this approach by allowing 
the agent to manage tasks more effectively when more 
time is available.  
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