
In Proceedings of the 1998 National Conference on Artificial Intelligence. Madison, Wisconsin, 1998.

Managing Multiple Tasks in Complex, Dynamic Environments

Michael Freed
NASA Ames Research Center

mfreed@mail.arc.nasa.gov

Abstract

Sketchy planners are designed to achieve goals in
realistically complex, time-pressured, and uncertain
task environments. However, the ability to manage
multiple, potentially interacting tasks in such
environments requires extensions to the functionality
these systems typically provide. This paper identifies a
number of factors affecting how interacting tasks should
be prioritized, interrupted, and resumed, and then
describes a sketchy planner called APEX that takes
account of these factors when managing multiple tasks.

Introduction

To perform effectively in many environments?, an agent
must be able to manage multiple tasks in a complex, time-
pressured, and partially uncertain world. For example, the
APEX agent architecture described below has been used to
simulate human air traffic controllers in a simulated
aerospace environment (Freed and Remington, 1997). Air
traffic control consists almost entirely of routine activity;
complexity arises largely from the need to manage
multiple tasks. For example, the task of guiding a plane
to landing at a destination airport typically involves
issuing a series of standard turn and descent
authorizations to each plane. Since such routines must be
carried out over minutes or tens of minutes, the task of
handling any individual plane must be periodically
interrupted to handle new arrivals or resume a previously
interrupted plane-handling task.

Plan execution systems (e.g. Georgoff and Lansky, 1988;
Firby, 1989; Cohen et al., 1989; Gat, 1992; Simmons,
1994; Hayes-Roth, 1995; Pell, et al., 1997), also called
sketchy planners, have been designed specifically to cope
with the time-pressure and uncertainty inherent in these
kinds of environments. This paper discusses a sketchy
planner called APEX which incorporates and builds on
multitask management capabilities found in previous
systems.

© 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Multitask Resource Conflicts

The problem of coordinating the execution of multiple
tasks differs from that of executing a single task because
tasks can interact. For example, two task interact
benignly when one reduces the execution time, likelihood
of failure, or risk of some undesirable side effect from the
other. Perhaps the most common interaction between
routine tasks results from competition for resources.

An agent’s cognitive, perceptual, and motor resources are
typically limited in the sense that each can normally be
used for only one task at a time. For example, a task that
requires the gaze resource to examine a visual location
cannot be carried out at the same time as a task that
requires gaze to examine a different location. When
separate tasks make incompatible demands for a resource,
a resource conflict between them exists. To manage
multiple tasks effectively, an agent must be able to detect
and resolve such conflicts.

To resolve a resource conflict, an agent needs to determine
the relative priority of competing tasks, assign control of
the resource to the winner, and decide what to do with the
loser. The latter issue differentiates strategies for resolving
the conflict. There are at least three basic strategies (cf.
(Schneider and Detweiler, 1988)).

 Shedding: eliminate low importance tasks
 Delaying/Interrupting: force temporal separation

 between conflicting tasks
 Circumventing: select methods for carrying out tasks

that use different resources

Shedding involves neglecting or explicitly foregoing a
task. This strategy is appropriate when demand for a
resource exceeds availability. For the class of resources
we are presently concerned with, those which become
blocked when assigned to a task but are not depleted by
use, demand is a function of task duration and task
temporal constraints. For example, a task can be
characterized as requiring the gaze resource for 15
seconds and having a completion deadline 20 seconds

hence. Excessive demand occurs when the combined
demands of two or more tasks cannot be satisfied. For
example, completion deadlines for two tasks with the
above profile cannot both be satisfied. In such cases, it
makes sense to abandon the less important task.

A second way to handle a resource conflict is to delay or
interrupt one task in order to execute (or continue
executing) another. Causing tasks to impose demands at
different times avoids the need to shed a task, but
introduces numerous complications. For example,
deferring execution can increase the risk of task failure,
increase the likelihood of some undesirable side-effect,
and reduce the expected benefit of a successful outcome.
Mechanisms for resolving a resource conflict should take
these effects into account in deciding whether to delay a
task and which should be delayed.

Interrupting an ongoing task not only delays its
completion, but may also require specialized activities to
make the task robust against interruption. In particular,
handling an interruption may involve carrying out actions
to stabilize progress, safely wind down the interrupted
activity, determine when the task should be resumed, and
then restore task preconditions violated during the
interruption interval. Mechanisms for deciding whether
to interrupt a task should take the cost of these added
activities into account.

The third basic strategy for resolving a conflict is to
circumvent it by choosing non-conflicting (compatible)
methods for carrying out tasks. For example, two tasks A
and B might each require the gaze resource to acquire
important and urgently needed information from spatially
distant sources. Because both tasks are important,
shedding one is very undesirable; and because both are
urgent, delaying one is not possible. In this case, the best
option is to find compatible methods for the tasks and
thereby enable their concurrent execution. For instance,
task A may also be achievable by retrieving the
information from memory (perhaps with some risk that
the information has become obsolete); switching to the
memory-based method for A resolves the conflict. To
resolve (or prevent) a task conflict by circumvention,
mechanisms for selecting between alternative methods for
achieving a task should be sensitive to potential resource
conflicts (Freed and Remington, 1997).

In addition to these basic strategies, conflicts can also be
resolved by incorporating the tasks into an explicit,
overarching procedure, effectively making them subtasks
of a new, higher level task. For example, an agent can
decide to timeshare, alternating control of a resource
between tasks at specified intervals. Or instead,

conflicting tasks may be treated as conjunctive goals to be
planned for by classical planning mechanisms. The
process of determining an explicit coordinating procedure
for conflicting tasks requires deliberative capabilities
beyond those present in a sketchy planner. The present
work focuses on simpler heuristic techniques needed to
detect resource conflicts and carry out the basic resolution
strategies described above.

APEX

Our approach to multitask management has been
incorporated into the APEX architecture (Freed, 1998)
which consists primarily of two parts. The action
selection component, a sketchy planner, interacts with the
world through a set of cognitive, perceptual, and motor
resources which together constitute a resource
architecture. Resources represent agent limitations. In a
human resource architecture, for example, the visual
resource provides action selection with detailed
information about visual objects in the direction of gaze
but less detail with increasing angular distance. Cognitive
and motor resources such as hands, voice, memory
retrieval, and gaze are limited in that they can only be
used to carry out one task a time

To control resources and thereby generate behavior, action
selection mechanisms apply procedural knowledge
represented in a RAP-like (Firby, 1989) notation called
PDL (Procedure Definition Language). The central
construct in PDL is a procedure (see figure 1), which
includes at least an index clause and one or more step
clauses. The index identifies the procedure and describes
the goal it serves. Each step clause describes a subgoal or
auxiliary activity related to the main goal.

The planner’s current goals are stored as task structures
on the planner’s agenda. When a task becomes enabled
(eligible for immediate execution), two outcomes are
possible. If the task corresponds to a primitive action, a
description of the intended action is sent to a resource in
the resource architecture which will try to carry it out. If
instead, the task is a non-primitive, the planner retrieves a
procedure from the procedure library whose index clause
matches the task’s description. Step clauses in the
selected procedure are then used as templates to generate
new tasks, which are themselves added to the agenda.
For example, an enabled non-primitive task {turn-on-
headlights}1 would retrieve a procedure such as that
represented in figure 1.

1 APEX has only been tested in a simulated air traffic control
environment. The everyday examples used to describe its

In APEX, steps are assumed to be concurrently executable
unless otherwise specified. The waitfor clause is used to
indicate ordering constraints. The general form of a
waitfor clause is (waitfor <eventform>*) where
eventforms can be either a procedure step-identifier or any
parenthesized expression. Tasks created with waitfor
conditions start in a pending state and become enabled
only when all the events specified in the waitfor clause
have occurred. Thus, tasks created by steps s1 and s2
begin enabled and may be carried out concurrently. Tasks
arising from the remaining steps begin in a pending state.

(procedure
 (index (turn-on-headlights)
 (step s1 (clear-hand left-hand))
 (step s2 (determine-loc headlight-ctl => ?loc)
 (step s3 (grasp knob left-hand ?loc)

(waitfor ?s1 ?s2))
 (step s4 (pull knob left-hand 0.4) (waitfor ?s3))
 (step s5 (ungrasp left-hand) (waitfor ?s4))
 (step s6 (terminate) (waitfor ?s5)))

Figure 1 Example PDL procedure

Events arise primarily from two sources. First, perceptual
resources (e.g. vision) produce events such as
(color object-17 green) to represent new or updated
observations. Second, the sketchy planner produces
events in certain cases, such as when a task is interrupted
or following execution of an enabled terminate task (e.g.
step s6 above). A terminate task ends execution of a
specified task and generates an event of the form
(terminated <task> <outcome>); by default, <task> is the
terminate task’s parent and <outcome> is ‘success.’ Since
termination events are often used as the basis of task
ordering, waitfor clauses can specify such events using the
task’s step identifier as an abbreviation – for example,
(waitfor (terminated ?s4 success)) = (waitfor ?s4).

Detecting Conflicts

The problem of detecting conflicts can be considered in
two parts: (1) determining which tasks should be checked
for conflict and when; and (2) determining whether a
conflict exist between specified tasks. APEX handles the
former question by checking for conflict between task
pairs in two cases. First, when a task’s non-resource
preconditions (waitfor conditions) become satisfied, it is
checked against ongoing tasks. If no conflict exists, its

behavior are for illustration and have not actually been
implemented.

state is set to ongoing and the task is executed. Second,
when a task has been delayed or interrupted to make
resources available to a higher priority task, it is given a
new opportunity to execute once the needed resource(s)
become available – i.e. when the currently controlling task
terminates or becomes suspended. The delayed task is
then checked for conflicts against all other pending tasks.

Determining whether two tasks conflict requires only
knowing which resources each requires. However, it is
important to distinguish between two senses in which a
task may require a resource. A task requires direct
control in order to elicit primitive actions from the
resource. For example, checking the fuel gauge in an
automobile requires direct control of gaze. Relatively
long-lasting and abstract tasks require indirect control,
meaning that they are likely to be decomposed into
subtasks that need direct control. For example, the task of
driving an automobile requires gaze in the sense that
many of driving’s constituent subtasks involve directing
visual attention.

Indirect control requirements are an important predictor of
direct task conflicts. For example, driving and visually
searching for a fallen object both require indirect control
over the gaze resource, making it likely that their
respective subtasks will conflict directly. Anticipated
conflicts of this sort should be resolved just like direct
conflicts – i.e. by shedding, delaying, or circumventing.

Resources requirements for a task are undetermined until
a procedure is selected to carry it out. For instance, the
task of searching for a fallen object will require gaze if
performed visually, or a hand resource if carried out by
grope-and-feel. PDL denotes resource requirements for a
procedure using the PROFILE clause. For instance, the
following clause should be added to the turn-on-headlights
procedure described above:

 (profile (left-hand 8 10))

The general form of a profile clause is
(profile (<resource> <duration> <continuity>)*). The
<resource> parameter specifies a resource defined in the
resource architecture – e.g. gaze, left-hand, memory-
retrieval; <duration> denotes how long the task is likely to
need the resource; and <continuity> specifies how long an
interrupting task has to be before it constitutes a
significant interruption. Tasks requiring the resource for
an interval less than the specified continuity requirement
are not considered significant in the sense that they do not
create a resource conflict and do not invoke interruption-
handling activities (as described further on).

For example, the task of driving a car should not be
interrupted in order to look for restaurant signs near the
side of the road, even though both tasks need to control
gaze. In contrast, the task of finding a good route on a
road map typically requires the gaze resource for a much
longer interval and thus conflicts with driving. Note that
an interruption considered insignificant for a task may be
significant for its subtasks. For instance, even though
searching the roadside might not interrupt driving per se,
subtasks such as tracking nearby traffic and maintaining a
minimum distance from the car ahead may have to be
briefly interrupted to allow the search to proceed.

Prioritization

Prioritization determines the value of assigning control of
resources to a specified task. The prioritization process is
automatically invoked to resolve a newly detected resource
conflict. It may also be invoked in response to evidence
that a previous prioritization decision has become obsolete
– i.e. when an event occurs that signifies a likely increase
in the desirability of assigning resources to a deferred task,
or a decrease in desirability of allowing an ongoing task to
maintain resource control. Which particular events have
such significance depends on the task domain.

In PDL, the prioritization process may be procedurally
reinvoked for a specified task using a primitive
reprioritize step; eventforms in the step’s waitfor
clause(s) specify conditions in which priority should be
recomputed. For example, a procedure describing how to
drive an automobile would include steps for periodically
monitoring numerous visual locations such as dashboard
instruments, other lanes of traffic, the road ahead, and the
road behind. Task priorities vary dynamically, in this case
to reflect differences in the frequency with which each
should be carried out. The task of monitoring behind, in
particular, is likely to have a low priority at most times.
However, if a driver detects a sufficiently loud car horn in
that direction, the monitor-behind task becomes more
important. The need to reassess its priority can be
represented as follows:

 (procedure
 (index (drive-car))
 …
 (step s8 (monitor-behind))
 (step s9 (reprioritize ?s8)
 (waitfor (sound-type ?sound car-horn)

 (loudness ?sound ?db (?if (> ?db 30))))))

The relative priority of two tasks determines which gets
control of a contested resource, and which gets shed,

deferred, or changed to circumvent the conflict. In PDL,
task priority is computed from a PRIORITY clause
associated with the step from which the task was derived.
Step priority may be specified as a constant or arithmetic
expression as in the following examples:

 (step s5 (monitor-fuel-gauge) (priority 3))
 (step s6 (monitor-left-traffic) (priority ?x))
 (step s7 (monitor-ahead) (priority (+ ?x ?y)))

In the present approach, priority derives from the
possibility that specific, undesirable consequences will
result if a task is deferred too long. For example, waiting
too long to monitor the fuel gauge may result in running
out of gas while driving. Such an event is a basis for
setting priority. Each basis condition can be associated
with an importance value and an urgency value. Urgency
refers to the expected time available to complete the task
before the basis event occurs. Importance quantifies the
undesirability of the basis event. Running out of fuel, for
example, will usually be associated with a relatively low
urgency and fairly high importance. The general form
used to denote priority is:

 (priority <basis> (importance <expression>)
 (urgency <expression>))

In many cases, a procedure step will be associated with
multiple bases, reflecting a multiplicity of reasons to
execute the task in a timely fashion. For instance,
monitoring the fuel gauge is desirable not only to avoid
running out of fuel, but also to avoid having to refuel at
inconvenient times (e.g. while driving to an appointment
for which one is already late) or in inconvenient places
(e.g. in rural areas where finding fuel may be difficult).
Multiple bases are represented using multiple priority
clauses.

 (step s5 (monitor-fuel-gauge)
 (priority (run-empty) (importance 6) (urgency 2))
 (priority (delay-to-other-task) (importance ?x)

(urgency 3))
 (priority (excess-time-cost refuel) (importance ?x)

(urgency ?y)))

The priority value derived from a priority clause depends
on how busy the agent is when the task needs the
contested resource. If an agent has a lot to do (workload is
high), tasks will have to be deferred, on average, for a
relatively long interval. There may not be time to do all
desired tasks – or more generally – to avoid all basis
events. In such conditions, the importance associated with
avoiding a basis event should be treated as more relevant
than urgency in computing a priority, thus ensuring that

those basis events which do occur will be the least
damaging.

In low workload, the situation is reversed. With enough
time to do all current tasks, importance may be irrelevant.
The agent must only ensure that deadlines associated with
each task are met. In these conditions, urgency should
dominate the computation of task priority. The tradeoff
between urgency and importance can be represented by the
following equation:

 priorityb = S*Ib + (Smax-S)Ub

S is subjective workload (a heuristic approximation of
actual workload); Ib and Ub represent importance and
urgency for a specified basis (b). To determine a task’s
priority, APEX first computes a priority value for each
basis, and then selects the maximum of these values.

Interruption Issues

A task acquires control of a resource in either of two ways.
First, the resource becomes freely available when its
current controller terminates. In this case, all tasks whose
execution awaits control of the freed up resource are given
current priority values; control is assigned to whichever
task has the highest priority. Second, a higher priority task
can seize a resource from its current controller,
interrupting it and forcing it into a suspended state.

A suspended task recovers control of needed resources
when it once again becomes the highest priority
competitor for those resources. In this respect, such tasks
are equivalent to pending tasks which have not yet begun.
However, a suspended task may have ongoing subtasks
which may be affected by the interruption. Two effects
occur automatically: (1) subtasks no longer inherit priority
from the suspended ancestor and (2) each subtask is
reprioritized, possibly causing it to become interrupted.
Other effects are procedure-specific and must be specified
explicitly. PDL includes several primitives steps useful
for this purpose, including RESET and TERMINATE.

 (step s4 (turn-on-headlights))
 (step s5 (reset) (waitfor (suspended ?s4))

For example, step s5 causes a turn-on-headlight task to
terminate and restart if it ever becomes suspended. This
behavior makes sense because interrupting the task is
likely to undo progress made towards successful
completion. For example, the driver may have gotten as
far as moving the left hand towards the control knob at the

time of suspension, after which the hand will likely be
moved to some other location before the task is resumed.

Robustness against interruption

Discussions of planning and plan execution often consider
the need to make tasks robust against failure. For
example, the task of starting an automobile ignition might
fail. A robust procedure for this task would incorporate
knowledge that, in certain situations, repeating the turn-
key step is a useful response following initial failure. The
possibility that a task might be interrupted raises issues
similar to those associated with task failure, and similarly
requires specialized knowledge to make a task robust.
The problem of coping with interruption can be divided
into three parts: wind-down activities to be carried out as
interruption occurs, suspension-time activities, and wind-
up activities that take place when a task resumes.

It is not always safe or desirable to immediately transfer
control of a resource from its current controller to the task
that caused the interruption. For example, a task to read
information off a map competes for resources with and
may interrupt a driving task. To avoid a likely accident
following abrupt interruption of the driving task, the agent
should carry out a wind-down procedure (Gat, 1992) that
includes steps to, e.g., pull over to the side of the road.
The following step within the driving procedure achieves
this behavior.

 (step s15 (pull-over)
 (waitfor (suspended ?self))
 (priority (avoid-accident) (importance 10)

(urgency 10)))

Procedures may prescribe additional wind-down behaviors
meant to (1) facilitate timely, cheap, and successful
resumption, and (2) stabilize task preconditions and
progress – i.e. make it more likely that portions of the task
that have already been accomplished will remain in their
current state until the task is resumed. All such actions
can be made to trigger at suspension-time using the
waitfor eventform (suspended ?self).

In some cases, suspending one task should enable others
meant to be carried out during the interruption interval.
Typically, these will be either monitoring and
maintenance tasks meant, like wind-down tasks, to insure
timely resumption and maintain the stability of the
suspended task preconditions and progress. Windup
activities are carried out before a task regains control of
resources and are used primarily to facilitate resuming
after interruption. Typically, windup procedures will

include steps for assessing and “repairing” the situation at
resume-time – especially including progress reversals and
violated preconditions. For example, a windup activity
following a driving interruption and subsequent pull-over
behavior might involve moving safely moving back on to
the road and merging with traffic.

Continuity and intermittency

Interruption raises issues relating to the continuity of task
execution. Three issues seem especially important. The
first, discussed in section 4, is that not all tasks requiring
control of a given resource constitute significant
interruptions of one another’s continuity. The PROFILE
clause allows one to specify how long a competing task
must require the resource in order to be considered a
source of conflict.

Second, to the extent that handling an interruption
requires otherwise unnecessary effort to wind-down,
manage suspension, and wind-up, interrupting an
ongoing task imposes opportunity costs, separate from and
in addition to the cost of deferring task completion. These
costs should be taken account of in computing a task’s
priority. In particular, an ongoing task should have its
priority increased (over what it would be if not yet begun)
in proportion to the costs imposed by interruption. In
PDL, this value is specified using the INTERRUPT-COST
clause. For example, the clause

 (interrupt-cost 5)

within the driving procedure indicates that a driving
interruption should cause 5 to be added to a driving task’s
priority if it is currently ongoing.

The third major issue associated with continuity concerns
slack time in a task’s control of a given resource. For
example, when stopped behind a red light, a driver’s need
for hands and gaze is temporarily reduced, making it
possible to use those resources for other tasks. In driving,
as in many other routine behaviors, such intermittent
resource control requirements are normal; slack time
arises at predictable times and with predictable frequency.
A capable multitasking agent should be able to take
advantage of these intervals to make full use of resources.
In PDL, procedures denote the start and end of slack-time
using the SUSPEND and REPRIORITIZE primitives.

 (step s17 (suspend ?self)
 (waitfor (shape ?object traffic-signal)

 (color ?object red)))
 (step s18 (monitor-object ?object) (waitfor ?s17))
 (step s19 (reprioritize ?self)
 (waitfor (color ?object green)))

Thus, in this example, the driving task will be suspended
upon detection of a red light, making resources available
for other tasks. It also enables a suspension-time task to
monitor the traffic light, allowing timely reprioritization
(and thus resumption) once the light turns green.

Computing Priority

To compute priority, APEX uses a version of the
previously described priority equation that takes into
account two additional factors. First, an interrupt cost
value is added to priority if an interrupt-cost has been
specified and the task is currently ongoing. Second, the
computation should recognize limited interaction between
the urgency and importance terms. For example, it is
never worth wasting effort on a zero-importance task,
even it has become highly urgent. Similarly, a highly
important task with negligible urgency should be delayed
to avoid the opportunity cost of execution. Such
interactions are represented by the discount term 1/(1+x).
Thus the priority function2:

b
b

bb U
I

SSI
U

SICpriority)
1

1
1)(()

1
1

1(max ?
???

?
???

where IC represents interrupt cost and other parameters
are as previously described.

Future Work

APEX development has been driven primarily by the need
to perform capably in a simulated air traffic control world
(Freed and Remington, 1997), a task environment that is
especially demanding on an agent’s ability to manage
multiple tasks. Applying the model to ever more diverse
air traffic control scenarios has helped to characterize
numerous factors affecting how multiple tasks should be
managed. Many of these factors have been accounted for
in the current version of APEX; many others have yet to
be handled.

2 Prioritization mechanisms also incorporate a factor designated
task refractory-state representing reduced priority for a
repeating task immediately following execution. The problem of
managing repetition is not considered here.

For example, the current approach sets a task’s priority
equals the maximum of its basis priorities. This is
appropriate when all bases refer to the same underlying
factor (e.g. being late to a meeting vs. being very late).
However, when bases represent distinct factors, overall
priority should derive from their sum. Although APEX
does not presently include mechanisms for determining
basis distinctness, PDL anticipates this development by
requiring a basis description in each priority clause.
Other prospective refinements to current mechanisms
include allowing a basis to be suppressed if its associated
factor is irrelevant in the current context, and allowing
prioritization decisions to be made between compatible
task groups rather than between pairs of tasks. The latter
ability is important because the relative priority of two
tasks is not always sufficient to determine which should be
executed. For example: tasks A and B compete for
resource X while A and C compete for Y. Since A blocks
both B and C, their combined priority should be
considered in deciding whether to give resources to A.

Perhaps the greatest challenge in extending the present
approach will be to incorporate deliberative mechanisms
needed to optimize multitasking performance and handle
complex task interactions. The current approach manages
multiple tasks using a heuristic method that, consistent
with the sketchy planning framework in which it is
embedded, assumes that little time will be available to
reason carefully about task schedules. Deliberative
mechanisms would complement this approach by allowing
the agent to manage tasks more effectively when more
time is available.

Acknowledgements

Thanks to Jim Johnston, Roger Remington, and Michael
Shafto for their interest and support, and to Barney Pell
for comments on a previous draft of this paper.

References

Cohen, P.R., Greenberg, M.L., Hart, D., and Howe, A.E.
1989. An Introduction to Phoenix, the EKSL Fire-
Fighting System. EKSL Technical Report,. Department
of Computer and Informational Science. University of
Massachusetts, Amherst.

Firby, R.J. 1989. Adaptive Execution in Complex
Dynamic worlds. Ph.D. thesis, Yale University.

Freed, M. & Remington, R.W. 1997. Managing Decision
Resources in Plan Execution. In Proceedings of the

Fifteenth Joint Conference on Artificial Intelligence,
Nagoya, Japan.

Freed, M. 1998. Simulating human performance in
complex, dynamic environments. Ph.D. thesis,
Northwestern University.

Gat, Erann. 1992. Integrating planning and reacting in
heterogeneous asynchronous architecture for controlling
real-world mobile robots. In Proceedings of 1992
National Conference on Artificial Intelligence.

Georgeff, M and Lansky, A. 1987. Reactive Resoning and
Planning: An Experiment with a Mobile Robot.
Proceedings of 1987 National Conference on Artificial
Intelligence.

Hayes-Roth, B. 1995. An architecture for adaptive
intelligent systems. Artificial Intelligence, 72, 329-365.

Pell, B., Bernard, D.E., Chien, S.A.., Gat, E., Muscettola,
N., Nayak, P.P., Wagner, M., and Williuams, B.C. 1997.
An autonomous agent spacecraft prototype. Proceedings
of the First International Conference on Autonomous
Agents, ACM Press.

Schneider, W. and Detweiler, M. 1988. The Role of
Practice in Dual-Task Performance: Toward Workload
Modeling in a Connectionist/Control Architecture.
Human Factors, 30(5): 539-566.

Simmons, R. 1994. Structured control for autonomous
robots. IEEE Transactions on Robotics and Automation.
10(1).

