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Abstract

The proliferation of mobile devices and their tendency to present information proac-
tively has led to an increase in device generated interruptions experienced by users.
These interruptions are not confined to a particular physical space and are om-
nipresent. One possible strategy to lower the perceived burden of these interruptions
is to cluster non-time-sensitive interruptions and deliver them during a physical activ-
ity transition. Since a user is already “interrupting” the current activity to engage in
a new activity, the user will be more receptive to an interruption at this moment. This
work compares the user’s receptivity to an interruption triggered by an activity tran-
sition against a randomly generated interruption. A mobile computer system detects
an activity transition with the use of wireless accelerometers. The results demonstrate
that using this strategy reduces the perceived burden of the interruption.
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Chapter 1

Introduction

Emerging technologies and their pervasive nature have contributed towards an in-

crease in events requiring the attention of the consumer. The use of mobile devices

has become widespread because devices can provide information when it is available.

However, these devices are designed to proactively provide information, thereby in-

terrupting the consumer from his/her current task and demanding attention from

the consumer. Emerging applications such as location-based mobile phone services

will generate more proactive messages, adding to the already growing number of in-

terruptions created by mobile devices. A challenge lies in minimizing the disruption

caused by these interruptions. This work explores the idea that mobile devices may

be improved by clustering together potential interruptions that are not time-sensitive

and delivering them at times the user will perceive to be more appropriate and less

disruptive.

There are two key factors that impact the perceived burden of an interruption.

The first is that the exact moment chosen to gain the user’s attention can drastically

alter the user’s receptiveness towards the interruption. An application should be de-

signed to wait for a moment at which the user’s perceived burden of the interruption

is low. An aspect of determining the message’s moment of delivery depends on the

information embedded in the message, also known as the utility of the message. A

critical message maybe be better suited for immediate delivery, whereas a non-time

critical message might be better received if it was time-shifted to a later moment. The

15



second factor that impacts the perceived burden of interruption is the method of de-

livery, or the medium of the interruption. The method of delivery should be adjusted

to suit the moment of delivery to lessen the perceived burden of the interruption. For

example, consider an office worker sitting at his/her desk discussing a report with

his/her supervisor. If the phone were to ring and it turned out to be a co-worker with

updated information for the report, the office worker might be extremely receptive

to this phone call. However, if the phone call came from a friend to discuss plans for

the weekend, then the office worker might be less receptive to the interruption. On

the other hand, the office worker might be receptive to the phone call from the friend

if the phone displayed the message visually instead of using the ring to signal the

interruption. The visual notification is less likely to disrupt the flow of the current

conversation, perhaps lowering the perceived burden of the interruption.

This work is motivated by the observation that a transition in a physical activity

can be viewed as an interruption. The user is “interrupting” the current activity to

embark on a new activity. This interruption may signify that a user has completed

a task, possibly lowering his/her mental load since there is no longer a need to focus

efforts on the task. Furthermore, it has been shown that an interruption occurring

during an activity task requiring a higher memory load is more disruptive to a person’s

efficiency when compared with a task requiring a lower memory load [1]. This work

tests the hypothesis that delivering an interruption at this moment may result in a

lower perceived burden because the user is already transitioning physically.
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Chapter 2

Related Work

Interruptions have been studied for psychology and human-computer interaction pur-

poses since the 1920s [5]. Previous work has dealt with defining interruption, modeling

interruption, detecting interruptability with sensors, and detecting interruptability in

mobile applications.

2.1 Defining Interruption

An interruption is an event that breaks the user’s attention from the current task to

focus temporarily on the event [23]. In an office situation, interruptions may range

from e-mail alerts to impromptu meetings in the hallway. Interruptions are not always

disruptive; some are even beneficial to the user. For example, when a person takes a

coffee break or uses the restroom, it is often a self-initiated interruption from his/her

current work that helps him/her refocus on the task at hand.

A universal definition of interruptability has not yet been reached, with varying

interpretations of “interruptability.” As a result, at least seven metrics have been used

to evaluate the effect of an interruption. Table 2.1 compares the different definitions

of interruptability and how they were measured in eight recent studies. This work

defines interruptability as the perceived burden of interruption, or the receptiveness

of the user towards the interruption. The perceived burden of the interruption is not

equivalent to the actual disruptiveness of the interruption. A user may perceive an

17



Authors Definition of Interruptabil-
ity

Measure of interruptability

Bailey et. al. [1] Waiting for an opportune
moment to avoid disruption
on the primary task

The amount of time neces-
sary to complete the inter-
ruption task and the original
task while maintaining accu-
racy

Horvitz et. al. [8] Cost of interruption based
on the user’s model of atten-
tion, such as high-focus solo
activity

Willingness to pay to avoid
the disruption

Hudson et. al. [13] Perceived burden of inter-
ruption

Self-reports of interruptabil-
ity on a scale of 1-5

McFarlane [19] Cognitive limitations to
work during an interruption

Completion time, perfor-
mance accuracy, and num-
ber of task switches

Kern [14] Value of the notification Self-annotation of the value
of a notification

McCrickard et. al. [18] Unwanted distraction to pri-
mary task

Accuracy

Speier et. al. [23] Ability to facilitate decision
making

Performance on decisions

Hess et. al. [6] Cognitive activity disrup-
tion

Accuracy and reaction time

Table 2.1: Comparison of the different definitions of interruptability and the mea-
surement of interruptability.
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interruption as not disruptive, but the interruption may have resulted in the user

requiring more time to complete the task at hand.

2.2 Modeling Interruption

An exhaustive model of interruption should at least include the eleven factors de-

scribed in Table 2.2. The table also contains a brief description of the factors, along

with the works that have studied those particular aspects of interruption. Appendix A

contains a detailed summary of the prior literature that explores these factors. Using

the eleven different factors, the perceived burden of an interruption at a particular

time t can be summarized by Formula 2.1, where n is the total number of factors used

in the model, pi(t) is the perceived burden of the ith factor, and wi(t) is the weight

of the factor.

burden(t) =
n∑

i=1

pi(t)× wi(t) (2.1)

No system has been built that is capable of detecting the effect of each factor

in the model. Additionally, some factors cannot be detected reliably using existing

sensors; for example, predicting the future activity of the user is non-trivial. As a

result, researchers simplify their model of interruption by limiting their study to a few

factors. The selection of these factors is influenced by the availability of the sensors

that can reliably detect them.

2.3 Detecting Interruptability with Sensors

A previous study examined the sensors needed to predict a user’s interruptability in

an office setting. Managers were prompted on a wireless pager to self-report their

interruptability. The study determined that there were periods of lull during the

day when interruptions were better received. In addition, an interruption during a

planned event was usually more disruptive. Using these observations, a model was

created that incorporated the activity of the user, the emotional state of the user and

19



Factor Description of the Factor References
Activity of the user The activity the user was engaged

in during the interruption
[5, 6, 4, 17, 1]

Utility of message The importance of the message to
the user

[4, 28]

Emotional state of the user The mindset of the user, the time of
disruption and the relationship the
user has with the interrupting inter-
face or device

[29, 12, 9, 16]

Modality of interruption The medium of delivery, or choice
of interface

[29, 26, 23, 10]

Frequency of interruption The rate at which interruptions are
occuring

[23]

Task efficiency rate The time it takes to comprehend
the interruption task and the ex-
pected length of the task

[6, 23, 28]

Authority level The perceived control a user has
over the interface or device

[12, 25]

Previous and future activi-
ties

The tasks the user was previously
involved in and might engage in
during the future

[8]

Social engagement of the
user

The user’s role in the current activ-
ity

[14, 11]

Social expectation of group
behavior

The surrounding people’s percep-
tion of interruptions and their cur-
rent activity

[14]

History and likelihood of re-
sponse

The type of pattern the user follows
when an interruption occurs

[19, 22]

Table 2.2: Comparison of the different definitions of interruptability and the mea-
surement of interruptability.
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the social engagement of the user. It was determined that these factors can be tracked

using a microphone sensor, the time of the day, and monitors for telephone, keyboard,

and mouse usage [13]. These factors were sufficient to determine interruptability with

an accuracy of 75-80% when using simulated sensors.

Another study used the social engagement of the user, the activity of the user, and

the social expectation of group behavior to build a model of interruption. This study

showed that the cost of interruption of a user can be determined with a 73% accuracy

using the calendar from Outlook, ambient acoustics in the office, visual analysis of the

user’s pose to obtain a model of attention, and activity on the desktop [8]. However,

this classifier is confined to a particular physical space and can not be extended to

cover the general space.

In a separate study exploring interruptability in a mobile setting, the user’s inter-

ruptability with respect to PDA-generated alerts was examined. Here, the model of

interruptability was built using the user’s likelihood of response and the previous and

current activity. The three sensors necessary to detect these factors were a two-axis

linear accelerometer (or a tilt sensor), a capacitive touch sensor to detect if the user

was holding the device, and an infrared proximity sensor that detected the distance

from nearby objects. The system used the tilt sensor to determine if the user had

acknowledged the PDA alert. The touch sensors were used to determine if the device

had been in recently used. Recent usage of the mobile device was considered to imply

that the user was available for subsequent notifications. The infrared sensor was used

to determine if the head was in close proximity to the PDA, indicating that the user

was receptive to the alert. This device has been prototyped and tested under lab

settings where the PDA alerts were simulated phone calls [7].

Another study estimated a user’s personal interruptability using the activity of the

user, the social engagement of the user, and the social expectation of group behavior.

The sensor network to determine these factors included a two-axis accelerometer at-

tached to a user’s right thigh to measure a user’s activity, a microphone that detected

auditory context for the social situation, and a wireless LAN access point to determine

the user’s location within the building as well as outdoors. It was found that this
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model could determine interruptability with 94.6% accuracy. However, these results

were only preliminary and interruptabilities were annotated manually afterwards to

determine the accuracy of the system [14]. The preliminary findings were obtained

under semi-naturalistic conditions using subjects affiliated with the project.

2.4 Detecting Interruptability in Mobile Applica-

tions

Applications have been designed to utilize sensors in the environment to model a

user’s situation and detect a user’s interruptability. A mobile phone application

adjusted the modality of the interruption based on the activity of the user and the

social expectation of group behavior. This application used light, accelerometers,

and microphones to observe these factors and thereby adjusted the ringer and vibrate

settings to the situation [22]. However, this mobile phone was only tested on lab

reseachers. Furthermore, the accuracy of the sensors in detecting context of the user

was also simulated under laboratory settings.

The Context-Aware Experience Sampling (CAES) application builds the model

of interruptability based on activity transitions. These transitions were detected

using a heart rate monitor and a planar accelerometer to obtain 83% classification

accuracy for experience sampling [21]. The application was also used to trigger an

interruption during an activity transition; however, the triggered interruptions were

found to be more disruptive. This result may have been due to the high frequency

of interruptions experienced by users. Finally, the focus of the work was on testing

the accuracy of the activity transition detection algorithm, instead of validating the

theory that interrupting users at activity transitions is better than interrupting them

at different times.

In a separate study, the activity of the user and the emotional state of the user was

used to estimate the interruptability of the user. The inputs from an accelerometer, a

heart rate monitor, and a pedometer were used to trigger interruptions. Users of the
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study were more receptive when the system was emotionally friendly and triggering off

non-stressful activities as opposed to an unresponsive, random triggering system [15].

However, there was no significant difference between how the subjects rated the two

systems’ disruptiveness. Additionally, the study was only tested on seven subjects

most of whom were students.

Previous studies did not consider simplifying the model of interruptions to include

only the activity of the user and the utility of the message against the perceived burden

of interruption. In addition, prior systems utilized a mix of sensors to measure the

activity of the user such as an accelerometer and a heart rate monitor. However,

it has not been shown whether accelerometers alone are sufficient to detect a user’s

perceived burden of interruption at a particular moment in time.
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Chapter 3

Experimental Framework

Two key aspects in modeling interruption identified in previous studies are the activity

of the user and the utility of the information. Other factors include: emotional state

of the user, modality of the interruption, frequency of the interruption, comprehension

and task efficiency rate of the interruption, authority level (control the user has over

the interruption), previous and future activities of the user, social engagement of the

user, social expectation of group behavior concerning the user’s situation, history of

user interaction, and the likelihood of response. Refer to Appendix A for a discussion

of detailed connections with prior work.

The different factors are not independent of one another. For instance, the fre-

quency of the interruption may directly impact the emotional state of the user. It is

difficult for a computer system to automatically detect most of these factors reliably.

Even if a system were capable of reliable detection, it often uses encumbering sensors

or is unable to perform the detection in real-time. One aspect of the model that can be

detected consistently and through the use of mobile sensors is the activity. Therefore,

this work tests the impact of using the activity of the user to cluster interruptions.

An interruption that is placed at the end of a task will usually be less disruptive

and annoying than an interruption placed during a user’s task [1]. A person’s physical

activity and changes in physical activity are often likely to be correlated with a

person’s mental task transition. Therefore, when a physical activity transition occurs,

the user may already be in the process of interrupting his/her current activity and

25



consequently may be more likely to be receptive to an interruption.

Imagine a scenario where an office worker has been sitting at his/her desk all

morning trying to finish a report before the deadline. S/he will most likely not want

to receive a non-time-sensitive reminder to pick up his/her dry cleaning before heading

home. The ideal computer system would wait until an idle moment, during which

the user is free to read the reminder. However, the ideal computer system cannot be

created. A compromise between a simple random interruption scheduler and an ideal

system would involve a system that uses a physical activity transition as a trigger.

The system would deliver the reminder when the office worker gets up from the desk

to get some coffee or to take a lunch break. At this time, the user is already initiating

a break and the perceived burden of interruption will be lower than delivering the

message while s/he is at the desk. This strategy also has its pitfalls. The same

movement of getting up from the desk can also mimic a situation when the office

worker is getting up to present the report that s/he has been working on all morning.

However, given no other information about the user’s situation, the strategy of using

an activity transition as a trigger for an interruption may lead to a lower perceived

burden on the user.

To test the validity of this strategy, it was necessary to study users in a natural

setting where they were not confined to the desktop. Activity transitions needed to

be detected in real time using a mobile computing device and comfortable, unencum-

bering sensors. Wireless accelerometers were used as the input to a real-time activity

transition detection algorithm. The algorithm was validated in a previous study, in

which a C4.5 classifier used data from five accelerometers to achieve an accuracy rate

of 84%. Using just two accelerometers on the thigh and wrist, the accuracy rate

dropped only by 3.3% [3].

For this work, the algorithm was ported to run in real-time on an iPAQ Pocket PC.

To minimize the burden on subjects, two 3-axis wireless accelerometers were chosen

to detect activity transitions. The sensors were designed to be small, lightweight, and

low-cost. Each accelerometer runs on a coin cell battery that is replaced at the begin-

ning of each day [27]. Mean, energy, entropy, and correlation features were computed
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on 256 sample windows of acceleration data with 128 samples overlapping between

consecutive windows. At the sampling frequency of 100 Hz per accelerometer, each

window represents 1.28 seconds, thereby resulting in a responsive algorithm. Fea-

tures were extracted from the sliding window signals and passed through a previously

trained C4.5 supervised learning classifier for activity recognition. The C4.5 classi-

fier was trained to detect three activities, sitting, standing, and walking, using more

than 1500 training instances from 10 different subjects. The primary reason for these

particular activities is the high performance accuracy the C4.5 classifier exhibited

in previous work [3]. For more detail on the feature calculation, activity detection

algorithm, and training a classifier, see Appendices G and H.

This work measured the perceived burden of interruptions triggered at activity

transitions. A transition is defined as a change between two separate activities de-

tected by the real-time classifier algorithm under the following conditions: the dura-

tion of the previous activity must exceed 5 seconds, and 2 consecutive instances (or

3 seconds) of the current activity must have occurred. This definition eliminates the

temporary classification for intermediate activities when the activity detector may

rapidly toggle between two states due to noise. For example, to transition from sit-

ting to walking, the user will temporarily stand, but the physical activity transition is

that of sitting to walking. Furthermore, 2 of the 6 possible transitions were not con-

sidered in this work; if the subject transitioned from walking to standing, or standing

to walking, an interruption was not triggered. Situations such as a subject was talk-

ing to a coworker in the hallway or using a photocopier were taken into consideration

when deciding to remove these transitions from the algorithm.

3.1 Design and Materials

A Pocket PC (iPAQ) was used to monitor the activity transitions and collect data

from the wireless accelerometers. The iPAQ was set to interrupt once every 10-

20 minutes. The user was prompted for information through a set of chimes that

gradually increased in volume. After 30 seconds, the chimes were replaced by a
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beep that also gradually increased in volume. The iPAQ randomly chose one of the

following two questions to display on the screen: “How receptive are you to a phone

call?” or “How receptive are you to a reminder?” Figure 3-1 shows a screenshot of the

dialogs. The gull graphic user interface is detailed in Appendix F. Subjects were told

Figure 3-1: The question screens.

that the reminder is a non-time critical reminder (e.g. it does not include a reminder

to attend a meeting in 5 minutes), and the user does not have access to the caller ID

for any phone calls. The participant was asked to answer the question using a scale

of 1-5, with 1 being not at all receptive. If the user did not respond within a minute,

the iPAQ logged a “no response”. In addition, if the user tapped the screen to turn

off the sound, it was also logged as a “no response”. Even though it can be assumed

that the user was not receptive at all during this moment, it could also coincide with

an accidental tap of the screen to turn off the sound before the user heard it. There

is no way to ensure which of these two possibilities occurred without relying on the

subject’s recall ability. The rates of no response ranged from 0-28%. The average
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rate of no response was 9.4% with a standard deviation of 7.8%.

Subjects experienced between 18-40 total interruptions spread out over the course

of the day. Each interruption required less than 10 seconds to complete. The system

either randomly generated an interruption or triggered an interruption using an ac-

tivity transition throughout the day. The system maintained a count of both types of

interruptions to ensure a balance between randomly generated interruptions and ac-

tivity transition triggered interruptions. Neither type was allowed to exceed the other

count by more than two. The algorithm would randomly generate a time between

10-20 minutes. If an activity transition occurred before the randomly chosen time,

then the activity transition would trigger an interruption unless there were already

too many of this type. However, if there had been too many random interruptions,

then the system would just wait for an activity transition.

Each participant was given two wireless accelerometers, one to be attached to the

outside of the right ankle using a small Velcro pouch and the other to the outside of

the left thigh right above the knee using an adhesive bandage. A potential subject

wearing the sensors is show in Figure 3-2. The accelerometers were manufactured to

Figure 3-2: A potential subject modeling the placement of the wireless accelerometers.

be inconspicuous, and were roughly the size of a quarter [27]. Figure 3-3 shows the

accelerometer in relation to a quarter, and the iPAQ attached to the receiver casing.
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Participants are asked to carry the iPAQ with them at all times either in a small

pouch that attached to the belt loop or in a small travel bag.

Figure 3-3: The 3-axis wireless accelerometer (top) and the iPAQ with the receiver
casing (bottom).

3.2 Procedure

The length of the study was one work day, which ranged from seven to eight hours.

Participants were given the iPAQ and the wireless accelerometers at the beginning of

their workday and instructed on how to wear them. They were also told to answer

each question based only on the particular situation at the time of the beep and asked

not to consider any previous questions. Subjects were asked to maintain their normal

work schedule. At the end of the day, a 30-minute wrap-up interview was conducted.

The details of the subject protocol are discussed in Appendix B.
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3.3 Subjects

The study protocol was approved by the Massachusetts Institute of Technology Com-

mittee on the Use of Human Subjects. Subjects were recruited through posters placed

in the Boston area. The posters contained the following text: ”Carry a cell phone?

Help MIT Researchers learn how to design user-friendly mobile devices.” E-mails were

also sent with the same text to local mailing lists.

Twenty-five subjects (9 male, 16 female) participated in this study. Two potential

subjects were dropped from the data. One participant stopped the study because s/he

found the device too disruptive; another participant did not push the OK button

after responding to the question, preventing the system from logging any of his/her

responses. The participants were between the ages of 19 and 36, with an average

age of 25.6 and a standard deviation of 3.32. Table 3.1 illustrates the subjects’

occupations. All the subjects owned a mobile phone and were not affiliated with

the research group. The subjects carried the iPAQ for an average of 8 hours and

25 minutes with a standard deviation of 1 hour and 18 minutes. Each subject was

compensated for his/her participation with a ten-dollar gift certificate.

Occupation Number of Subjects
Administrative Staff 3

Lab Researcher 5
Office Professional 12
Field Professional 4
Customer Service 1

Table 3.1: Subjects by their occupation
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Chapter 4

Results

The results are presented in two parts. First, evidence is presented showing that the

algorithm is capable of detecting activity transition in real-time. The results of the

interruption study follow.

4.1 Verification of Transition Detection Algorithm

The performance of the activity detection algorithm was measured against 393 phys-

ical activity transitions. Appendix H describes the process of training a C4.5 super-

vised learning classifier. The strategy used to validate the activity transition detection

algorithm was subject self-annotation. Two iPAQs were calibrated to have the same

time. One ran the activity detection algorithm, and the other iPAQ ran a simple

program that allowed the user to mark his/her activity by choosing one of the three

activity transitions. Ten colleagues who did not participate in the interruption study

were used. Five people were randomly chosen from the original ten subjects used

to train the classifier. These five subjects were asked to wear the sensors twice, the

first time to train the C4.5 classifier, and the second time to measure the classifier’s

performance. It was difficult for subjects to indicate a transition precisely when it

occurred. Provided the difference between the self-annotated transition time and the

activity transition detection algorithm time differed by no more than 10 seconds, it

was considered a valid classification.
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A confusion matrix was calculated for each subject. In addition, confusion ma-

trices were computed for the five subjects who contributed to training data, the five

subjects who were not involved in the training process, and all 10 subjects combined.

The confusion matrices can be seen in Appendix D along with a table that summarizes

the results for these two groups.

False-positives are defined as cases in which the algorithm detected a transition

when one did not occur. Situations when physical transitions occurred but the al-

gorithm was unable to detect any transitions are considered false-negatives. Cases

are incorrectly classified when the algorithm detected another transition that was not

the same as the physical transition. The real-transition accuracy is the percentage

of real transitions the classifier was able to detect. This is calculated by dividing the

number of correct transitions the algorithm detected by the total number of physi-

cal transitions. The classifier-transition accuracy is the percentage of transitions the

algorithm correctly classified, if a transition was classified at all; it is computed by

dividing the total number of classifications into the number of correct transitions the

algorithm detected.

False- False- Incorrect Real-transition Classifier
positives negatives classifications accuracy accuracy

Mean 3.125% 12.26% 5.729% 82.55% 91.15%
Standard Dev 7.89% 4.50% 3.62% 6.97% 8.71%

Table 4.1: Summary of the means and standard deviations for the activity transition
detection algorithm evaluated on the 5 subjects not used to train the classifier.

Table 4.1 summarizes the means and standard deviations of the algorithm’s per-

formance on the five subjects not used to train the classifier. The classifier did not

perform consistently for all the subjects, as illustrated by the standard deviation.

One subject jerked his leg for a period of time, leading to a high number of false

positives. In addition, the subject acknowledge that he missed recording some of the

transitions. He specified the time at which this occurred, and any transitions during

this time period were not used in the evaluation. However, it is possible that a few

unmarked transitions remained in the data, resulting in an artificially low classifier
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and real-transition accuracy.

False negative cases can also result in incorrect classification. If the algorithm

missed an activity transition, such as sitting to standing, but detected the change in

activity to movement, the detection algorithm will incorrectly classify the transition

as sitting to walking. The classifier had a relatively high number of false negatives in

one subject, in comparison with the other five untrained subjects. These false nega-

tives occurred because the subject transitioned before 10 seconds had elapsed for the

current activity. Since a transition is defined as an event in which a user has engaged

in the current activity for at least 10 seconds before moving onto the next activity,

this physical transition was not classified by the algorithm. The false negatives for

the subject resulted in a higher number of incorrect classifications, thereby affecting

the real-transition accuracy and the classifier-transition accuracy.

Table 4.2 summarizes the results of the activity transition detection algorithm for

all subjects. The algorithm has a higher detection accuracy for the trained subjects,

as expected. However, the accuracy only drops by 8% on untrained subjects. For

the interruption study, the key measure is the 91.15% accuracy with respect to the

classifier. The interruption experience requires a low false positive and incorrect

classification percentage. It is important that when the algorithm detects a transition

that the transition actually occurred and was correctly classified. The relatively high

number of false negatives will not affect the interruption study protocol because an

interruption will not be triggered at that particular moment. This may have resulted

in less interruptions experienced by the user, since a balance is kept between randomly

generated interruptions and activity transition triggered interruptions. Missing a

transition was not expected to skew the analysis of the data. There is the possibility

that a random interruption occurred during an activity transition. However, over the

course of the day, it was assumed that this interruption would not have a significant

effect on the overall receptivity of the user for either random interruptions or triggered

interruptions.

The algorithm’s weakness is the inability to catch all physical activity transitions.

Approximately 11% of the time, the algorithm will miss a physical transition dur-
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False- False- Incorrect Real-transition Classifier
positives negatives classifications accuracy accuracy

Used in classifier 4.68 9.945 2.34 87.85 92.98
Not in classifier 3.13 12.26 5.73 82.55 91.14

All 3.86 11.2 4.13 84.99 92.01

Table 4.2: Summary of verification results for the activity transition detection al-
gorithm broken down by the subjects used to train the classifier, the subjects not
related to the classifier, and all 10 subjects

ing the interruption study. The performance of the classifier could be improved by

loosening the restrictions on what is considered an activity transition. Since the tran-

sition requires at least 10 seconds of the previous activity and at least 3 seconds of

the current activity, a quick physical transition will be missed by the algorithm.

A consequence of the inability to capture all physical transitions is that it increases

the likelihood of incorrectly classifying the subsequent transition. As noted in the

paragraph discussing the performance anomalies for subjects unrelated to training

the classifier, the high number of false negative cases resulted in a higher incorrect

classification rate for that particular subject. The algorithm is not likely to correctly

identify the physical transition if it misses the previous activity.

In addition, any temporary classification that was used by a subject was not

detected by the algorithm because of the classifier’s definition of a physical transition.

For instance, if the subject annotated that s/he went from sitting to standing before

walking, the classifier missed the transition sitting to standing, but captured the

transition sitting to walking.

The activity transition detection may also capture high frequency or high move-

ment fidgeting. The algorithm was designed to remove as much noise from the tempo-

rary classifications as possible by requiring the previous activity to last for a duration

exceeding 10 seconds. However, there are several cases where the classifier captured

the fidgeting. Fidgeting is the source of the majority of the false-positive states.
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4.2 Interruption Study

The number of interruptions experienced by subjects ranged from 16-48. The mean

number of interruptions was 28.8 with a standard deviation of 7.1. For plots of a

subject’s response over the course of the day, see Appendix C.

The subjects’ responses were analyzed using a paired t-test. This test was used

because it tested the difference in overall receptivity of the user between the two types

of interruption, random and activity transition triggered. The data was aggregated on

a subject level by calculating the associated means and standard deviations for each

subject [24] . Appendix I details the method of computation used for the statistical

analysis of the results.

A user’s failure to respond, or “no responses” were dealt in two different ways. The

first method involved dealing with no responses in a manner consistent with Ecological

Momentary Assessment (EMA) or Experience Sampling Methods (ESM) [24]. “No

responses” were not used in the computation. This method was appropriate since

it was unknown whether the user failed to answer the question because s/he was

unreceptive or because s/he did not hear the audio prompt. The second method

involved treating a “no response” as “extremely unreceptive”. The analysis was

computed with no responses taking on the value of 1, which represents not at all

receptive. The assumption in this case was that the user was unable to respond to

the question and was therefore not at all receptive to an interruption.

The accuracy of the classifier was simulated by randomly removing 9% of the

activity transition responses and changing them to be random interruptions. 9% was

obtained by taking 100% and subtracting off the classifier accuracy of the algorithm

on subjects who did not train the classifier as noted in the previous section, which

was 91.15%. In addition, the worst case scenario was simulated by equating the

accuracy of the classifier to 82.44%, one standard deviation below the average classifier

accuracy.

The aggregated data was analyzed using several separate two-tailed paired t-tests.

The t-tests used a confidence interval of 95% with a significance level of p = 0.05.
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The upper bound and lower bound for the confidence interval mark the boundaries

where the expected difference in means of 95% of the population to fall. Any signif-

icance level lower than 0.05 with a confidence interval that does not intercept zero

corresponds to a significant result. A confidence interval that contains zero signifies

that there is no difference in the means. The expected mean of the entire popula-

tion, if it was sampled, would lie in the boundaries of the confidence interval with

a probability of 0.95. Appendix D contains the complete outputs of the statistical

analysis for all t-tests performed. Table 4.3 summarizes the results of the paired t-

tests using a classifier accuracy of 91.15%, while Table 4.4 summarizes the worst case

scenario. Finally, Table 4.5 contains the mean and standard deviation of the number

of triggered interruptions experienced by the subjects.

Lower Bound of Confidence Interval Upper bound of Confidence Interval Significance
“NO RESPONSES” OMITTED

All responses -0.52 -0.24 <0.001
Phone calls only -0.45 0.024 0.076
Reminders only -.82 -0.32 <0.001
Male subjects -0.55 -0.19 0.002

Female subjects -0.59 -0.18 0.001
“NO RESPONSES” INCLUDED

All responses -0.47 -0.19 <0.001
Phone calls only -0.54 -0.10 0.007
Reminders only -0.82 -0.32 <0.012
Male subjects -0.48 -0.10 0.009

Female subjects -0.55 -0.14 0.003

Table 4.3: Summary of paired t-tests results for a classifier with 91.15% accuracy

Lower Bound of Confidence Interval Upper bound of Confidence Interval Significance
“NO RESPONSES” OMITTED

All responses -0.53 -0.20 <0.001
Phone calls only -0.71 -0.05 <0.001
Reminders only -0.85 -0.17 0.005
Male subjects -0.65 -0.05 0.027

Female subjects -0.59 -0.12 0.005
“NO RESPONSES” INCLUDED

All responses -0.43 -0.06 0.010
Phone calls only -0.69 -0.07 0.017
Reminders only -0.51 0.04 0.092

Sitting to walking transitions -0.71 -0.09 0.013
Sitting to standing transitions -0.25 0.66 0.355
Walking to sitting transitions -0.65 0.18 0.063
Standing to sitting transitions -0.62 0.09 0.135

Male subjects -0.69 0.06 0.086
Female subjects -0.48 -0.04 0.022

Table 4.4: Summary of paired t-tests results for a classifier with 82.44% accuracy

The results indicate a significant increase for activity triggered responses compared

to random responses, p <0.05. This significant increase in activity triggered responses

is independent of the manner in which “no responses” were treated. In addition,
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Triggered Triggered Phone Reminder Phone Reminder
91% 82% 91% 82% 91% 81%

Mean 12.6 11.4 6.8 5.8 6.3 5.1
Std.Dev 3.6 3.3 2.9 2.4 2.7 2.4

Table 4.5: The means and standard deviations for the number of triggered responses
experienced by the subjects broken down by the classifier accuracy

this difference holds for the worst case scenario, in which the classifier performs one

standard deviation below the expected accuracy.

The results also indicate a significant increase for activity triggered responses

with respect to the reminder, p <0.05. The difference is significant for both the

average and worst case scenarios of the classifier accuracy. However, the results only

indicate a significant increase for activity triggered responses with respect to the

phone call with the worst case scenario, where the classifier accuracy is 82%. The

results do not indicate a significant increase for the activity transition triggered phone

call interruptions in the average simulated performance of the classifier.

In the wrap-up interview, subjects were asked to estimate the number of inter-

ruptions they experienced and whether they would recommend the study to a friend.

The rationale behind both questions was that if the subject was irritated by the

study, s/he would overestimate the number of interruptions experienced and choose

not to recommend the study to a friend [15]. The mean for the difference between the

number of estimated interruptions to actual interruptions was -1.76 with a standard

deviation of 16. The range was -14 to +71. One participant estimated 100 interrup-

tions when s/he had only experienced 29. 19 of the subjects would recommend the

study to a friend. The remaining six subjects were split between not recommending

the study at all and possibly recommending the study.

The subjects also had differing values of the two types of interruptions. Nine of

the 25 of the participants favored a reminder while the remaining 16 preferred phone

calls. Most subjects who favored the reminder estimated an average phone call to

take at least 10 times as long as a reminder. In addition, only two of the 25 subjects

muted the study. Both subjects muted it for a total of one hour.
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Chapter 5

Discussion and Future Work

The results support the strategy of using activity transitions as a trigger for non-time-

critical interruptions. This study suggests that by delaying interruptions that are not

time-sensitive and marking them for delivery during a physical activity transition, the

user may be more receptive towards these interruptions. We have also shown that

two 3-axis wireless accelerometers can reliably detect a user’s activity transition real

time and be used for interruption triggering.

In addition, the results also suggest that the utility of message has an effect on

the receptivity of the user. Users may be more receptive towards activity transition

triggered reminders, whereas there may not be a difference in receptivity to activity

transition triggered phone calls. However, this outcome may be skewed by the num-

ber of triggered responses for each type of message. As noted in Figure 4.5, the mean

number of triggered responses in the average classifier scenario is 6.8 for phone calls

and 5.8 for reminders. Furthermore, the standard deviation for the two responses are

2.9 and 2.4. This suggests that in the worst situation, a subject may have experi-

enced less than four triggered phone call interruptions and four triggered reminder

interruptions. If a subject answered any of the interruptions with an extreme rating

(either 1 or 5), this could drastically alter the mean of the response for that particular

subject. This could be a possible explanation for the difference in significance levels

between the two different classifier accuracies. There is a possibility that when activ-

ity transition responses were removed for the 91% classifier accuracy simulation, the
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more receptive responses may have been removed. It is also possibile that in the 82%

accuracy simulation, the unreceptive responses were randomly selected to be removed

Either of these two situations could alter the significance level of the paired t-tests.

Regardless of the type of interruption, subjects’ responses were generally lower

when they were talking to their supervisor. The warp up interviews frequently in-

dicated that the reasoning for choosing 1 was that the participant was talking to

his/her supervisor. Using an activity transition as a trigger of interruptions should

avoid scenarios when both the manager and the subject are sitting at the desk, but it

does capture the situation when a subject gets up to walk to the manager’s office and

sit back down. Subjects were also asked whether an interruption of a different type

(maybe breaking news, an e-mail message, or an exercise to de-stress) or a different

medium of delivery would make a difference. Some subjects responded positively to

the use of vibrations to notify the user of the interruption, making the situation less

socially awkward, but acknowledged that they still would be unable to respond to

the interruption immediately.

Lab researchers in particular complained that an interruption would occur while

they were conducting an experiment. Two participants reported that they had to

remove their gloves to answer the questions. A few lab researchers had considered not

carrying around the iPAQ because they were involved in work that required precise

measurements and could not afford to be interrupted. Additionally, another lab

researcher noted that s/he was interrupted more frequently during an appointment

with a patient. The reason for the higher frequency was due to the fact that the

researcher often walked to attend to the patient and then sat down to perform tests

multiple times during the appointment, signaling an interruption. This situation

would require additional sensors to detect the presence of a patient since the strategy

of using an activity transition as a trigger was not appropriate.

One of the office professionals also noted that when s/he was less receptive, the

iPAQ seemed to deliver interruptions at a higher frequency. The subject then de-

scribed that s/he was leading a board discussion with several coworkers and clients

and was frequently interrupted during this period. In this particular scenario, the
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subject stood to write on a white-board but then sat back down to continue the

discussion with the rest of the group.

Several subjects commented on the interruption occurring while the subjects were

driving on the road. One to two of the subjects stated that this was actually a good

time for an interruption because they were just driving, but other subjects considered

this a distraction and that they needed to focus on driving and not answering a phone

call or reading a reminder.

When subjects were informed the nature of the study, 5-6 subjects noted that the

algorithm should consider monitoring their computer since there were periods during

the day when they had nothing to do and were surfing the Internet. They described

these moments as times when they would be extremely receptive to any interruption

since it would keep them occupied.

Several challenges arose during the interruption study. The first challenge was

determining the statistical test needed to analyze the data. Since ESM and EMA are

relatively new fields of study, this area of research has not established a consistent

method of analysis [24]. The difficulty with analyzing this data is the presence of

multiple observations per subject that are not consistent between subjects. Many

standard statistical techniques are usually appropriate given that the data has been

aggregated on the subject level. The techniques vary to encompass the differences in

experiments. Furthermore, prior work seemed to favor the use of Analysis of Variance

(ANOVA) or the paired t-test [1, 15] as a measure of significance. As a result, the

paired t-test was chosen as a means for analyzing the data. Appendix I discusses

the potential problems with using the paired t-test.

The false-positive transitions that resulted from fidgeting were also a concern. To

minimize falsely detected transitions, the definition of a transition was set to require

at least 10 seconds of the previous activity and approximately three seconds of the

current activity. However, this does not prevent fidgeting from being detected. If

a subject fidgets constantly, then the algorithm might detect the wrong transitions.

A possible solution is to make the sampling window 512 (or 5.12 seconds) with an

overlapping window of 256. This larger sampling window allows the decision tree
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to capture more activities, possibly building a better representation of the different

activities. Another solution would be to train the classifier with more examples of

subjects fidgeting while they sit or stand.

One of the initial subjects used headphones while participating in the study. The

headphones prevented the subject from hearing the audio prompt, and the subject had

to be notified by neighboring coworkers that the iPAQ was signaling an interruption.

As a result, the subject answered “extremely unreceptive” to these interruptions

because of the possible disruption to bothered his coworkers. During the wrap-up

interview, the subject stated that the disruption of the interruption experienced by

the coworkers did not change his receptivity rating because he was preoccupied at

the moment. Furthermore, this subject did not skew the data towards favoring the

activity transition triggered interruptions. The significance level of the paired t-test

remained at p <0.05 excluding this subject. Future subjects were notified to avoid

the use of headphones for the day.

One potential subject left the study before an hour had elapsed. The subject

objected to the study because she found the interruptions too disruptive. The subject

noted that since she served as an administrative assistant for multiple supervisors, she

was constantly working on something urgent. The participant also suggested that had

her job entailed “mindless work”, the interruptions would not have been disruptive

since the chimes were quite pleasant.

Another potential subject ran the experiment for the day but her data was un-

usable because she failed to push the OK button after responding to the question.

Even though the subject was walked through the graphical interface at the beginning

of the day, she assumed that pushing the hardware buttons on the iPAQ would be

equivalent to hitting the OK button. As a result, the system logged all the responses

as a “no response” since the subject failed to complete a question.

The battery life of the accelerometers impacted one subject who had a shortened

workday studied because one of the batteries inserted into the accelerometers was

defective and only lasted for approximately 6 hours. However, because of the ac-

tive nature of his/her job, the subject still experienced 20 interruptions during this
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condensed workday.

Maintaining a consistent number of interruptions was another challenge. As noted

in the results section, the number of interruptions experienced by the subjects differed

by more than 30 interruptions. Some subjects spent the time primarily at their desk

and would only leave the desk intermittently. Other subjects would constantly be

moving, running errands every 10-15 minutes. As a result, these subjects would

trigger more activity-transition interruptions. In addition, the workdays varied in

length from seven to nine hours depending on the occupation. One participant wore

the iPAQ and sensors for over 12 hours because s/he had a dinner meeting that

particular day. Furthermore, even though subjects were provided carrying cases for

the iPAQ, sometimes they would forget to bring the iPAQ with them, causing the

wireless accelerometers to go out of range.

Subjects also commented that it was difficult to differentiate the two types of

questions, the phone call and the reminder. They would have liked the system to

signify the difference in type through a different set of chimes. Additionally, five

subjects stated that they did not use reminders and found it difficult to rate their

response because they had no previous experience to base their receptivity towards

the reminder.

Finally, it should be noted that even though the results suggest that activity tran-

sition triggered interruptions may lead to a lower perceived burden on the user, it has

yet to be determined the overall effect is on the user. Although the users reported be-

ing more receptive towards activity transition triggered interruptions, this preference

might not be observed over time. For instance, a user might receive 100 interruptions

over the course of a week, be s/he might only notice the extreme cases where the

device interrupted him/her at an inconvenient moment. The user might only remem-

ber these extreme cases and not realize that s/he was more receptive towards the

interruptions overall as opposed to the device randomly generating interruptions.

In the future, the experiment could be extended to examine the effect of different

activity transitions and the utility of message on the user’s perceived burden of inter-

ruption. The work could incorporate other types of activities (i.e reading, cooking,
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cleaning) and extend beyond the office environment. A larger set of message types (i.e

phone call, instant message, or breaking news) could be used to determine whether

there is a correlation between the type of message and the activity transition used

to trigger the interruption. Subjects could be asked to wear the sensors for 14-16

hours starting from the moment they awaken for more than three days. This would

allow the subject to become acclimated to the sensors and the interface. Furthermore,

this experiment could determine if it is necessary to have a trainable algorithm that

will allow the user to determine which activity transitions trigger a certain type of

message or if a generic algorithm would be sufficient for the general population.
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Chapter 6

Conclusion

An interruption timed at a transition between two physical activities may be perceived

as less burdensome than an interruption presented at a random time. A change in

physical activity may sometimes correlate with a self-initiated mental transition and

therefore increases the receptivity of the user towards an interruption. This study

found that the user is more receptive towards an activity transition triggered interrup-

tion when triggered by a change in physical activity. The implication of this result is

that non-time-critical interruptions to be delivered to users by mobile computing de-

vices that are clustered and marked for delivery during a physical activity transition,

may minimize the perceived burden of interruptions experienced by users.
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Appendix A

Prior Work and Additional Details

Prior literature relating to the model of interruption is detailed below. This section

summarizes the findings of recent works that have contributed to the eleven factors

of the model of interruption used in this work.

A.1 Activity of the User

The disruptiveness of an interruption is influenced by the similarity of the interruption

task to the primary task. The closer in similarity the interruption task is to the

primary task, the more disruptive the interruption may be, where the disruption is

measured as the length of time necessary to complete the tasks [5].

In addition, the effect of an interruption is influenced by the training level of the

primary task. If a user is highly trained on a primary task without interruptions,

an interruption presented during a later session is often significantly harmful to the

performance. However, if a user is trained on a primary task for two sessions with

the interruptions, by the third session the interruption will be less disruptive [6]. The

activity of the user is also directly correlated to the memory load. If the memory load

during the primary task was high, then it would be difficult to resume the original

activity after completing the interruption activity [1]. A schedule and sensor data

can be used to formulate the probability of the user actually initiating in a particular

activity, helping determine the interruptability of the use [17].
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The timing of the interruption during the activity also governs the effect of the

interruption. In a previous study, interruptions that occurred during the execution

stage of a task was more disruptive to the performance [4]. The time at which the

interruption occurs during the activity influences the effects of the interruption [6].

A.2 Utility of Message

The utility of the information is determined by the importance of the message re-

ceived or requested. Utility of information is composed of the task referential (the

relevancy to the original activity/task of the user), the importance of the message

to the user, and the commitment of the user to the message, determined by a previ-

ous engagement with the originator of the message. Interruptions that are relevant

to the ongoing activities are less disruptive to the user [4]. The Scope notification

system emphasizes the importance of a message. It calculates the importance based

on several parameters such as the composition of the message, the subject heading,

the recipient of the message, the sender the message, etc. The interface then displays

the importance of the message by the distance from the center of the circle to the

blinking notification. The interface is visible to the user at all times, but does not

fill the entire screen [28]. This factor is difficult to detect as each person may have

varying views on the importance of the same message.

A.3 Emotional State of the User

Another aspect of a user’s response to an interruption is his/her emotional state. The

emotional state of the user comprises of the time of the disruption, the mindset of the

user, and the relationship the user has with the device or interface. The time of an

interruption was significant in determining a user’s attitude toward interruptions [29].

It was also shown that openness to an interruption varied regularly based on the

time of the probe, and these strong attitude patterns differed from individual to

individual [12]. The user’s current state of mind also influences the emotional state
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of the user. For instance, if a user is stressed and has immediate deadlines, s/he

may not be open to interruptions. One method of inferring the users attention used

the time of day and proximity of deadlines in addition to the user’s schedule [9]. It

has been demonstrated that cues to our emotional state can be measured using basic

physiological parameters, and context-aware applications can use these cues as input

to an recognition algorithm [16].

A.4 Modality of the Interruption

Modality, the choice of interface in which to interrupt the user, is yet another aspect

of interruption. The importance of modality was explored in a study that asked

eight main questions regarding interruptions. The study was distributed to work

groups in two organizations and consisted of questions such as the medium in which

interrupts occur, the underlying reasons for interrupts, and the recovery time after

interrupts [29]. If the modality was similar to the current activity, the users ability

to multi-task with the interruption and the current activity is minimized since it

creates a cognitive overload. Generally, the most disruptive modalities were smell

and vibration [26]. However, interruptions delivered through graphical displays have

been found to enhance decision making [23]. The cost of the interruption needs

to include the cost associated with the different modalities to determine the best

modality for the interruption [10].

A.5 Frequency of Interruptions

The model of interruption also includes the frequency of an interruption. If the

interface interrupts the user at a low frequency, the chances of the message occurring

at an inconvenient time are less likely than high frequency disruptions. High frequency

interruptions were found to be disruptive [23], measured by a user’s inability to return

to the original task and complete it in a timely fashion. The high frequency may result

in the user constantly switching tasks thereby creating a higher memory load.
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A.6 Comprehension Rate and Expected Length of

the Interruption

The task efficiency rate, or the comprehension rate and the expected length of inter-

ruption can induce the user to respond to the interruption in different ways. It was

found that the actual length of a interruption cannot be used to determine the detri-

mental effects of the interruption [6]. However, this particular study interrupted the

user’s main activity with a long but simple interruption. If the user had experienced

the interruption previously and was able to estimate the time needed to complete

the interruption task, a longer task might be more disruptive since it would require

a larger memory load. In addition, a complex interrupted task caused a cognitive

overload, distracting the user from the original task and requiring more time to deal

with the interruption [23], making it harder to comprehend the task at hand.

The medium of an interruption can contribute to the comprehension and task

efficiency rate. A user might spend more time in comprehending the task with a

text message in comparison to a verbal message. One system found that graphical

displays enhanced the decision-making when complex activities are interrupted [23].

The Scope notification system used visual cues to signal the arrival of a message. The

creators noted that the limitations of a visual interface are the difficulties in designing

simple visual annotations to convey the information and the need to train the user

on the interface [28].

A.7 Authority Level

The perceived level of authority the user has over the interface/device also contributes

to the effects of an disruption. If the user believes that he/she has a certain level

of control over the schedule of interruptions, there will be a higher level of tolerance

since the user has a notion that the interruption was triggered by his/her own ac-

tion. Users were more open to interruptions when they maintained control over the

interruptions [12]. A study conducted at Lawrence Livermore National Laboratory
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explored the differences between an on-screen computer interruptions and telephone

interruptions. Subjects were asked to complete a form as their main task. They were

interrupted at random times with a telephone call, a modal dialog on-screen, and a

personal visit. This study found that the abruptness of the onset of the on-screen

modal dialog interruption prohibited the subject from completely the task at hand,

while the telephone and personal visit allowed the user to determine when to field the

interruption [25].

A.8 Previous and Future Activities of the User

The previous and future activity comprises another factor of the model. If the previous

or future activity requires a large memory load, the user may engage in a lower

memory task at the moment. In addition, the previous activity information can be

used to construct a model relevant to that particular user. One study constructed a

Bayesian network that was able to reason about the current state of interruptability

and forecast future state of interruptability using a training data set. This network

used acoustic and visual analysis to detect the presence of conversational or non-

conversational sounds related to the activity of the user and the presence of the

user in the workspace. In addition, it tracked the input to the computer (keyboard,

mouse), task completion of programs, and the schedule of the user. Using these

inputs, the network predicted the state of the interruptability and forecasts the time

until the following opportune time of high, medium, lower interruptability using the

history of interaction and the activity of the user at the current time [8].

A.9 Social Engagement of the User

A user’s social engagement is determined by his/her role in the current activity. If the

user is the speaker at a talk, then his/her social engagement is high and should not

be interrupted. Using audio and location sensors, one study determined the social

engagement of the user with an accuracy of 94.6% [14].
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The nature of the event also comprises the users social engagement status. For

example, different meetings have different forms of interruptability, ranging from low

to high. One system used the meeting date, meeting duration, subject, location, role

of the user, number of invitees and positions of the invitees to ascertain the social

engagement of the meeting. The presence of the user in his/her office was then used to

determines based whether or not a user is attending a meeting and the interruptability

factor of the meeting can determine how the notification system classifies the message

[11].

A.10 Social Expectation of Group Behavior Con-

cerning the User’s Behavior

The social expectation of group behavior temporarily influences the attitude the user

has toward interruptions. Surrounding people’s perception of interruptions and their

current actions influence the way the user responds to the disruption. The social

expectation of group behavior is also affected by the location of the user and the

cultural expectation of interruptions. A previous study used the location to pre-

dict the possible range of responses but was not the sole determinant because the

same location may have different social expectations depending on the activity of the

surrounding group members [14]. In addition, each culture has a different attitude

toward handling a disruption in a public setting.

A.11 History of User Interaction and Likelihood

of Response

The history of user interaction and the likelihood of responses are also useful in the

evaluation of the cost of the disruption. There are four basic methods of dealing

with interruptions. The immediate coordination method, when subjects immediately

switched to the interruption, resulted in the best performance on an interruption, but
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as a consequence, there was a loss of decision accuracy in the original activity. The

negotiated coordination involved delaying an interruption, provided better accuracy

with the original task, but the disruption was postponed for a period of time. In the

case of schedule coordination, it required the least amount of task switches since the

interruptions were all scheduled, but the accuracy was horrible for a continuous task.

Mediated solutions or notification systems, produced average levels of performance

accuracy in all aspects [19]. History of the sensor data also helped maintain smooth

transitions as brief changes in environment data would cause a change in transition

[22].
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Appendix B

Subject Protocol

Details for subject recruitment and the interruption experiment protocol are provided

below. The study was approved by the MIT Committee On The Use of Humans as

Experimental Subjects.

B.1 Recruitment

Flyers publicized the need for research subjects. The flyers had a headline that said:

”Carry a Cell Phone?” Each poster then contained the following description:

Help MIT Researchers learn how to design user-friendly mobile devices.

Earn a $ 10 gift certificate without even leaving your office. Must be over

18. Contact Joyce at betterdevices@mit.edu or 617-452-5604.

In addition, the same flyer was advertised on boston.craigslist.com under the volun-

teers section.

When a person responded to the ad, s/he was given a general description of the

study over the phone. The duration of the study was a workday, approximately 7-9

hours. The participant would need to wear two motion sensors (wireless accelerome-

ters) on their legs, and carry around a PDA for the day. The PDA would prompt the

user for information every 3-5 times an hour, with each interruption requiring less

than 10 seconds of the participant’s time. The researcher would meet the participant
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in the morning at his/her workplace to deliver the materials, go over the specifics of

the study, and arrange a time in the evening to pick up the material and engage in a

15-30 minute wrap-up interview. Subjects who agreed to the protocol were scheduled.

Only 1 subject chose to come to our office, the remaining 24 subjects requested to

meet the researcher at their workplace.

B.2 Subject Preparation

In the morning on the scheduled day, participants were asked to sign an informed

consent to document their agreement to participate in the study. At this time, par-

ticipants were informed that any data collected from the study would be disassociated

with their actual identities and that they had the option to stop the study at any

time. Subjects were asked the following demographic questions to obtain a better

understanding of their data:

1. What year were you born?

2. What is your profession?

3. Can you please describe your normal workday?

4. Do you own a cell phone, digital camera, or PDA?

5. Do you instant message?

Then, participants were shown the wireless accelerometers and the PDA that would

be in their possession for the day. The researcher walked the participant through a hy-

pothetical interruption using Figures B-1, B-2, B-3 as visual aids. The researcher then

attached the accelerometers to the participant and talked the participant through the

first real interruption. The researcher stressed that the questions should be answered

independently of all previous situations. If the subject felt it was absolutely necessary

to mute the experiment, they had the option to do so on the start screen. The back

of the iPAQ contained a cheat sheet of the icons and the interpretation of the scale

58



as well as the researcher’s contact information. The back of the iPAQ is illustrated

in Figure B-4.

Figure B-1: The visual aid used to explain the mute screen and the start screen.

Figure B-2: The visual aid used to explain the icons used in the question screen.

B.3 Wrap-up Interview

At the end of the day, the researcher met the subject for a post-experiment interview.

The participant was asked the following questions:

1. Did anything out of the ordinary happen during the work day?

2. To the best of your ability, how many times did the PDA interrupt you today?
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Figure B-3: The visual aid used to explain the receptivity scale.
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Figure B-4: The cheat sheet that is attached to the back of the wireless casing.
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3. Did you find yourself becoming more or less receptive towards the interruptions

over the course of the day?

4. Can you put in your own words how you were interpreting each of the numbers,

and what it meant in terms of your interruptability?

5. Could you tell me how you interpreted the meaning of each of the icons [for

example the type of reminder you associated with the question]?

6. Which type of interruption are you most receptive to at any given point during

the day?

7. How much time would it take to respond to each interruption typically (in

minutes)?

8. This is a chart of how you answered your questions (see Figure C-1)

(a) The first time you answered a [value]. Can you describe the situation?

(b) The last time you answered a [value]. Can you explain the rating?

(c) At this time, you answered a 1. Could you tell me what was going on

then?

(d) At this time, you answered a 5. Can you recall what went into the situa-

tion?

(e) Why did you mute the survey at this time?

(f) At this moment, it took you much longer to respond to the question, was

there a particular reason?

9. In the situation where you answered a 1, do you think if the interruption had

used a vibration or a visual prompt as the initial interruption it would have

been better? Can you think of a different way that it could have interrupted

you so that you would have been more receptive?

10. In the situation where you answered a 1, do you think you would have been

more receptive to an interruption of a different type?
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11. Would you recommend this study to a friend?

12. How can we improve the comfort level of the sensors?

13. Did you notice any pattern behind the interruptions?

14. How did people around you respond to the system when an interruption oc-

curred?

15. What did you tell your colleagues about your participation in the study if they

asked?

16. Do you have any questions or comments on the study? Would you like me to

tell you more about how the interruptions were determined? Let me know if

you have any more questions.

Each participant received a $10 gift certificate to Dunkin Donuts at the end of the

study.

B.4 Accelerometer Placement

The accelerometers are placed on the subject through the use of an adhesive bandage

and a custom-made velcro pouch. Each accelerometer is placed in an anti-static bag

surrounded by clear packing tape to make the pouch water-resistant and includes a

label in case the accelerometer is lost. The bandage is labeled with a drawing and

text to help orient the accelerometer placement. The accelerometer is attached to

the adhesive using velcro. Figure B-5 shows a picture of the accelerometer pouch, a

labeled bandage, and the velcro pouch for the ankle.

The accelerometer is placed on the adhesive such that it lines up with the dia-

gram. The participant is then asked to place the bandage on the outside thigh of

the left knee. Figure B-6 shows the adhesive with the attached accelerometer and a

participant putting on the bandage.
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Figure B-5: The housing for the sensors, the adhesive bandage, and the velcro pouch.

Figure B-6: A participant placing the bandage in the correct orientation and place-
ment.

64



Appendix C

Sample Data Set

This section describes the data set associated with each subject and the 4 different

plots that the subjects were shown during their wrap-up interview. Each subject

generated 7 different files from their participation in the study. The 7 files are listed

below:

1. The dataLog file contains the raw accelerometer data. This is kept in case there

is a need for post-processing of the subject’s data. The data log is compressed

to save storage space on the iPAQ and needs to be uncompressed to view the

data. The raw accelerometer data for all the subjects are located in Experiment

Data\accelData.

2. The featureLog file stores all the features calculated in real-time and the clas-

sification for each sampling window. This has also been compressed because of

the frequency of the feature calculation. A program was written to convert the

featureLog into a comma-delimited file. These files are located in Experiment

Data\featureData.

3. When the classification for a sampling window is written into the featureLog

file, it uses the integer number to save space. The tree-mapping.csv file saves

the mapping the classifier uses to map the integer classification to the string

classification. The files can be found in Experiment Data\treeMapping.
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4. The experiment.dat file maintains the user’s response to the interruptions over

the course of the day. Each response is broken down by the hour, minute,

second, question type, response, time to tap the screen, time elapsed, mute

on, trigger, previous activity, and current activity. For the question type, a 0

represents a phone call while a 1 signifies a reminder. A 1 in the trigger type

represents an activity transition trigger, while a 0 means the interruption was

randomly generated. Matlab scripts have been written to view the data from

the subject. The experiment files can be found in Experiment Data\responses.

The Matlab scripts are located under Experiment Software\matlab.

5. The log.txt file contains the log of the program and can be used to troubleshoot

problems in the program. All these files are placed in the following directory:

Experiment Data\logFiles

6. The start-interview.doc has the demographic information for each subject. The

demographic information is also summarized in an excel file. The location for

these files are Experiment Data\demographicInfo.

7. Finally, the post-interview.doc contains the subject’s responses to the wrap-up

interview and any comments that s/he may have made. These files were placed

in the Experiment Data\interviewData directory.

The subject is shown four graphs during their wrap-up interview. The graphs are

used to obtain a better understanding of the situation. Sometimes the subject would

have slight difficulties recalling the exact situation involving the extreme cases, but

the majority of the subjects managed to recall the situation after some time. These

four graphs the subject saw are:

1. Time vs. Receptivity Response

2. Time vs. Response Time (measured between the user tapping the screen to

pressing OK)

3. Time vs. Mute On (check to see if the mute was on)
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4. Time vs. Question Type

An example of the graphs that were viewed by one subject can be seen in Figures C-

1, C-2, C-3, and C-4. In Figure C-1, a dotted rectangle is used to highlight the cases

in which the subject answered that he/she was not very receptive in an effort to direct

the discussion towards those situations. In Figure C-3, a response time of 60 seconds

occurs when the user does not respond to the chime. A response time of 90 seconds

signifies that the user tapped the screen, but did not respond to the question.

Figure C-1: A plot of the subject’s response over the course of the day
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Figure C-2: A plot of the subject’s response time over the course of the day
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Figure C-3: A plot of whether the subject chose to mute the study over the course of
the day
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Figure C-4: A plot of what types of questions the subject was asked over the course
of the day
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Appendix D

Additional Result Details

This section contains additional result details for the verification of the accuracy of

the transition tests and the experiment study results.

D.1 Verification of Activity Transitions

The confusion matrices for the activity transition detection algorithm are shown be-

low from Table D.1 to Table D.13. This data was gathered using self-annotated

transitions. The tables contain all 10 subject’s confusion matrices, and the confusion

matrices for subjects who contributed to the training data (Group 1), subjects who

did not contribute to the training data (Group 2) and both groups combined. Table

D.14 summarizes the percentage for each individual, the two groups (Group 1 and

Group 2), and both groups combined.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 2 1
sit-stand 3
walk-sit 2

walk-stand 10
stand-sit 3

stand-walk 9
no transition 3 2 2

Table D.1: The confusion matrix for subject 1 from Group 1.
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Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 2 1
sit-stand 1
walk-sit 3 1

walk-stand 4
stand-sit

stand-walk 5
no transition

Table D.2: The confusion matrix for subject 2 from Group 1.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 2 1
sit-stand 3
walk-sit 2

walk-stand 12 1
stand-sit 5

stand-walk 1 8 1
no transition 1 1

Table D.3: The confusion matrix for subject 3 from Group 1.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 2
sit-stand 6
walk-sit 4

walk-stand 13 2
stand-sit 3

stand-walk 16 2
no transition 1

Table D.4: The confusion matrix for subject 4 from Group 1.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 4
sit-stand 6
walk-sit 8

walk-stand 8
stand-sit 1

stand-walk 1 12
no transition 1 3 2 2

Table D.5: The confusion matrix for subject 5 from Group 1.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 12 2 1
sit-stand 19
walk-sit 19 1

walk-stand 47 3
stand-sit 12

stand-walk 2 50 3
no transition 1 3 3 4 3 4

Table D.6: The confusion matrix for all subjects in Group 1.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 3 2
sit-stand 1
walk-sit 2 1 1

walk-stand 1 9 1
stand-sit 1

stand-walk 10 2
no transition 2 2

Table D.7: The confusion matrix for subject 1 in Group 2.
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Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 1 2
sit-stand 5
walk-sit 4 1

walk-stand 17
stand-sit 3

stand-walk 20
no transition 1 2 1

Table D.8: The confusion matrix for subject 2 in Group 2.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 2
sit-stand 6
walk-sit 5 1

walk-stand 12
stand-sit 1 2

stand-walk 15
no transition 1 1 1 2

Table D.9: The confusion matrix for subject 3 in Group 2.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 4
sit-stand 3
walk-sit 5

walk-stand 6
stand-sit 2

stand-walk 7
no transition 2 1 1 2

Table D.10: The confusion matrix for subject4 in Group 2.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 5 2
sit-stand 5
walk-sit 9 2

walk-stand 3
stand-sit 2

stand-walk 6
no transition 1 1 4 1

Table D.11: The confusion matrix for subject 5 in Group 2.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 15 4 2
sit-stand 20
walk-sit 25 4 1

walk-stand 1 47 1
stand-sit 2 10

stand-walk 58 2
no transition 2 4 1 10 1 8

Table D.12: The confusion matrix for all subjects in Group 2.

Real Transitions
Classifier Transitions sit-walk sit-stand walk-sit walk-stand stand-sit stand-walk no transition

sit-walk 27 6 3
sit-stand 39
walk-sit 44 4 2

walk-stand 1 94 4
stand-sit 2 22

stand-walk 2 108 5
no transition 3 7 4 14 4 12

Table D.13: The confusion matrix for all subjects in both groups.
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False-positive False-negative Incorrect classification Real-transition accuracy Classifier accuracy
GROUP 1
Subject 1 0% 18.92% 3.33% 78.38% 96.67%
Subject 2 11.76% 0% 0% 100% 88.24%
Subject 3 5.56% 5.56% 5.56% 88.89% 88.89%
Subject 4 8.33% 2.22% 0% 97.78% 91.67%
Subject 5 0% 16.67% 2.5% 81.25% 97.5%
GROUP 2
Subject 1 17.65% 12.5% 5.88% 81.25% 76.47%
Subject 2 0% 7.02% 5.66% 87.72% 94.34%
Subject 3 0% 10.42% 2.33% 87.5% 97.67%
Subject 4 0% 17.65% 3.57% 79.41% 96.43%
Subject 5 0% 17.07% 11.76% 73.17% 88.24%
Group 1 4.68% 9.95% 2.33% 87.85% 92.98%
Group 2 3.13% 12.26% 5.73% 82.55% 91.15%

Both groups 3.86% 11.2% 4.13% 84.99% 92.01%

Table D.14: Summary of the results from the activity transition detection verification
tests.

D.2 Experiment Study Results

Tables D.15 through D.23 are the outputs of the statistical analysis software after

running the paired t-tests for a three different classifier accuracies. The paired t-test

output is the most important of the tables because it illustrates whether the difference

between the means was due to chance.

For the paired samples statistics output, the mean refers to the average mean of

the responses, n is the number of cases, std. deviation is the standard deviation of

the means, and finally the last column is the standard error for a pair of variables.

This table can be used to verify the paired t-test output as well as obtain a better

understanding of how the calculations for the paired t-test were derived. In the paired

samples correlations, n is the number of cases, the correlation refers to the correlation

between the two groups, and the significance level of correlation. A high correlation

with a low significance level suggests that the paired t-test is a suitable measure

since the two conditions are independent. The paired t-test output shows the average

difference in mean, the standard deviation of the difference, the standard error mean

for the difference, the lower and upper bounds of the 95% confidence interval, the test

parameter, the degrees of freedom and the significance level. The confidence interval

indicates with a 95% probability that the average difference of means, if the entire

population was sampled, would fall between those values. The test statistic can be

used to verify the significance level.

The means of the individual activity transitions were not included in the paired
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Mean N Std. Deviation Std. Error Mean
NO RESPONSES OMITTED

Pair 1 random total 2.832 25 .512 .102
trigger total 3.342 25 .569 .113

Pair 2 random phone 2.879 25 .703 .141
trigger phone 3.289 25 .602 .120

Pair 3 random reminder 2.955 25 .635 .127
trigger reminder 3.394 25 .704 .141

Pair 4 male random 2.635 9 .537 .179
male trigger 3.101 9 .594 .198

Pair 5 female random 2.9533 16 .473 .118
female trigger 3.404 16 .511 .128

NO RESPONSES INCLUDED
Pair 1 random total 2.567 25 .423 .846

trigger total 2.997 25 .508 .102
Pair 2 random phone 2.512 25 .576 .115

trigger phone 3.082 25 .666 .133
Pair 3 random reminder 2.594 25 .797 .159

trigger reminder 3.009 25 .678 .136
Pair 4 male random 2.502 9 .472 .157

male trigger 2.870 9 .533 .178
Pair 5 female random 2.615 16 .402 .101

female trigger 3.093 16 .502 .126

Table D.15: SPSS output: paired samples statistics - 100% classifier accuracy

N Correlation Sig
NO RESPONSES OMITTED

Pair 1 random total & trigger total 25 .657 <<.001
Pair 2 random phone & trigger phone 25 .635 .001
Pair 3 random reminder & trigger reminder 25 .632 .001
Pair 4 male random & male trigger 9 .869 .002
Pair 5 female random & female trigger 16 .746 .001

NO RESPONSES INCLUDED
Pair 1 random total & trigger total 25 .641 .001
Pair 2 random phone & trigger phone 25 .526 .007
Pair 3 random reminder & trigger reminder 25 .474 .017
Pair 4 male random & male trigger 9 .872 .002
Pair 5 female random & female trigger 16 .462 .072

Table D.16: SPSS output: paired samples correlations - 100% classifier accuracy

Paired Differences
95% Confidence Interval

Mean Std. Dev Std. Error Mean Lower Upper t df Sig.
NO RESPONSES
OMITTED

Pair 1 random total &
trigger total

-.510 .451 .090 -.696 -.324 -5.655 24 <.001

Pair 2 random phone &
trigger phone

-.409 .565 .113 -.643 -.177 -3.628 24 .001

Pair 3 random reminder
& trigger reminder

-.438 .578 .116 -.677 -.120 -3.791 24 .001

Pair 4 male random &
male trigger

-.466 .295 .098 -.692 -.239 -4.737 8 .001

Pair 5 female random &
female trigger

-.451 .352 .088 -.639 -.263 -5.120 15 <.001

NO RESPONSES
INCLUDED

Pair 1 random total &
trigger total

-.430 .416 .083 -.602 -.259 -5.174 24 <.001

Pair 2 random phone &
trigger phone

-.570 .610 .122 -.822 -.319 -4.674 24 <.001

Pair 3 random reminder
& trigger reminder

-.415 .763 .153 -.730 -.100 -2.721 24 .012

Pair 4 male random &
male trigger

-.368 .261 .087 -.569 -.167 -4.227 8 .003

Pair 5 female random &
female trigger

-.479 .477 .119 -.733 -.225 -4.016 15 .001

Table D.17: SPSS output: paired samples test - 100% classifier accuracy
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Mean N Std. Deviation Std. Error Mean
NO RESPONSES OMITTED

Pair 1 random total 2.917 25 .512 .102
trigger total 3.330 25 .505 .101

Pair 2 random phone 2.985 25 696 .139
trigger phone 3.200 25 .598 .120

Pair 3 random reminder 2.902 25 .628 .126
trigger reminder 3.347 25 .723 .145

Pair 4 male random 2.710 9 .552 .184
male trigger 3.077 9 .532 .177

Pair 5 female random 3.040 16 .467 .117
female trigger 3.429 16 .466 .116

NO RESPONSES INCLUDED
Pair 1 random total 2,732 25 .393 .079

trigger total 3.061 25 .477 .095
Pair 2 random phone 2.729 25 .541 .108

trigger phone 3.046 25 .619 .124
Pair 3 random reminder 2.900 25 .630 .130

trigger reminder 3.471 25 .720 .140
Pair 4 male random 2.614 9 .511 .170

male trigger 2.904 9 .451 .154
Pair 5 female random 2.798 16 .308 .077

female trigger 3.146 16 .476 .119

Table D.18: SPSS output: paired samples statistics - 91% classifier accuracy

N Correlation Sig
NO RESPONSES OMITTED

Pair 1 random total & trigger total 25 .788 <.001
Pair 2 random phone & trigger phone 25 .608 .001
Pair 3 random reminder & trigger reminder 25 .602 .001
Pair 4 male random & male trigger 9 .906 .001
Pair 5 female random & female trigger 16 .665 .005

NO RESPONSES INCLUDED
Pair 1 random total & trigger total 25 .709 <.001
Pair 2 random phone & trigger phone 25 .582 .002
Pair 3 random reminder & trigger reminder 25 .602 .001
Pair 4 random total & sitting walking 25 .388 .055
Pair 5 random total & sitting standing 25 . 243 . 241
Pair 6 random total & walking sitting 25 .573 .003
Pair 7 random total & standing sitting 25 .503 .010
Pair 8 male random & male trigger 9 .870 .002
Pair 9 female random & female trigger 16 .582 .018

Table D.19: SPSS output: paired samples correlations - 91% classifier accuracy

Paired Differences
95% Confidence Interval

Mean Std. Dev Std. Error Mean Lower Upper t df Sig.
NO RESPONSES
OMITTED

Pair 1 random total &
trigger total

-.382 .331 .066 -.518 -.245 -5.766 24 <.001

Pair 2 random phone &
trigger phone

-.215 .579 .116 -.454 0.024 -1.854 24 .076

Pair 3 random reminder
& trigger reminder

-.568 .609 .122 -.820 -.317 -4.671 24 <.001

Pair 4 male random &
male trigger

-.368 .235 .078 -.549 -.187 04.684 8 .136

Pair 5 female random &
female trigger

-.388 .382 .095 -.592 -.185 -4.067 15 .001

NO RESPONSES
INCLUDED

Pair 1 random total &
trigger total

-.329 .341 .068 -.469 -.188 -4.828 24 <.001

Pair 2 random phone &
trigger phone

-.317 .535 .107 -.538 -.096 -2.957 24 .007

Pair 3 random reminder
& trigger reminder

-.570 .610 .129 -.820 -.320 -4.071 24 <.001

Pair 4 male random &
male trigger

-.290 .254 .084 -484 -.096 -3.466 8 .009

Pair 5 female random &
female trigger

-.348 .388 .097 -.55 -.141 -3.587 15 .003

Table D.20: SPSS output: paired samples test - 91% classifier accuracy
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Mean N Std. Deviation Std. Error Mean
NO RESPONSES OMITTED

Pair 1 random total 2.939 25 .538 .108
trigger total 3.306 25 .503 .101

Pair 2 random phone 2.911 25 742 .148
trigger phone 3.294 25 .620 .124

Pair 3 random reminder 2.867 25 .799 .160
trigger reminder 3.380 25 .740 .148

Pair 4 male random 2.713 9 .556 .185
male trigger 3.065 9 .552 .184

Pair 5 female random 3.063 16 .497 .124
female trigger 3.421 16 .448 .112

NO RESPONSES INCLUDED
Pair 1 random total 2.767 25 .447 .089

trigger total 3.011 25 .510 .102
Pair 2 random phone 2.694 25 .609 .122

trigger phone 3.076 25 .626 .125
Pair 3 random reminder 2.791 25 .535 .107

trigger reminder 3.028 25 .797 .159
Pair 4 male random 2.605 9 .514 .171

male trigger 2.922 9 . 576 . 192
Pair 5 female random 2.846 16 . 390 . 098

female trigger 3.107 16 .442 .111

Table D.21: SPSS output: paired samples statistics - 82% classifier accuracy

N Correlation Sig
NO RESPONSES OMITTED

Pair 1 random total & trigger total 25 .702 <001
Pair 2 random phone & trigger phone 25 .319 .120
Pair 3 random reminder & trigger reminder 25 .427 .033
Pair 4 male random & male trigger 9 .752 .019
Pair 5 female random & female trigger 16 .575 .020

NO RESPONSES INCLUDED
Pair 1 random total & trigger total 25 .587 .002
Pair 2 random phone & trigger phone 25 .273 .186
Pair 3 random reminder & trigger reminder 25 .548 .005
Pair 4 male random & male trigger 9 .607 .083
Pair 5 female random & female trigger 16 .525 .037

Table D.22: SPSS output: paired samples correlations - 82% classifier accuracy

95% Confidence Interval
Mean Std. Dev Std. Error Mean Lower Upper t df Sig.

NO RESPONSES
OMITTED

Pair 1 random total &
trigger total

-.367 .403 .081 -.533 -.200 -4.550 24 <.001

Pair 2 random phone &
trigger phone

-.383 .800 .160 -.713 -.053 -2.393 24 < .001

Pair 3 random reminder
& trigger reminder

-.512 .826 .165 -.853 -.172 -3.103 24 .005

Pair 4 male random &
male trigger

-.352 .390 .130 -.651 -.052 -2.708 8 .027

Pair 5 female random &
female trigger

-.358 .438 .109 -.591 -.125 -3.271 15 .005

NO RESPONSES
INCLUDED

Pair 1 random total &
trigger total

-.245 .439 .088 -.426 -.064 -2.790 24 .010

Pair 2 random phone &
trigger phone

-.381 .745 .149 -.669 -.074 -2.561 24 .017

Pair 3 random reminder
& trigger reminder

-.237 .674 .135 -.515 -.042 -1.756 24 .092

Pair 4 male random &
male trigger

-.317 .390 .130 -.651 -.052 -1.955 8 .086

Pair 5 female random &
female trigger

-.261 .408 .102 -.479 -.044 -2.561 15 .022

Table D.23: SPSS output: paired samples test - 82% classifier accuracy
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t-test because there were not enough data points. Table D.24 shows the breakdown of

the expected number of responses for each activity transition along with the standard

deviation. Even though sitting to walking and walking to sitting transitions had an

average of 4-6 responses per subject, the standard deviation was too large. Subjects

could have experienced only 1-2 interruptions for that particular type of activity

transition and answered the extreme cases on these interruptions (1 or 5), thereby

potentially skewing the result in one direction.

sit-walk sit-stand walk-sit stand-sit
Mean 5.92 1.96 4.6 1.71

Standard Deviation 2.75 1.86 2.87 1.78

Table D.24: The mean and standard deviation for the number of responses per activity
transition
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Appendix E

Receiver Casing

All the details for building the receiver casing can be found in this section of the

Appendix. The casing utilizes the shape of the COMPAQ expansion sleeve without

the compact flash card. The receiver housing prevents the user from damaging the

receiver or the iPAQ connector. In addition, the casing was designed so that the user

would not find it awkward to carry the PDA.

E.1 Parts

The parts necessary for constructing the receiver casing can be found below. They

are separated by the parts necessary for the PDA sleeve, constructing the cable from

the receiver to the PDA, and the parts necessary to maintain power to the receiver.

Name Part Description Part Number Vendor Quantity
PDA PARTS

Sleeve iPAQ Expansion Sleeve 3S562-001 services.foxconn.com 1
Cover iPAQ Expansion Sleeve 3S569-001 services.foxconn.com 1
Screw iPAQ Expansion Sleeve Screw 3S506-001 services.foxconn.com 2
Screw iPAQ Expansion Sleeve Screw 3S507-001 services.foxconn.com 2

Connector Covering Casing for Connector Self-manufactured laser cut 1
CABLE PARTS

Wire 4-wire cable NMUF 4/30-4046 SJ coonerwire 1
Receiver Connector CONN SOCKET HOUSING 4POS 1.25 MM H2181-ND digikey 1

Crimp 26-30 AWG CRIMP TIN H9992CT-ND digikey 4
PDA Connector iPAQ Connector ICP-21 gomadic 1
POWER PARTS

Female Power Jack CONN DC PWR PLUG 0.7 x 2.355 MM CP-0120-ND digikey 1
Male Power Jack CONN PWR JACK 0.65 x 2.75 MM SMT CP-023PJ-ND digikey 1

NiMH Gumstick Battery 1.2V 1350mAh NiMH Cell HF-A1U batteryprice 3
Battery Charger WallMount 3 cell battery charger PST-5830-3 powerStream 1

Table E.1: iPAQ receiver casing parts
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E.2 Pin-out Diagrams

All the necessary diagrams of the pin-outs have been provided below. Figure E-1

shows the description of the pinout of the connector on the iPAQ side. The pins used

by the receiver casing are 1-4, 7,8, 10, 14, and 22. There have been two different

types of the 22-pin iPAQ connector, the pin numbering for both types can be found

in Figure E-2. The pinout for the connector to the wireless receiver can be found in

Figure E-3.

Figure E-1: The 22-pin connections on the iPAQ connector side

The diagram for the power connector on the iPAQ side can be found in Figure E-4.

For the battery charger, the wire that is black and white is v+, while black is ground.
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Figure E-2: The number for the 22-pin connector for the iPAQ

Figure E-3: The diagram for the connector to the receiver. This is the rear view of
the connector.

Wire - color iPAQ pinout other connections
GND - black 10, 15, 22 power connector ground, battery ground

V+ - red 1, 2, 3, 4 power connector v+, battery v+
RX- green 8
Tx - white 7

Table E.2: The connections to different the pin types
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Figure E-4 shows how the wire attaches to the connector.

Figure E-4: Power connector to the housing of the connector on the iPAQ side and
power connection for the charger.

E.3 Instructions

The instructions for building the casing can be found below. They should be followed

in order to build the iPAQ casing efficiently.

E.3.1 Discharging and Charging the Batteries

Make sure to charge and discharge the batteries completely 2-3 times before connect-

ing them to the casing. It will help prolong the battery life. Solder 3 NiMH batteries

in serial, it is easiest to place them such that the ground of one battery is adjacent

to the v+ of the 2nd battery. The batteries should be taped together so that they

will not move around. To discharge the batteries, a circuit with 7 resistors of value

81 ohm should be connected in parallel. It will take approximately 4 hours to safely

discharge the batteries since each resistor can withstand up to 0.25 watts.

E.3.2 Connector Cable

A cable that connects the iPAQ connector to the wireless receiver needs to be man-

ufactured before any of the steps can be completed.

1. Strip the cable remove all the extra sheath until the 4 individual wires are

exposed.

2. Tin the 4 individual wires, making sure not to put too much solder on the wires.
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3. Attach a crimp to each individual wire, making sure that there is not an excess

of solder to prevent proper crimping of the wire.

4. Crimp the sides using the plier so it will fit into the connector.

5. Place the wires into the connection using Figure E-2 as a reference for the

correct placement of each wire. The connector is inserted such that the latch

on the crimp touches the part of the connector hole that is curved.

6. Fit the connector into the wireless receiver to make sure that the connectors

stay in place and check the continuity using the receiver board. There should

be no shorts between any of the 4 wires.

7. Hot glue the connector so the connectors will not get pulled out or shorted with

each other. Figure E-5 is a picture of a completed cable.

Figure E-5: A completed wireless receiver cable to connect to the wireless receiver.

E.3.3 Building the Sleeve Cover

1. Sand down the interior of the sleeve cover so that the inside is flat.

2. Cut the foam to fit the inside cover.

3. Cut the battery shape, aligning the bottom of the battery pack to the edge of

the two bottom screw holes.

4. Cut the receiver shape, making sure that there is foam between the battery and

the receiver and between the receiver and the opening. Figure E-6 illustrates

the previous 4 steps.
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5. Cut out sections for the tabs so that the cover will snap into the jacket easily.

Figure E-6: Starting from the left: a sanded interior of the cover, foam cut to fit the
inside cover, and the finished cover

E.3.4 Preparing the Sleeve Jacket for the Connector

1. Drill the two holes to hold the connector in place using the template. Align the

template such that the top of the template is aligned to the edge of the jacket.

Figure E-7 illustrates the placement of the template. The hole should be drilled

using the eighth of an inch drill bit.

2. Place a connector into the housing and test to make sure the iPAQ slides in

easily. Adjust the holes until satisfactory.

3. Remove the template and drill the cable hole to the left of the right most hole.

Make sure to avoid drilling through the screw hole or the connector piece that

keeps the iPAQ in place. Figure E-8 shows the finished holes.

84



Figure E-7: The drill template attached to the sleeve jacket to direct the placement
of the holes.

Figure E-8: The sleeve jacket with the 3 holes needed for the cable connector.
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E.3.5 Connector Housing

The connector housing needs to be constructed using a laser cutter and black acrylic.

There are two types of acrylic used. The thin acrylic that will serve as the base of the

connector house needs to be countersinked so that the flathead screws will sink into

the housing and will not protrude in the base. The piece that will hold the connector

casing to the sleeve and the piece that will house the iPAQ connector needs to be

tapped with the appropriate tapping tool. Figure E-9 shows the 3 parts that need to

be tapped or sinked.

Figure E-9: The different parts of the connector housing that need to be tapped or
countersinked.

E.3.6 Wiring the Connectors

1. Determine pin number 1 using the diagram in Figure E-2, and mark it.

2. Sand or cutoff until the flat side of the connector fits into the housing.

3. String the cable through the necessary holes which is through the hole in the

sleeve jacket and the middle piece for the housing. Figure E-10 is a picture of

the completion of this step.

4. Solder the grounds together with wires, which are pins 10, 15, and 22. Tinning

the wire beforehand will help the connection.
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Figure E-10: Stringing the cable through the necessary parts in order to create the
housing.

5. Solder an extra wire to the grounds that will connect to the power jack ground.

It needs to be long enough to go from the connector to the power jack (approx-

imately 1 inch).

6. Solder the ground from the wireless receiver cable to any of the 3 ground pins

on the iPAQ connector.

7. Solder all the voltage lines together (pins 1, 2, 3, 4) with wires. Include an extra

wire to run to the voltage of the power jack connector which is approximately

1 inch in length too.

8. Solder the voltage wire from the receiver to any of the 4 voltage pins on the

iPAQ connector.

9. Solder the RX and TX wires from the receiver to pins 7 and 8. The green wire

attaches to pin 8 and the white wire attaches to pin 7. Basically the RX on the

iPAQ needs to be connected to the TX on the wireless accelerometer.
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10. Pull the cables through the left side of the connector, and connect the extra

ground and voltage wires to the connector. See the pinout diagram shown in

Figure E-4.

11. Solder another extra set of wires (ground and voltage) that will tie the batteries

to the power connector. The wires need to be long enough to run through the

cable hole to the batteries on the cover. Pull the wires through the cable hole.

12. Test to make sure voltage and ground are not shorted together. This is impor-

tant as there is high current from the battery.

13. Screw together the connector casing, making sure not to screw too tightly oth-

erwise the acrylic will break. Figure E-11 shows the steps to place the housing

together. Figure E-12 for a picture of a completed connector housing.

Figure E-11: The process of putting the housing for the connectors together in a
clockwise manner.

14. Connect the battery to the wires to the power jack.

15. Plug in the receiver and make sure there is a connection to all the proper pins

and also test to make sure the iPAQ can read data from the receiver.

16. Remove the coin battery holders from the back of the wireless receiver, and

replace with wires. See Figure E-13 for a picture of the modified receiver.
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Figure E-12: A completed connector housing before it is attached to the jacket.

Figure E-13: The modified receiver with wires instead of coin battery holders..
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17. Attach the casing to the sleeve using screws.

18. Strip off the original connector on the charger and replace with the male power

plug. Using Figure E-4 as the guide, connect the wire that is black and white

to voltage, and black to the ground pin.

19. Check to make sure the charger works with the batteries.

20. Close the cover and the jacket, and place the proper sleeve screws to keep the

cover in its place.
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Appendix F

Experiment Graphical User

Interface Screenshots

The user interface for the interruption study was based on the Context Aware Expe-

rience Sampling (CAES) design [21]. Minor modifications were made to the screens.

Additionally, the screen flow was simplifed to shorten the user-iPAQ interaction time.

The screen flow and the screen interface are described below.

F.1 Screen Flow

There are 3 main screens that the user could experience during the study: the start

screen, the question screen, and the mute screen. Figure F-1 illustrates the user-iPAQ

interaction. The arrows shows how the screens were linked to each other.

The user entered the mute screen from the start screen by pressing the mute

button. Once the mute screen was displayed, it returned to the start screen when

the user chose an amount of time to mute the study, if s/he decided against muting

the study, or if the user has spent more than one minute on the screen. The question

screen appeared when a question had been triggered (either randomly or by an activity

transition). Once the user answered the question, or if the user has not responded

within one minute, the start screen was restored.
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Figure F-1: A flow chart for the interaction between the user and the PDA

F.2 Screen Interface

The default screen contained information relevant to the user. The main purpose of

the screen was to allow the user to mute the study. The screen also contained the

time of day, the researcher’s contact information, and the current status of the study.

During the experiment, two different entries were used for the status screen: “Status

OK” or “Call Joyce Please”. The user was notified to call the researcher if there were

problems with the accelerometer data. The screen shot can be found in Figure F-2.

The user had the option of muting the study although users were informed not

to use mute unless absolutely necessary. The audio sounds were designed to slowly

increase in volume so that it would not be too distracting to others. Subjects were

not penalized for using the mute button. They had the option to mute the study up

to a maximum of one hour. Any time above one hour would lead to a considerable

loss of interruptions experienced by the subject.

The question screen was designed to limit the amount of text the user had to

read. An icon that represented the question was used along with a short phrase

to remind the subject of the question. The interface is shown in Figure F-3. The
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Figure F-2: The start screen and the mute screen for the experiment.

two questions the user experienced were: “How receptive are you to a phone call?”

or “How receptive are you to a reminder?” The screen chose a question to ask at

random. When the user tapped on the screen, the auditory signal stopped. The

interface captured the amount of time it took the user to tap the screen, and the

elapsed time between tapping the screen and pressing the OK button.
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Figure F-3: The question screen associated with the question ”How receptive are you
to a phone call?”
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Appendix G

Feature Calculation and Decision

Tree Algorithm

This section contains the details of the activity detection algorithm.

G.1 Feature Calculation

Mean, energy, entropy, and correlation features are calculated for each accelerometer.

In order to extract the features from the sampling window, the raw accelerometer

data needs to be run through a discrete Fast Fourier Transform (FFT). Since the

accelerometer data were all real numbers, a real-valued FFT was used. This saved

computation time over a standard complex-valued FFT. The sampling window was

used during the process of calculating the FFT of the accelerometer data. Once the

raw accelerometer data was transformed into the frequency domain using an FFT,

each data point was a complex number, containing a real and imaginary component.

For the purpose of understanding the formulas, Equation G.1 contains the notation

used in this appendix. In addition, n represents the sampling window used and the

subscript j represents the jth data point of the window.

x = a + b ∗ i, x = complex, a = real, b = imaginary (G.1)
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The first set of features extracted from the sampling window was the mean for

each axis. The mean represents the DC component over the entire window. The mean

feature was not used in the classifier, but might be used in future classifications. The

formula for the mean can be found in Equation G.2.

mean =
n∑

j=1

aj

n
(G.2)

The energy of each axis is the sum of the squared component magnitudes normal-

ized by the window size. This calculates the energy of the signal over the sampling

window of each axis. Equation G.3 contains the mathematical representation for the

energy of an axis.

energy =
n∑

j=1

a2
j + b2

j

n
(G.3)

The entropy is calculated using the normalized information entropy of the discrete

FFT component magnitudes of the signal. This feature helps differentiate between

two activites that may have same energy values but different patterns of movement.

A nearly uniform movement will have a lower frequency-domain entropy value in

comparison to a jerky movement. The entropy is calculated using Equation G.4

entropy =
n∑

j=1

cj ∗ log(cj), cj =

√
a2

j + b2
j∑n

k=1

√
a2

k + b2
k

(G.4)

Finally, the correlation between two axes of acceleration for the sampling window

is calculated by taking the dot product of the two axes normalized over the window

size. The formula for this computation is in Equation G.5. Let a represent the real

part of axis 1 and c represent the real part of axis 2.

correlation =
n∑

j=1

aj × cj (G.5)

The correlation was calculated between each of the three different axes for each ac-

celerometer but was not computed between axes on different accelerometers to save
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processing time. Instead, the decision tree indirectly computes the correlation be-

tween axes on different accelerometers using the energy of the different axes on sep-

arate accelerometers. This saves computation time since feature calculation is more

costly than traversing the decision tree. Future algorithms could utilize the correlation

between accelerometers to improve the trained C4.5 supervised learning classifier.

G.2 Decision Tree Algorithm

The decision tree was trained using WEKA software [30]. The C4.5 classifier was

trained using 10 different subjects [20]. Each type of activity has approximately 1500

training cases, or 150 cases per subject. The training data was formatted into a text

file that was saved in the format specified by the WEKA software. A sample of the

WEKA format can be found in Figure G-1. After loading the file, the J48 decision tree

was used on the training data set. WEKA built a decision tree using the training cases.

The tree was saved into a result buffer and loaded onto the iPAQ. The file is located

on the iPAQ in the location: \iPAQ File Store\Interruption\config\wekaTree.txt.

The real-time classifier parses the decision tree and computes all the necessary

nodes to classify incoming data. A sample decision tree can be see in Figure G-2.

The algorithm classifies a window using the sample decision tree in the following

manner:

1. Is the z-entropy of accelerometer 2 less than or equal -0.835391? If the outcome

is true, then the activity associated with this sampling window is walking. If

not, proceed onto the next step.

2. Is the correlation between the y-axis and the z-axis of accelerometer 2 less than

or equal to a certain value? If it is, then proceed to step 3. Otherwise, skip to

step 6.

3. Is the correlation between the x-axis and and the y-axis of accelerometer 1 less

than or equal to 16564758768? If it is, proceed to the next step. Otherwise,

skip to step 5.
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Figure G-1: A sample of the WEKA file format for training a new classifier.
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Figure G-2: A sample decision tree built by WEKA.

4. Is the x-entropy of accelerometer 1 less than or equal to -0.389781? If it is, then

the activity is standing. If the outcome is false, then it is sitting.

5. Is the correlation between the x-axis and z-axis greater than 16564758768 ? If

it is, then the activity of this window is sitting.

6. Is the correlation between the y-axis and z-axis greater than a certain value?

If the result is yes, then the activity associated with this sampling window is

standing.

In addition, any changes to the sampling window will not affect the manner in

which the features are calculated and classified. However, the real-time activity clas-

sifier must have been trained using features with the same sampling window. If the

classifier was trained on a different window, the detection accuracy may decrease

drastically.

Each time new features were calculated for the sampling window, the algorithm

would classify the window using these extracted features. The decision tree used

for the study contained 49 nodes with 25 leaves and took 1.94 seconds to build on

a 3GHz Pentium 4 computer. The tree was learned from the training set, but it

can be interpreted with visual insepction. The algorithm first checks the amount
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of movement of the ankle accelerometer. The classifier then checks the orientation

of the second accelerometer, and then breaks off to test the correlation between the

different axes on separate accelerometers by comparing the energy of the axes.

The lag time between the activity and the classification results from the following

computations:

data acquisition + FFT calculation + features computation

+decision tree classification time = total lag time

For the interruption study, the algorithm took between 3-5 seconds from the time

of the activity occurrence to detection of the activity. The lag time is not constant

because the activity may not have been captured in the features of the first sampling

window. As a result, the algorithm might not detect the activity until the second

sampling window which is 1.28 seconds later.
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Appendix H

Training a Classifier

This section contains the instructions for training a new classifier. There are four

different aspects of the classifier that need to be determined: the sampling window,

the number of accelerometers to use, the type of activities, and the number of cases

per activity. This section outlines the considerations that need to be taken when

deciding on the four aspects. The last portion of this section discusses modifications

needed to make to the program that was built to collect training data.

H.1 Sampling Window

A smaller sampling window will result in a more responsive classifier since it takes less

time to compute the transform and extract the features. However, a small window

also limits the number of activities that the classifier will be able to differentiate.

A larger window also has its pitfalls. It requires more memory and has a longer

processing time. Currently, the algorithm uses a sampling window of 256 points (or

2.56 seconds) and an overlapping window of 128 samples (or 1.28 seconds). Finally,

the window must be a power of 2 (256 = 28) in order to compute the FFT.
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H.2 Number of Accelerometers

The number of accelerometers used determines the sampling rate of each accelerome-

ter because the wireless receiver has a maximum sampling frequency of 200 Hz regard-

less of the number of accelerometers used. The sampling rate for each accelerometer

can be calculated by taking 200 Hz and dividing by the number of accelerometers.

The algorithm currently uses 2 accelerometers and therefore has a sampling rate of

100 Hz per accelerometer.

H.3 Type of Activities

The range of activities that can be detected is dependent upon the number and place-

ment of the accelerometers used. The list of activities that can be currently recognized

along with the number, placement and sampling frequency of the accelerometers is

summarized in Appendix C of Bao’s work [2]. The number of activities can also af-

fect the computation time necessary to classify a sampling window. An increase in

recognition activities can result in a larger decision tree, requiring a longer period of

time to traverse the tree.

H.4 Number of Training Cases

The number of training examples available will affect the accuracy of the decision tree.

A larger training data set may result in a more accurate model, but could also lead

to a complex decision tree with an abundance of nodes. However, a small training

set may not necessarily encapsulate the general population and might thereby result

in a poor performance in detection accuracy for certain users.

H.5 Obtaining Training Data

The program that has been built to collect training data can be found in the following

location: ActivityDetection\Software\GatherActivityData. The code will need to be
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changed to account for the sampling window, the types of activities, the number of

accelerometers, and the number of training cases per subject. Currently the software

will only gather data for a maximum of 2 accelerometers, but it can be easily mod-

ified to incorporate up to 6 accelerometers. The sampling window and overlapping

window are adjusted by changing the number associated with the definition of the

FFT WINDOW and FFT OVERLAP. The types of activities can be loaded into the

array containing the strings for all possible activities. Finally, the number of training

cases per subject is determined by the amount of time the program spends gathering

data for each type. A longer duration between activities leads to a larger number of

cases per subject.

Once the modified software has been deployed onto an iPAQ, the user training the

algorithm wears the sensors and performs the activity that is written on the iPAQ

screens. The user is prompted of a change in activity with a beep. When the software

has finished gathering all the training data for this particular user, the researcher

uncompresses the feature file into a comma-delimited format. The program can be

found under DataCollection\Software\FeatureLogConverter. Two steps are needed

before transferring the data into the WEKA training file format. The data between

activity transitions are removed since they may not be correctly classified. This is

done by removing the 5 samples before a new activity occurred and the 5 samples

after a new activity occurred. Finally, the researcher needs to fill in the string for the

appropriate activity since the activities is referenced by numbers in the feature file.

Upon completion of the two steps, the feature file is copied into the WEKA training

file. Each subject has his/her own feature file, and the WEKA training file contains

the data for all features. The WEKA file is then be loaded in the WEKA software

and be used to generate a decision tree.
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Appendix I

Statistical Analysis

This section describes the details for analyzing the subjects’ responses. The responses

were aggregated on the subject level using the method described in the first portion

of this appendix. The aggregated data was then analyzed using SPSS, a statistical

analysis program.

I.1 Aggregating the Data on the Subject Level

The subject’s responses were loaded into three separate Excel files. One excel file

performed the analysis on the actual experiment data. The second Excel file was

used to simulate the average classifier scenario. 9% of the triggered responses for each

subject were selected randomly and converted to random interruption responses. The

final Excel file was used to simulate the worst case scenario in which the classifier

performed one standard deviation below the average. Instead of selecting 9% of the

triggered responses, 18% of the triggered responses were moved to random responses.

There are two sets of calculations that are computed for all three excel files. For the

first set of calculations, the “no responses ” were omitted. Figure I-1 illustrates this

first set of sorted calculations.

The first set of calculations involves taking the mean and standard deviation of

the following:

1. All random triggered responses
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Figure I-1: A sorted subject response with all the no responses omitted.
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2. All activity transition triggered responses

3. Random triggered responses for the phone call

4. Activity transition triggered responses for the phone call

5. Random triggered responses for the reminder

6. Activity transition triggered responses for the reminder

The second set of calculations requires sorting by the trigger type without omitting

the “no responses.” Instead, the “no responses” were assumed to be situations where

the subject answered a 1. The mean and standard deviation were recalculated for all

random triggered responses and all activity transition triggered responses.

The individual activity transitions were not analyzed because there were not

enough data points for each transition per subject. Refer to Appendix D for the

discussion of the exclusion of these transitions in the analysis.

I.2 Measuring Statistical Significance

After aggregating the data on the subject level, all the data need to be entered into

a statistical analysis program. Figure I-2 shows a sample of the program used to

analyze the significance of the data. A two-tailed paired t-test is used to determine

if two population means are equal when the data is dependent (a within-subjects

design). The following paired t-tests were used to determine the significance of the

results with the no responses omitted.

1. All random responses to all activity transition triggered responses

2. Random responses for the phone call to the activity transition triggered re-

sponses for phone call

3. Random responses for the reminder to the activity transition triggered responses

for the reminder
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Figure I-2: The aggregated subject data entered in a statistical analysis program.

4. All random responses to the responses for sitting to walking

5. All random responses to the responses for sitting to standing

6. All random responses to the responses for walking to sitting

7. All random responses to the responses for standing to sitting

8. Random responses to all activity transition triggered responses for males

9. Random responses to all activity transition triggered responses for females

A paired t-test was also used to compare all random responses to all activity transition

triggered responses with the no responses taken into account. No responses were

assumed to be equivalent to a 1, which is lower than not at all receptive.

A 95% confidence level was used for the paired t-tests. In addition, the significance

level was established at p =0.05. Following convention, in this work any t-test with an

associated p <0.05s is considered to be statistically significant. Appendix D contains

the descriptions for the output of a statistical analysis program.
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The possible problems with this method is that it does not account for the differ-

ence in number of interruptions experienced. A subject that experienced interruptions

more frequently might have a lower difference in mean as opposed to a subject that

experienced sporadic interruptions. However, the paired t-test does not consider this

factor and places equal weight on both differences in mean. Another potential prob-

lem with the paired t-test is the need to aggregate the data on the subject level. The

mean of the mean of each subject is used to represent the overall response of the

subject. This does not take into account the variances in responses. A large variance

in a subject’s response might change the significance level of the results because the

responses did not converge to a value, so the mean could actually not be a useful

representation of the subject’s overall receptivity.
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Appendix J

Data Availability for Other

Researchers

The data collected for this work is available without cost to the public for research pur-

poses. Contact Stephen Intille at intille@mit.edu for information regarding acquiring

the data. The data set includes raw accelerometer data, interruption study responses,

trained C4.5 supervised learning classifier, chime sound file, post-experiment inter-

views, and a summary of the demographic data. The data set has been compressed

to size of 300 MB. The format of the data set can be found in Appendix C.
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