
Understanding and Developing Models for Detecting and 
Differentiating Breakpoints during Interactive Tasks 

Shamsi T. Iqbal and Brian P. Bailey 
Department of Computer Science 

University of Illinois  
Urbana, IL  61801  USA 

{siqbal, bpbailey}@cs.uiuc.edu 
 

ABSTRACT 
The ability to detect and differentiate breakpoints during 
task execution is critical for enabling defer-to-breakpoint 
policies within interruption management. In this work, we 
examine the feasibility of building statistical models that 
can detect and differentiate three granularities (types) of 
perceptually meaningful breakpoints during task execution, 
without having to recognize the underlying tasks. We 
collected ecological samples of task execution data, and 
asked observers to review the interaction in the collected 
videos and identify any perceived breakpoints and their 
type. Statistical methods were applied to learn models that 
map features of the interaction to each type of breakpoint. 
Results showed that the models were able to detect and 
differentiate breakpoints with reasonably high accuracy 
across tasks. Among many uses, our resulting models can 
enable interruption management systems to better realize 
defer-to-breakpoint policies for interactive, free-form tasks. 

CATEGORIES AND SUBJECT DESCRIPTORS  
H.1.2 [Models and Principles]: User/Machine Systems –
human information processing and human factors  

KEYWORDS  
Attention, Breakpoints, Interruption, and Statistical models.  

INTRODUCTION 
A breakpoint is the moment between two meaningful units 
of task execution [23], and reflects internal transitions in 
perception or cognition [29]. In the area of interruption 
management, studies have shown that deferring delivery of 
notifications until a breakpoint is reached can meaningfully 
reduce costs of interruption [1, 5, 7, 18, 19]. However, to be 
able to automate these types of defer-to-breakpoint policies 
within systems for interruption management, we need to 
better understand how to efficiently and accurately detect 
breakpoints during execution of interactive tasks.  

One common method for detecting breakpoints is to match 
users’ ongoing interaction to specifications of tasks defined 
a priori [4]. Although this allows breakpoints to be easily 
detected within tasks that are fairly prescribed, it is much 
more difficult to leverage these types of static specifications 
to detect breakpoints within tasks that have highly variable 
interaction, i.e., free-form tasks, yet these are by far the 
most common type of computing task performed [8]. This 
limitation severely inhibits the ability to realize defer-to-
breakpoint policies in practice, though these policies have 
been shown to reduce costs of interruption [1, 5, 7]. 

In this work, we seek to overcome this central limitation by 
understanding how to detect breakpoints and differentiate 
their granularity without requiring any task specification. 
Granularity refers to the degree of perceptual difference of 
the actions surrounding a breakpoint [28], and the ability to 
differentiate granularity is critical. For example, this would 
allow systems to reason about whether to defer notifications 
until coarser breakpoints, which occur less often, but offer 
larger reductions in cost; or until finer breakpoints, which 
occur more often, but offer smaller reductions in cost [5]. 

A basic question is how many granularities of breakpoints 
are detectable and meaningful during task execution. From 
studies of event perception [28, 29] and task interruption 
[11, 19], there is evidence for at least three perceptually 
meaningful granularities; Coarse, Medium, and Fine. For 
example, when editing documents, Fine may be switching 
paragraphs; Medium may be switching documents; and 
Coarse may be switching to an activity other than editing. 

We investigate how these three granularities of breakpoints 
are manifested during the execution of free-form tasks and 
examine the feasibility of building statistical models that 
can detect and differentiate them. We collected ecological 
samples of task execution data from three task categories; 
document editing, image manipulation, and programming. 
Leveraging methods used to study human perception [23], 
observers were asked to review collected videos, identify 
perceived breakpoints and their type, and enter rationale. 
Breakpoints were thus detected based only on the users’ 
observable interaction, not their internal state, similar to the 
data that would be available to a system in practice. By 
aggregating and filtering the breakpoints, we could identify 
the ‘true’ breakpoints, i.e., those with high agreement. 
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From observers’ rationale, our own analysis of the data, and 
related work [11, 19], we identified candidate features of 
the interaction that might indicate each type of breakpoint. 
Predictive features were identified from the candidate set 
and statistical models that map these features to the true 
breakpoints were learned and evaluated. Results showed 
that the models were able to detect and differentiate each 
breakpoint type with reasonably high accuracy across tasks.  

The benefit of our models is that they are able to detect and 
differentiate breakpoints using only features of the ongoing 
interaction in free-form tasks, without any specifications of 
those tasks. The use of our models can thus enable systems 
to better realize defer-to-breakpoint policies in practice. 

RELATED WORK 
We describe breakpoints, their use in studying perception 
and action, and the implications for our work; describe how 
breakpoints can be used; and discuss how our work differs 
from existing methods of detecting breakpoints. 

Breakpoints in Perception and Action 
A breakpoint represents the moment of transition between 
two observable, meaningful units of task execution [23]; 
and reflects internal transitions in perception or cognition 
[29]. For example, breakpoints are often used to study how 
people segment incoming sensory stimuli [14, 23-25, 28, 
29]. A method shared in many of these experiments is to 
have observers review videos of other people performing 
goal-directed tasks (e.g. repairing a musical instrument) and 
annotate where they believe one meaningful unit of action 
ends and the next one begins, i.e., the breakpoints [23]. A 
consistent finding is that observers identify many of the 
same locations as breakpoints, showing that perception is 
segmented into discrete units and a shared cognitive schema 
is driving this process [28, 29]. These results generally hold 
for tasks that are familiar and unfamiliar to observers [28]. 

Observers report that certain visual cues such as changes in 
the attended-to object, action on that object, or tempo of the 
action provide salient indicators of breakpoints [29]. This 
implies that it should be possible to build models (thinking 
of models as observers) that utilize analogous cues to detect 
breakpoints within execution of interactive or other tasks.  

Another relevant finding is that observers can dynamically 
modulate the granularity of segmentation between coarse 
and fine units of action [23], where granularity refers to the 
degree of perceptual difference between those units. Since a 
subset of the fine breakpoints typically align with the coarse 
breakpoints, mental schemas driving perception and action 
are thought to have at least a two-level hierarchy [28]. This 
implies that models should differentiate at least two types 
of breakpoints – Coarse and Fine – during task execution. 

Neuroscience studies also show that breakpoints identified 
by observers of actions are similar to those experienced by 
the person performing the same actions [26]. This is logical, 

since the person performing an action is also an observer of 
their own action as part of a closed loop system [6]. 

Our work leverages the knowledge and methodology used 
in this area of research to better understand how to identify 
perceptually meaningful breakpoints during execution of 
interactive tasks and how to build models that detect them. 

How Breakpoints Can Be Used 
The ability to detect breakpoints during task execution has 
many useful applications. For example, for interruption 
management, studies have shown that deferring delivery of 
notifications until breakpoints are reached can meaningfully 
reduce costs of interruption [1, 5, 16, 19], and that deferring 
until coarser breakpoints further reduces these costs [19]. In 
these studies, specifications for tasks were determined in 
advance using modeling techniques such as GOMS [20], 
enabling interruptions to be cued at specific moments [19]. 
If breakpoints could be reliably detected in free-form tasks, 
then defer-to-breakpoint policies similar to those used in the 
controlled studies could be better realized in practice. 

Detection of breakpoints can also contribute to an emerging 
class of interactive tools that enables knowledge activities 
to be organized into reusable structures and shared [9, 27]. 
A challenge in building these types of tools is being able to 
organize user activities without having to repeatedly solicit 
input [9]. Models that detect breakpoints could facilitate 
automated organization, thus reducing the burden on users. 

Methods for Detecting Breakpoints 
Several methods have been used to detect breakpoints. One 
common method is to create a structural decomposition of a 
task, e.g., using GOMS [6], and identify interactions that 
indicate the end of one subtask and the start of the next – 
with breakpoints being in-between. As tasks are performed, 
a system can match users’ interaction to the corresponding 
task descriptions in order to detect the breakpoints [4].  

In contrast, our work detects breakpoints using perceptual 
structure. Breakpoints identified using our method would 
ostensibly be only a subset of those available within the 
structural decomposition of a task, but eliminates the need 
to create such decompositions and may better identify those 
breakpoints that typically correspond with lower cost [19]. 

A second method is to use the number of application-level 
windows selected within a sliding time window as an 
indicator of an activity switch [22] (which, as we will show, 
maps to Coarse breakpoints). Results of this method ranged 
from 20% to 90% accuracy, but only one type of breakpoint 
could be detected. A third method is to detect switches 
between ‘rooms’ in a virtual desktop window manager [15]. 
This method could only detect a single type of breakpoint 
and would force the use of this type of window manager.  

A related thread of research has produced statistical models 
of interruptibility for interactive tasks [11]. One explanation 
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as to why these models work is that they implicitly detect a 
user’s time to breakpoint. Indeed, the authors reported that 
users would often defer acceptance of a cued notification 
until they reached a breakpoint. Our work explicitly detects 
these points of interest, which could be used for interruption 
management as well as other purposes (see prior section). 

In the area of mobile devices, Ho and Intille [16] used data 
from multiple accelerometers attached to a person’s body. 
Based on analyzing the data signatures in various physical 
postures and movements, they were able to detect moments 
when users were in physical transition (such as the act of 
standing up). Results from a study showed that deferring an 
interruption until this transition reduced cost of interruption. 

Relative to this corpus of research, our work is original in 
that we focus on building models that are able to detect and 
differentiate three granularities of perceptually meaningful 
breakpoints within interactive, free-form tasks; and without 
any specifications. The methods used in our work could 
also be applied to build effective models for detecting and 
differentiating breakpoints within physical or other tasks. 

OVERVIEW OF THE MODEL BUILDING PROCESS  
To develop effective and efficient models for detecting and 
differentiating task breakpoints, our process was to:  

• Collect representative samples of users’ task execution, in 
the form of screen interaction videos and event logs.  

• Have observers review the videos, identify perceived 
breakpoints and their type, and explain their rationale.  

• Select those breakpoints with a high degree of agreement, 
and use them as the ground truth for building the models.  

• Identify features describing the interaction at the selected 
breakpoints, guided by users’ explanations, and compute 
values for the features based on the videos and logs.  

• Learn statistical models that map the predictive features 
to the ground truth values, and evaluate their accuracy. 

To facilitate collection and analysis of the breakpoint data, 
we developed several new software tools. Activity Recorder 
records a user’s screen interaction and logs system events; 
Breakpoint Annotator enables observers to review videos, 
identify breakpoints, and enter linguistic explanations; and 
Breakpoint Analyzer supports interactive analysis of the 
data. Our tools can be utilized to reduce the effort required 
to collect and analyze similar data, e.g., data in [23, 25, 28].  

COLLECT TASK EXECUTION DATA 
Task execution data was collected from three general task 
categories; Document Editing (DE), Image Manipulation 
(IM) and Programming (P). These categories were selected 
because they are often performed by many users, comprise 
diverse subtasks, and require varying engagement. Using 
several categories would allow better understanding of the 
similarities and differences among breakpoints across tasks. 

For each category, two users (6 total) were recruited and 
screened to ensure they were experienced in the category 
selected and would be comfortable having their interaction 
data viewed by others. Users received $20 for participating. 

We wanted to collect samples of users’ own personal or 
work tasks, performed in their own environment, ensuring a 
high degree of ecological validity. Our recording software 
was thus installed on users’ own machines and they were 
informed of what data it was recording and how to control 
it. For example, the software allows recording to be started, 
paused, or stopped at any time using keyboard shortcuts and 
shows its current status through an icon in the system tray. 

The software was configured to record screen interaction at 
a low, but adequate frame rate (5 fps) using the Camtasia 
SDK and logged mouse, keyboard, and other relevant 
system events using the Windows Hooks API. Users were 
asked to activate the recording software the next time that 
they would be primarily focused on performing any task 
within the relevant category for at least an hour. We 
emphasized that they should perform the task, with the 
interleaving of any other tasks, as usual. To avoid recording 
sensitive data, users were reminded that they could pause/ 
restart the software at any time. Once at least an hour of 
data was recorded (minus any pauses), the user notified the 
experimenter, who collected it and removed the software. 

For task content, for DE, one user was writing a research 
paper while the other was writing study guides for exams. 
For IM, one user was touching up personal photos from a 
recent vacation while the other was developing icons and 
other graphics for a software application. For P, one user 
was developing a user interface for a research project while 
the other was writing source code for a course assignment. 
The applications used included Microsoft Word, Adobe 
Photoshop, and Eclipse, respectively. Users did temporarily 
pause collection of their data, but this was very rare overall. 

IDENTIFY PERCEIVED BREAKPOINTS AND THEIR TYPE 
The next step was to determine the locations of perceived 
breakpoints and their type within the task execution data. 24 
observers were recruited, 8 per category, and were asked to 
review the two videos from an assigned category, mark the 
location and type of each perceived breakpoint, and enter a 
brief description as to why they felt this was a breakpoint.  

Observers were asked to detect and differentiate three types 
of breakpoints, guided by the following descriptions: 

• Coarse. The moment when the largest meaningful and 
natural unit of execution ends and the next one begins. 

• Fine. The moment when the smallest meaningful and 
natural unit of execution ends and the next one begins.  

• Medium. The moment when a natural and meaningful 
unit of execution, which is smaller than Coarse but 
larger than Fine, ends and the next one begins. 
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Inclusion of Coarse and Fine breakpoints, along with their 
descriptions, is consistent with research on event perception 
[23, 28]. Medium was included since empirical studies have 
shown three classes of interruption cost [11, 19], ostensibly 
tied to three levels of breakpoints, and results from a pilot 
study showed that users were able to differentiate the three 
types of breakpoints within data samples, but not more.  

Using observers to identify breakpoints in another user’s 
tasks is effective because research has shown that the same 
schema used to chunk a person’s goal-directed actions are 
also used to chunk their perception when observing another 
person performing those same actions [26]. Also, finding 
that observers are able to agree on the types and locations 
of breakpoints would indicate that similar salient cues were 
being perceived within the interaction data. If those cues 
could be identified, then models could be built (thinking of 
models as observers) that automate a similar process. 

For procedure, observers came to our lab and were asked to 
review videos of task execution and identify moments at 
which they felt that one unit of execution ended and another 
began; using cursor movements, interaction sequences, and 
state of the task as cues. The different types of breakpoints 
were explained using the previous descriptions. The overall 
methodology was consistent with prior work [23, 24, 29]. 

Our Breakpoint Annotator tool (Figure 1) was used to assist 
the observer in the annotation process. The observer was 
given a demonstration of the tool and practiced using it on a 
sample of the data, enabling her to become familiar with the 
interface and 3 types of breakpoints. Once questions were 
answered, the observer began annotating the first video.  

When a breakpoint was detected, the observer selected a 
button indicating the type of breakpoint (Coarse, Medium, 
or Fine). In response, the video was paused, a tick mark was 
shown on the relevant timeline, and a textbox was activated 
for entering an explanation. The observer could review the 
video and modify breakpoints as desired. The observer 
annotated both videos within an assigned category, but 
since annotation required about two hours, the process was 
split across two days. The order of videos in a category was 
counter-balanced. Observers received $20 for participating.  

Summary and Characteristics of Breakpoints 
A total of 3074 breakpoints (Coarse=756, Medium=1050, 
Fine=1268) were identified, and are summarized in Table 1. 
Overall, Fine breakpoints were the most frequent while 
Coarse breakpoints were the least frequent (χ2(2)=128.9, 
p<0.001); showing that interactive tasks also tend to be 
performed in a hierarchical manner [28]. Interestingly, the 
distributions for tasks DE1 and P2 show more Coarse and 
Medium breakpoints than Fine breakpoints. This is not 
unexpected given users’ constant multi-tasking behavior [8, 
12], which, as our results show, may not always be uniform. 

Category Breakpoint Next 
Coarse 

Next 
Medium 

Next 
Fine 

Coarse 141 (235) 192 (283) 259 (289)

Medium 191 (233) 102 (190) 253 (426)Document 
Editing 

Fine 259 (367) 175 (356) 112 (231)

Coarse 266 (520) 300 (254) 113 (106)

Medium 538 (564) 244 (330) 117 (167)Image 
Manipulation

Fine 641 (663) 380 (421) 91 (115) 

Coarse 162 (397) 116 (151) 174 (168)

Medium 427 (670) 129 (173) 157 (159)Programming

Fine 402 (623) 142 (157) 139 (186)

Coarse 190 (365) 203 (239) 182 (219)

Medium 385 (512) 158 (226) 176 (306)
Overall 

Averages 
Fine 434 (591) 179 (397) 114 (174)

Table 2. Mean distances in seconds between adjacent types of 
breakpoints. Standard deviations are in parenthesis. 

Category Task Coarse Medium Fine 

DE1 184 226 132 Document 
Editing DE2 140 209 212 

IM1 93 120 293 Image 
manipulation IM2 37 99 282 

P1 50 176 193 
Programming 

P2 252 220 156 

Total  756 1050 1268 

Table 1. Frequency distribution of breakpoints across tasks. 

Figure 1. Screenshot of the Breakpoint Annotator tool being 
used to annotate one of the Programming task execution videos.  

Textbox to enter 
explanations 

Visualization 
of breakpoints 

Buttons to select the 
type of breakpoint 
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Temporal distances between breakpoints are summarized in 
Table 2. The average distance between breakpoints ranges 
from about 1.5 min (between Fine breakpoints for IM) to 
10.7 min (from Fine to Coarse for IM), with the overall 
average between any two breakpoints being about 3.8 min. 
These results support and extend data reported in [12, 21]. 

This data is important because it provides some of the first 
ecological estimates of how long an interruption reasoning 
system would need to defer delivery of information in order 
to reduce interruption cost. For example, assuming that 
information became available just after a user crossed a 
Fine breakpoint, delivery of the information would need to 
be deferred up to about 2 min to have some reduction in 
cost (next Fine breakpoint), about 4 min to further reduce 
cost (next Medium), and about 7 min to have minimal cost 
(next Coarse). These values could also inform the design of 
interfaces that allow users to specify how long they would 
be willing to wait for different types of information [17]. 

From observers’ explanations, Coarse breakpoints typically 
corresponded to a switch in high-level activity, indicated by 
switching to other application(s) judged to be unrelated to 
the main task, e.g., changing to a music player, checking e-
mail, or reading news online. A Coarse breakpoint was also 
often indicated by returning back to the main application. 

Medium breakpoints were tied to switching to applications 
judged to be relevant to the primary task or to a large shift 
in focus within the content of the application. For example, 
for DE, this included transitioning to edit a paragraph in 
another section of the document, saving the document, and 
opening another document. For IM, this included loading 
another image, transitioning to edit a different region or 
visual feature of the image, and saving the current image. 
For P, this included starting to edit a new class in the file, 
saving the current source file, switching to another source 
file, and switching between the code and debug windows. 

Fine breakpoints were usually tied to actions on the content 
within an application. For example, for DE, this included 
completing formatting commands, searches, and copy/paste 
sequences; and starting to edit another paragraph near the 
current insertion point. For IM, this included completing 
layer manipulations, resize of canvas, and operations such 
as color adjustments, blending, cropping, and selection. For 
Programming, this included starting a new method, closing 
a method, completing a compile, completing the check 
in/out of a file; and completing definition of class variables. 

Interestingly, observers did not identify lower-level units, 
such as completing a specific sentence or line of code, or 
moving between fields in a dialog, as Fine breakpoints. The 
commonly cited reason, clearly evident in the videos, was 
that editing at the level of a sentence, line of code, or area 
of pixels exhibited rapid interleaving of pointing, typing, 
erasing, selecting, scrolling, etc.; thus offering few visually 
identifiable breaks in the interaction. Thus, attempting to 

detect breakpoints at this level of detail is probably not 
warranted, consistent with earlier empirical findings [18]. 

Overall, this data offers some of the first evidence as to 
where and how often breakpoints occur within interactive 
tasks, and offers insight into the types of features that might 
be useful in models for detecting and differentiating them. 

IDENTIFY GROUND TRUTH FOR BREAKPOINTS 
The third step was to combine the breakpoint data across 
observers and identify breakpoints that had high agreement. 
This would remove “noise” from the data set and provide 
the ground truth for the model building process. Figure 2 
shows a screenshot of our interactive tool that was used to 
facilitate analysis and coding of the breakpoint data.  

We first needed to divide the interaction data into discrete 
bins, which is necessary since there is natural variance in 
the temporal locations that refer to the same breakpoint, 
e.g., some observers may take different amounts of time to 
decide whether a breakpoint had just occurred. 

Our goal was to select a bin size large enough such that 
slightly different locations referring to the same breakpoint 
would fall into the same bin, but small enough such that 
locations referring to different breakpoints would not. 
Whether a marked location referred to the same breakpoint 
was determined by analyzing observers’ explanations and 
the corresponding parts of the interaction videos and logs. 

From testing a number of bin sizes, between 1s and 20s, we 
found that a bin size of 10s best met our goal and that this 
value achieved our goal for each type of breakpoint. This is 
slightly larger than bin sizes used in prior work [14, 24, 28], 
but our tasks were of much longer duration, on the order of 
hours as opposed to minutes. Table 3 shows the number of 
bins for each task, and how many of those bins contained 

Figure 2. A screenshot of our tool that allows breakpoints to be 
aggregated (top window) and interactively analyzed. When a 
breakpoint is selected, the video (bottom left) is positioned at the 
corresponding temporal location. Candidate features are shown at 
the right and allow each bin within the video to be quickly coded. 
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each type of breakpoint. If a bin had multiple types of 
breakpoints, it was counted multiple times. A chi-square 
test showed that observers were biased towards selecting 
certain bins as breakpoints across all six tasks (DE-1: 
χ2(359)=1323, p<0.0001; DE-2: χ2(424)=1208, p<0.0001; 
IM1: χ2(309)=408, p<0.0001; IM2: χ2(433)=997, p<0.0001; 
P-1: χ2(405)=1183, p<0.0001; P-2: χ2(370)=957, p<0.0001), 
meaning that the selection of breakpoints was not random.  

We then had to establish the minimum number of observers 
who needed to have indicated that a breakpoint was within 
a bin before being able to conclude that that bin contained a 
“true” breakpoint. One solution would be to use an absolute 
threshold (e.g., more than half of the observers must agree), 
but this does not consider the prior likelihood of agreement. 

Our approach, following [14], was to compute the average 
number of breakpoints per bin, considering only those bins 

with at least one breakpoint; add 1.65 standard deviations; 
and round. This process establishes an alpha=.05 threshold 
[14], and this threshold was calculated for each task and 
breakpoint type. A bin with a number of breakpoints (same 
type) greater than the computed threshold was considered to 
contain a true breakpoint, or breakpoint bin. Table 4 shows 
the decision thresholds used in this filtering process. 

The number of breakpoints meeting the thresholds was 445 
(~25% of all bins with > 1 breakpoint), and are summarized 
in Table 5. Inspection of the table shows that the filtering 
was fairly uniform. Though this was a stringent filtering 
process, the aim was to reduce the number of false positives 
in the data set that would later be used for training. Also, 
independent sample t-tests confirm that more observers had 
detected a breakpoint in a breakpoint bin than in the other 
bins across tasks and breakpoint type (p<0.001 in all cases). 

What is perhaps most intriguing about this result is that the 
observers, all of whom had annotated the videos separately, 
identified many of the same moments as breakpoints. This 
occurred because observers were likely perceiving similar 
cues in the interaction videos. This implies that it should be 
possible to build models that leverage those same cues to 
detect and differentiate breakpoints for free-form tasks. 

Though there were fewer breakpoint bins due to filtering, 
the average temporal distances were similar to those listed 
in Table 2 and ranged from 1.4 min to 11.9 min, with the 
average between any two breakpoint bins being 4.3 min. 

IDENTIFY FEATURES INDICATING BREAKPOINTS 
Next, we needed to identify features that could be used to 
detect and differentiate breakpoints during task execution. 
Candidate features were determined based on an analysis of 
observers’ explanations and event logs, our own analysis of 
the task data, lessons reported in prior work [10, 11], and 
whether values could be realistically computed in a system. 

For Coarse breakpoints, observers were very consistent in 
describing them as a switch to another activity that was not 
related to the main task (and back). However, this abstract 
description does not yield any specific, usable features and 
a model would not be able to know what a user’s main task 
was without prior knowledge. Based on detailed inspection 
of video segments corresponding to Coarse breakpoints, we 
observed that they were frequently tied to switches among 
various types of applications or content, e.g., music players, 
e-mail and instant messaging, or online shopping and news. 
Our observations are also consistent with results derived 
from an analysis of users’ activity data, as reported in [8]. 

We thus created a set of application categories including 
Entertainment, Communications, and Web; with the latter 
being further categorized based on whether it is a common 
news or shopping site based on its URL; and those already 
being used as part of this work (DE, IM, and P). Under the 
assumption that various applications could be mapped to 

Category Task #Bins Bins w/ 
Coarse 

Bins w/ 
Medium

Bins w/ 
Fine 

DE1 360 78 106 85 Document 
Editing DE2 425 60 123 157 

IM1 310 43 85 185 Image 
manipulation IM2 434 25 73 160 

P1 406 19 85 126 
Programming 

P2 371 108 130 110 

Total  2306 333 602 823 

Table 3. Frequency distribution of bins and number of bins with 
each type of breakpoint. Each bin represents 10s of task execution.

Category Task Coarse Medium Fine 

DE1 16 (21%) 40 (38%) 35 (41%) Document 
Editing DE2 11 (18%) 25 (20%) 38 (24%) 

IM1 8 (19%) 24 (28%) 74 (40%) Image 
manipulation IM2 9 (36%) 19 (26%) 29 (18%) 

P1 40 (21%) 10 (12%) 47 (37%) 
Programming 

P2 22 (20%) 23 (18%) 11 (10%) 

Table 5. Distribution of true breakpoints. Percentages indicate 
what percent of bins (Table 3) satisfied the threshold (Table 4). 

Category Task Coarse Medium Fine 

DE1 4 (2.3,1.8) 3 (2.1,1.2) 2 (1.5,0.8) Document 
Editing DE2 4 (2.3,1.3) 3 (1.7,1.0) 2 (1.3,0.7) 

IM1 4 (2.2,1.3) 2 (1.4,0.7) 2 (1.6,0.8) Image 
manipulation IM2 2 (1.5,0.7) 2 (1.3,0.7) 3 (1.7,1.3) 

P1 5 (2.6,1.9) 4 (2.1,1.5) 2 (1.5,0.8) 
Programming 

P2 4 (2.3,1.8) 3 (1.7,1.0) 2 (1.4,0.8) 

Table 4. Min number of breakpoints (mean, 1.65*s.d.) that had to 
be marked within a bin before it was considered a true breakpoint. 
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these categories, features were created for the number of 
switches between them. Also, the number of applications 
started, exited, and moved were included, as these have also 
been argued to indicate switches in high-level activity [22].  

Though our approach offers a reasonable starting point and 
extends prior work for detecting Coarse breakpoints, future 
work should explore the value of including features tied to 
the degree of similarity among application content, e.g., 
using techniques in [3]. Note that overcoming challenges of 
applying such techniques within the domain of interactive 
applications is well beyond the scope of our current work. 

Medium and Fine breakpoints typically occurred during the 
interaction within an application. Our approach here was to 
bind features to independent actions at the application 
interface level, following work in [11]. For example, for 
DE, features included CompletedSwitchToAnotherDoc, 
CompletedSetInsertionPoint, and CompletedScroll. If the 
first two occurred within a bin, then this would likely 
indicate Medium; whereas if the latter two occurred, then 
this might indicate Fine, e.g., due to switching paragraphs. 

For Coarse breakpoints, we identified 20 features that were 
independent of any one application. For Medium and Fine, 
we identified 33 features for DE, 33 for IM, and 42 for 
Programming, with some overlap. Samples of the features 
(with mnemonic descriptions) are provided in Table 6. One 
characteristic of many of the features is they correspond to 
completion of an action, not the action itself (e.g. completed 
scrolling as opposed to scrolling), which is consistent with 
observers’ explanations and the notion of a breakpoint.  

A coding agenda was developed, comprising a description, 
example, and rule for each feature [2]. For each breakpoint 
bin (10s clip), values for the features were computed by 
applying the agenda to corresponding parts of the videos. 
We also computed values for the features for a sample of 
bins that had no breakpoint (NAB), enough to compose 
25% of the total training cases. Training cases were in the 
form of <value of feature 1, …, value of feature N, output>, 
where output was one of Coarse, Medium, Fine, or NAB.  

The coding was validated by having an independent coder 
compute values for the candidate features for 10% of the 
bins, randomly selected from the training cases. Cohen’s 
Kappa showed satisfactory agreement between them (0.74). 

EXTRACT PREDICTIVE FEATURES 
Before predictive features could be extracted, we needed to 
decide how the models would be built. Our approach was to 
create one application-independent model for predicting 
Coarse/NAB and a set of application-specific models for 
predicting Medium/Fine/NAB, giving a total of 4 models. 
This decision was made because Coarse breakpoints were 
deemed independent of any one application while Medium 
and Fine were more dependent. Training cases were 
organized accordingly, but Medium and Fine cases from 
each task category were included as part of NAB cases for 
Coarse, helping to minimize overlap between the models. 

Given this organization of the training cases (models), the 
predictive features were extracted using Correlated Feature 
Selection (CFS) with a Greedy Stepwise search [13]. CFS 
was chosen since some candidate features may have been 
correlated. Predictive features are shown in bold in Table 6.  

MAP PREDICTIVE FEATURES TO BREAKPOINTS 
The last step was to learn models that map the predictive 
features to the breakpoint types and NAB. A multilayer 
perceptron (MLP) was leveraged to learn each mapping, as 
it does not assume independence of features and has been 
used to learn similar models in prior work [19]. The model 
for Coarse breakpoints had two outputs (Coarse, NAB) 
while the models for each category of task had three outputs 
(Medium, Fine, NAB). All models had one hidden layer.  

For input, the model for Coarse used only those features 
that were independent of the task (left column of Table 6) 
while inputs for the other models corresponded to features 
tied to the application, in addition to the general features. 
Mappings were learned using back propagation, and a 10-
fold cross validation was used to evaluate the models.  

General (Coarse) Application Specific (Medium and Fine) 
App Manipulation (20 total) Document Editing (33 total) Image Manipulation (33 total) Programming (42 total) 

#CompletedOpenAnyApp 
#SwitchToEntertainmentApp 
#SwitchToOnlineNews 
#SwitchToDocEditing 
#SwitchToImageManipulation 
#SwtichToProgramming 
#SwitchesToCommunications 
#CompletedStartAnyApp 
#CompletedMaximizeAnyApp 
#CompletedExitAnyApp 
#CompletedRelocation 

#CompletedFormattingActions 
#CompletedSwitchToDocEditing 
#CompletedAlt-tabSwitch 
someKeystrokes 
noMouseClicks 
noMouseMoves 
someMouseMoves 
#CompletedSwitchToAnotherDoc 
#CompletedSetInsertionPoint 
#CompletedSelections 
#CompletedSaves 

#CompletedAltTabSwitch 
#CompletedSwitchToAnotherImg 
#CompletedSave 
#CompletedColorManipulation 
#CompletedTextManipulation 
#CompletedSetupNewImage 
#CompletedExitCurrentImage 
#CompletedSelectionTools 
#CompletedLayerManipulation 
#CompletedCanvasResize 
#CompletedSelectionToolActions 

#CompletedOpenAnyApp 
#CompletedSearch 
#CompletedSwitchClass 
#CompletedSwitchProject 
#ControlKeyStrokes 
noMouseClicks 
#CompletedSetInsertionPoint 
#CompletedSwitchMethod 
#CompletedCreateMethod 
#CompletedCreateClass 
#CompletedDebug 
#CompleteNavigateCode 

Table 6. A representative sample of the candidate features used for detecting breakpoints. The number of occurrences of each feature were 
counted for each 10s bin of task execution. The features highlighted in bold were found to be predictive. 
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Table 7 shows results for predicting Coarse and NAB. The 
model yielded an overall accuracy of 87.1%, which is much 
better than the baseline (χ2(1, 139)=76.3, p<0.001; baseline 
=50%), where baselines were calculated as the accuracy of 
always predicting the most common outcome. The high 
accuracy can likely be attributed to the model’s features 
detecting a switch between certain application categories 
that often indicated a switch between unrelated activities. 
More sophisticated analysis of the similarity between the 
content of applications may yield further improvements.  

Tables 8a-c show results for detecting and differentiating 
Medium, Fine, and NAB for the three task categories. For 
Document Editing, the model yielded an overall accuracy 
of 69.4%, which is much better than the baseline (χ2(1, 
85)=33.5, p<0.001; baseline=39%). The model was slightly 
less accurate for differentiating between Medium and Fine. 
However, the most egregious type of error, detecting either 
type of breakpoint when none existed, was low (14.4%).  

For Image Manipulation, the model yielded an accuracy of 
76.3%, much better than the baseline (χ2(1, 152)=42.1, 
p<0.001; base=50%). This model was able to effectively 
differentiate Medium and Fine, and Medium and NAB. 
However, the model would sometimes predict Fine when 
the actual was NAB. This could be due to the mouse 
movements being less predictive of users’ intents or there 
being less visible structure in this particular task category. 

For Programming, the model yielded an accuracy of 75.8%, 
which was better than the baseline (χ2(1, 91)=23.3, 
p<0.001; base=51%). The model was slightly less effective 
at differentiating Fine and NAB, but it was very effective at 
differentiating Medium and NAB, and Medium and Fine.  

Our models were developed using breakpoints identified by 
observers who did not share users’ internal understanding 
of their tasks. As a final evaluation metric, we thus wanted 
to test how well our models could predict breakpoints 
identified by the users themselves. We asked users whose 
interaction data was originally annotated by observers to 
identify breakpoints in their own data, and then tested the 
accuracy of our models on it. Applying our models to the 
user’s annotated data sets, the accuracy of the model for 
Coarse breakpoints ranged from 40–100%, with an average 
of 76.5% across users (one user’s data was excluded as too 
few breakpoints were identified). For the application 
specific models, the results for each user were (DE1: 
56.0%, DE2: 72.7%; IM1: 68.2%, IM2: 85.7%; P1: 14%, 

P2: 50.0%). Other than for P1, these results show that our 
models were able to accurately predict breakpoints 
identified by the users, even though a number of these 
breakpoints did not intersect with those identified by the 
observers. This validates that our models can predict 
breakpoints independent of the knowledge of the task.  

Overall, even though there were some errors, our results 
demonstrate that it is feasible to build models that detect 
and differentiate breakpoints within free-form tasks with 
fairly high accuracy. This ability to detect a majority of the 
breakpoints should be more than sufficient to allow useful 
functionality, e.g., to enable defer-to-breakpoint policies. 
Potential solutions for meaningfully improving the accuracy 
of the models involve identifying and integrating additional 
predictive features into the models, training the models for 
specific users, and experimenting with various bin sizes.  

DISCUSSION 
This research sought to further understand different types of 
breakpoints across various tasks and examine the feasibility 
of building models that could detect and differentiate them.  

Our work has produced several important findings. First, 
we were able to identify interactions that characterize each 
type of breakpoint. For example, a switch in high-level 
activity corresponds to a Coarse breakpoint, a switch in the 

Predicted 
 Coarse NAB Total 

Coarse 62 (89.9%) 7 (10.1%) 69 (100%) 
Actual 

NAB 11 (15.7%) 59 (84.2%) 70 (100%) 

Table 7. Predicted vs. Actual for Coarse breakpoints. 
Overall accuracy was 87.1%. 

Predicted  Medium Fine NAB Total 

Medium 20 
(60.6%) 

11 
(33.3%) 

2 
(6.1%) 

33 
(100%) 

Fine 5 
(20.8%) 

15 
(62.5%) 

4 
(16.6%) 

24 
(100%) Actual

NAB 2 
(7.2%) 

2 
(7.2%) 

24 
(85.7%) 

28 
(100%) 

Table 8a. Predicted vs. actual breakpoints for Document Editing. 
Overall accuracy was 69.4% 

Predicted  Medium Fine NAB Total 

Medium 24 
(68.6%) 

10 
(28.6%) 

1 
(2.8%) 

35 
(100%) 

Fine 5 
(6.6%) 

71 
(93.4%) 

0 
(0%) 

76 
(100%) Actual

NAB 2 
(4.9%) 

18 
(43.9%) 

21 
(51.2%) 

41 
(100%) 

Table 8b. Predicted vs. actual breakpoints for Image manipulation.
Overall accuracy was 76.3%. 

Predicted  Medium Fine NAB Total 

Medium 11 
(68.8%) 

4 
(25.0%) 

1     
(6.3%) 

16 
(100%) 

Fine 1 
(2.2%) 

36 
(78.2%) 

9 
(19.6%) 

46 
(100%) Actual

NAB 0 
(0%) 

7 
(24.1%) 

22 
(75.9%) 

29 
(100%) 

Table 8c. Predicted vs. actual breakpoints for Programming. 
Overall accuracy was 75.8% 
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current source object (e.g., document, image, or code file) 
of an application corresponds to Medium, and a switch in 
the action on the current object corresponds to Fine. This 
shows that there is a perceivable structure within free-form 
tasks, which models should be able to detect. Interestingly, 
these characteristics closely parallel those found to indicate 
breakpoints within physical tasks [29]. 

Second, we found that temporal distances between types of 
breakpoints ranged from about 1 to 10 min, with an average 
of about 4 min. Our results support previous work showing 
that users repeatedly multi-task [12], but also show that this 
multi-tasking occurs at multiple levels of detail. Our results 
also establish that breakpoints occur often enough such that 
interruption management systems could practically employ 
defer-to-breakpoint policies for non-critical notifications. 

Third, we reported which features of user interaction were 
found to be predictive of each breakpoint type. Though our 
set of features should by no means be considered final, they 
do provide deeper insights into the range of features that 
should be included in similar models deployed in practice. 

Finally, our models were able to accurately detect 69 to 
87% of each type of breakpoint for the observers’ data, and 
similar results were obtained for users’ own annotations. 
We believe these results are very positive, especially since 
no pre-defined specifications of tasks were used. Increasing 
accuracy would likely require identifying and integrating 
additional predictive features, e.g., indicating similarity of 
content, or refining the default models for specific users. 

Deploying Models for Detecting Breakpoints 
To deploy similar models in practice, one must consider (at 
least) how to instrument applications, which breakpoints to 
detect and how to train the models, and what bin size to use.  

Instrumentation of applications is needed to send relevant 
events to a model. Such instrumentation can be achieved by 
leveraging existing research efforts such as [9], intercepting 
application events by writing plug-ins [5], or adapting the 
underlying UI toolkit [11]. Regardless of the method used, 
our work provides valuable insights as to the type and level 
of detail of the instrumentation needed.  

Our work shows that three types of breakpoints can be 
detected, but this does not mean that models must detect all 
three in practice. For example, in interruption management, 
if users are able and willing to have information deferred up 
to 4-5 min on average, then a system may only need to 
utilize the one model for detecting Coarse breakpoints. 

Default models could be deployed and provide reasonable 
accuracy, but, if needed, accuracy could be improved by 
refining models on a per user basis [10]. This could be 
achieved by leveraging toolkits for generating models on-
the-fly [11], assuming users would be willing to provide the 
necessary input. Further improvements would require 
identifying and integrating additional predictive features. 

Finally, to detect breakpoints, a model must typically assess 
interaction within a fixed time window. Our work suggests 
a window of about 10s, but an implementation may need to 
experiment with different values, considering the tradeoff 
between computational overhead and discriminatory power. 

Limitations  
There are several limitations to our work. First, our work 
investigated breakpoints within categories of tasks that all 
required the generation or manipulation of content. Future 
work should thus study models for detecting breakpoints in 
other tasks, e.g., those that stress information-seeking. 

Second, we analyzed about one hour of task execution data 
from each of six users. Thus, our resulting models are only 
able to accurately detect breakpoints within the range of 
interaction that was captured in our original data. As our 
work has now shown that building statistical models for 
detecting breakpoints is feasible, more robust models could 
be built by applying the methodology in this work on a 
much larger sample of interaction data.  

Finally, the cognitive duration of a breakpoint is not known, 
but would be important for certain applications of our work, 
e.g., for interruption management where cost may not be 
reduced if information delivery exceeds this duration after a 
breakpoint. Future work should try to empirically determine 
this duration, which may inform the bin size for the models. 

CONCLUSION AND FUTURE WORK 
The ability to detect and differentiate breakpoints represents 
an emerging need within at least interruption management, 
e.g., to enable defer-to-breakpoint policies. Our work has 
made several contributions addressing this need.  

First, we leveraged work in psychology to better understand 
the concept of breakpoints and leveraged unit identification 
methodology to identify three granularities of perceptually 
meaningful breakpoints during task execution. Second, we 
provided insights into the characteristics of interaction that 
indicate each breakpoint type and evidence as to how often 
each type of breakpoint naturally occurs in practice.  

Finally, our models were able to detect 69% to 87% of each 
type of breakpoint across tasks for the observers’ data, and 
similar results were obtained for users’ own annotations. 
Our work has thus demonstrated the feasibility of building 
statistical models that are able to detect and differentiate 
perceptually meaningful breakpoints during free-form tasks, 
without having to create any specifications of those tasks.  

Beyond addressing the limitations previously discussed, our 
main direction of future work is to build similar models as 
part of a broader system for interruption management. The 
models would enable various policies to be programmed for 
deferring delivery of non-critical notifications, e.g., defer 
until next Coarse breakpoint or until the next breakpoint of 
any type, and tested with various categories of tasks. 
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