
Understanding and Developing Models for Detecting and
Differentiating Breakpoints during Interactive Tasks

Shamsi T. Iqbal and Brian P. Bailey
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

{siqbal, bpbailey}@cs.uiuc.edu

ABSTRACT
The ability to detect and differentiate breakpoints during
task execution is critical for enabling defer-to-breakpoint
policies within interruption management. In this work, we
examine the feasibility of building statistical models that
can detect and differentiate three granularities (types) of
perceptually meaningful breakpoints during task execution,
without having to recognize the underlying tasks. We
collected ecological samples of task execution data, and
asked observers to review the interaction in the collected
videos and identify any perceived breakpoints and their
type. Statistical methods were applied to learn models that
map features of the interaction to each type of breakpoint.
Results showed that the models were able to detect and
differentiate breakpoints with reasonably high accuracy
across tasks. Among many uses, our resulting models can
enable interruption management systems to better realize
defer-to-breakpoint policies for interactive, free-form tasks.

CATEGORIES AND SUBJECT DESCRIPTORS
H.1.2 [Models and Principles]: User/Machine Systems –
human information processing and human factors

KEYWORDS
Attention, Breakpoints, Interruption, and Statistical models.

INTRODUCTION
A breakpoint is the moment between two meaningful units
of task execution [23], and reflects internal transitions in
perception or cognition [29]. In the area of interruption
management, studies have shown that deferring delivery of
notifications until a breakpoint is reached can meaningfully
reduce costs of interruption [1, 5, 7, 18, 19]. However, to be
able to automate these types of defer-to-breakpoint policies
within systems for interruption management, we need to
better understand how to efficiently and accurately detect
breakpoints during execution of interactive tasks.

One common method for detecting breakpoints is to match
users’ ongoing interaction to specifications of tasks defined
a priori [4]. Although this allows breakpoints to be easily
detected within tasks that are fairly prescribed, it is much
more difficult to leverage these types of static specifications
to detect breakpoints within tasks that have highly variable
interaction, i.e., free-form tasks, yet these are by far the
most common type of computing task performed [8]. This
limitation severely inhibits the ability to realize defer-to-
breakpoint policies in practice, though these policies have
been shown to reduce costs of interruption [1, 5, 7].

In this work, we seek to overcome this central limitation by
understanding how to detect breakpoints and differentiate
their granularity without requiring any task specification.
Granularity refers to the degree of perceptual difference of
the actions surrounding a breakpoint [28], and the ability to
differentiate granularity is critical. For example, this would
allow systems to reason about whether to defer notifications
until coarser breakpoints, which occur less often, but offer
larger reductions in cost; or until finer breakpoints, which
occur more often, but offer smaller reductions in cost [5].

A basic question is how many granularities of breakpoints
are detectable and meaningful during task execution. From
studies of event perception [28, 29] and task interruption
[11, 19], there is evidence for at least three perceptually
meaningful granularities; Coarse, Medium, and Fine. For
example, when editing documents, Fine may be switching
paragraphs; Medium may be switching documents; and
Coarse may be switching to an activity other than editing.

We investigate how these three granularities of breakpoints
are manifested during the execution of free-form tasks and
examine the feasibility of building statistical models that
can detect and differentiate them. We collected ecological
samples of task execution data from three task categories;
document editing, image manipulation, and programming.
Leveraging methods used to study human perception [23],
observers were asked to review collected videos, identify
perceived breakpoints and their type, and enter rationale.
Breakpoints were thus detected based only on the users’
observable interaction, not their internal state, similar to the
data that would be available to a system in practice. By
aggregating and filtering the breakpoints, we could identify
the ‘true’ breakpoints, i.e., those with high agreement.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

697

From observers’ rationale, our own analysis of the data, and
related work [11, 19], we identified candidate features of
the interaction that might indicate each type of breakpoint.
Predictive features were identified from the candidate set
and statistical models that map these features to the true
breakpoints were learned and evaluated. Results showed
that the models were able to detect and differentiate each
breakpoint type with reasonably high accuracy across tasks.

The benefit of our models is that they are able to detect and
differentiate breakpoints using only features of the ongoing
interaction in free-form tasks, without any specifications of
those tasks. The use of our models can thus enable systems
to better realize defer-to-breakpoint policies in practice.

RELATED WORK
We describe breakpoints, their use in studying perception
and action, and the implications for our work; describe how
breakpoints can be used; and discuss how our work differs
from existing methods of detecting breakpoints.

Breakpoints in Perception and Action
A breakpoint represents the moment of transition between
two observable, meaningful units of task execution [23];
and reflects internal transitions in perception or cognition
[29]. For example, breakpoints are often used to study how
people segment incoming sensory stimuli [14, 23-25, 28,
29]. A method shared in many of these experiments is to
have observers review videos of other people performing
goal-directed tasks (e.g. repairing a musical instrument) and
annotate where they believe one meaningful unit of action
ends and the next one begins, i.e., the breakpoints [23]. A
consistent finding is that observers identify many of the
same locations as breakpoints, showing that perception is
segmented into discrete units and a shared cognitive schema
is driving this process [28, 29]. These results generally hold
for tasks that are familiar and unfamiliar to observers [28].

Observers report that certain visual cues such as changes in
the attended-to object, action on that object, or tempo of the
action provide salient indicators of breakpoints [29]. This
implies that it should be possible to build models (thinking
of models as observers) that utilize analogous cues to detect
breakpoints within execution of interactive or other tasks.

Another relevant finding is that observers can dynamically
modulate the granularity of segmentation between coarse
and fine units of action [23], where granularity refers to the
degree of perceptual difference between those units. Since a
subset of the fine breakpoints typically align with the coarse
breakpoints, mental schemas driving perception and action
are thought to have at least a two-level hierarchy [28]. This
implies that models should differentiate at least two types
of breakpoints – Coarse and Fine – during task execution.

Neuroscience studies also show that breakpoints identified
by observers of actions are similar to those experienced by
the person performing the same actions [26]. This is logical,

since the person performing an action is also an observer of
their own action as part of a closed loop system [6].

Our work leverages the knowledge and methodology used
in this area of research to better understand how to identify
perceptually meaningful breakpoints during execution of
interactive tasks and how to build models that detect them.

How Breakpoints Can Be Used
The ability to detect breakpoints during task execution has
many useful applications. For example, for interruption
management, studies have shown that deferring delivery of
notifications until breakpoints are reached can meaningfully
reduce costs of interruption [1, 5, 16, 19], and that deferring
until coarser breakpoints further reduces these costs [19]. In
these studies, specifications for tasks were determined in
advance using modeling techniques such as GOMS [20],
enabling interruptions to be cued at specific moments [19].
If breakpoints could be reliably detected in free-form tasks,
then defer-to-breakpoint policies similar to those used in the
controlled studies could be better realized in practice.

Detection of breakpoints can also contribute to an emerging
class of interactive tools that enables knowledge activities
to be organized into reusable structures and shared [9, 27].
A challenge in building these types of tools is being able to
organize user activities without having to repeatedly solicit
input [9]. Models that detect breakpoints could facilitate
automated organization, thus reducing the burden on users.

Methods for Detecting Breakpoints
Several methods have been used to detect breakpoints. One
common method is to create a structural decomposition of a
task, e.g., using GOMS [6], and identify interactions that
indicate the end of one subtask and the start of the next –
with breakpoints being in-between. As tasks are performed,
a system can match users’ interaction to the corresponding
task descriptions in order to detect the breakpoints [4].

In contrast, our work detects breakpoints using perceptual
structure. Breakpoints identified using our method would
ostensibly be only a subset of those available within the
structural decomposition of a task, but eliminates the need
to create such decompositions and may better identify those
breakpoints that typically correspond with lower cost [19].

A second method is to use the number of application-level
windows selected within a sliding time window as an
indicator of an activity switch [22] (which, as we will show,
maps to Coarse breakpoints). Results of this method ranged
from 20% to 90% accuracy, but only one type of breakpoint
could be detected. A third method is to detect switches
between ‘rooms’ in a virtual desktop window manager [15].
This method could only detect a single type of breakpoint
and would force the use of this type of window manager.

A related thread of research has produced statistical models
of interruptibility for interactive tasks [11]. One explanation

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

698

as to why these models work is that they implicitly detect a
user’s time to breakpoint. Indeed, the authors reported that
users would often defer acceptance of a cued notification
until they reached a breakpoint. Our work explicitly detects
these points of interest, which could be used for interruption
management as well as other purposes (see prior section).

In the area of mobile devices, Ho and Intille [16] used data
from multiple accelerometers attached to a person’s body.
Based on analyzing the data signatures in various physical
postures and movements, they were able to detect moments
when users were in physical transition (such as the act of
standing up). Results from a study showed that deferring an
interruption until this transition reduced cost of interruption.

Relative to this corpus of research, our work is original in
that we focus on building models that are able to detect and
differentiate three granularities of perceptually meaningful
breakpoints within interactive, free-form tasks; and without
any specifications. The methods used in our work could
also be applied to build effective models for detecting and
differentiating breakpoints within physical or other tasks.

OVERVIEW OF THE MODEL BUILDING PROCESS
To develop effective and efficient models for detecting and
differentiating task breakpoints, our process was to:

• Collect representative samples of users’ task execution, in
the form of screen interaction videos and event logs.

• Have observers review the videos, identify perceived
breakpoints and their type, and explain their rationale.

• Select those breakpoints with a high degree of agreement,
and use them as the ground truth for building the models.

• Identify features describing the interaction at the selected
breakpoints, guided by users’ explanations, and compute
values for the features based on the videos and logs.

• Learn statistical models that map the predictive features
to the ground truth values, and evaluate their accuracy.

To facilitate collection and analysis of the breakpoint data,
we developed several new software tools. Activity Recorder
records a user’s screen interaction and logs system events;
Breakpoint Annotator enables observers to review videos,
identify breakpoints, and enter linguistic explanations; and
Breakpoint Analyzer supports interactive analysis of the
data. Our tools can be utilized to reduce the effort required
to collect and analyze similar data, e.g., data in [23, 25, 28].

COLLECT TASK EXECUTION DATA
Task execution data was collected from three general task
categories; Document Editing (DE), Image Manipulation
(IM) and Programming (P). These categories were selected
because they are often performed by many users, comprise
diverse subtasks, and require varying engagement. Using
several categories would allow better understanding of the
similarities and differences among breakpoints across tasks.

For each category, two users (6 total) were recruited and
screened to ensure they were experienced in the category
selected and would be comfortable having their interaction
data viewed by others. Users received $20 for participating.

We wanted to collect samples of users’ own personal or
work tasks, performed in their own environment, ensuring a
high degree of ecological validity. Our recording software
was thus installed on users’ own machines and they were
informed of what data it was recording and how to control
it. For example, the software allows recording to be started,
paused, or stopped at any time using keyboard shortcuts and
shows its current status through an icon in the system tray.

The software was configured to record screen interaction at
a low, but adequate frame rate (5 fps) using the Camtasia
SDK and logged mouse, keyboard, and other relevant
system events using the Windows Hooks API. Users were
asked to activate the recording software the next time that
they would be primarily focused on performing any task
within the relevant category for at least an hour. We
emphasized that they should perform the task, with the
interleaving of any other tasks, as usual. To avoid recording
sensitive data, users were reminded that they could pause/
restart the software at any time. Once at least an hour of
data was recorded (minus any pauses), the user notified the
experimenter, who collected it and removed the software.

For task content, for DE, one user was writing a research
paper while the other was writing study guides for exams.
For IM, one user was touching up personal photos from a
recent vacation while the other was developing icons and
other graphics for a software application. For P, one user
was developing a user interface for a research project while
the other was writing source code for a course assignment.
The applications used included Microsoft Word, Adobe
Photoshop, and Eclipse, respectively. Users did temporarily
pause collection of their data, but this was very rare overall.

IDENTIFY PERCEIVED BREAKPOINTS AND THEIR TYPE
The next step was to determine the locations of perceived
breakpoints and their type within the task execution data. 24
observers were recruited, 8 per category, and were asked to
review the two videos from an assigned category, mark the
location and type of each perceived breakpoint, and enter a
brief description as to why they felt this was a breakpoint.

Observers were asked to detect and differentiate three types
of breakpoints, guided by the following descriptions:

• Coarse. The moment when the largest meaningful and
natural unit of execution ends and the next one begins.

• Fine. The moment when the smallest meaningful and
natural unit of execution ends and the next one begins.

• Medium. The moment when a natural and meaningful
unit of execution, which is smaller than Coarse but
larger than Fine, ends and the next one begins.

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

699

Inclusion of Coarse and Fine breakpoints, along with their
descriptions, is consistent with research on event perception
[23, 28]. Medium was included since empirical studies have
shown three classes of interruption cost [11, 19], ostensibly
tied to three levels of breakpoints, and results from a pilot
study showed that users were able to differentiate the three
types of breakpoints within data samples, but not more.

Using observers to identify breakpoints in another user’s
tasks is effective because research has shown that the same
schema used to chunk a person’s goal-directed actions are
also used to chunk their perception when observing another
person performing those same actions [26]. Also, finding
that observers are able to agree on the types and locations
of breakpoints would indicate that similar salient cues were
being perceived within the interaction data. If those cues
could be identified, then models could be built (thinking of
models as observers) that automate a similar process.

For procedure, observers came to our lab and were asked to
review videos of task execution and identify moments at
which they felt that one unit of execution ended and another
began; using cursor movements, interaction sequences, and
state of the task as cues. The different types of breakpoints
were explained using the previous descriptions. The overall
methodology was consistent with prior work [23, 24, 29].

Our Breakpoint Annotator tool (Figure 1) was used to assist
the observer in the annotation process. The observer was
given a demonstration of the tool and practiced using it on a
sample of the data, enabling her to become familiar with the
interface and 3 types of breakpoints. Once questions were
answered, the observer began annotating the first video.

When a breakpoint was detected, the observer selected a
button indicating the type of breakpoint (Coarse, Medium,
or Fine). In response, the video was paused, a tick mark was
shown on the relevant timeline, and a textbox was activated
for entering an explanation. The observer could review the
video and modify breakpoints as desired. The observer
annotated both videos within an assigned category, but
since annotation required about two hours, the process was
split across two days. The order of videos in a category was
counter-balanced. Observers received $20 for participating.

Summary and Characteristics of Breakpoints
A total of 3074 breakpoints (Coarse=756, Medium=1050,
Fine=1268) were identified, and are summarized in Table 1.
Overall, Fine breakpoints were the most frequent while
Coarse breakpoints were the least frequent (χ2(2)=128.9,
p<0.001); showing that interactive tasks also tend to be
performed in a hierarchical manner [28]. Interestingly, the
distributions for tasks DE1 and P2 show more Coarse and
Medium breakpoints than Fine breakpoints. This is not
unexpected given users’ constant multi-tasking behavior [8,
12], which, as our results show, may not always be uniform.

Category Breakpoint Next
Coarse

Next
Medium

Next
Fine

Coarse 141 (235) 192 (283) 259 (289)

Medium 191 (233) 102 (190) 253 (426)Document
Editing

Fine 259 (367) 175 (356) 112 (231)

Coarse 266 (520) 300 (254) 113 (106)

Medium 538 (564) 244 (330) 117 (167)Image
Manipulation

Fine 641 (663) 380 (421) 91 (115)

Coarse 162 (397) 116 (151) 174 (168)

Medium 427 (670) 129 (173) 157 (159)Programming

Fine 402 (623) 142 (157) 139 (186)

Coarse 190 (365) 203 (239) 182 (219)

Medium 385 (512) 158 (226) 176 (306)
Overall

Averages
Fine 434 (591) 179 (397) 114 (174)

Table 2. Mean distances in seconds between adjacent types of
breakpoints. Standard deviations are in parenthesis.

Category Task Coarse Medium Fine

DE1 184 226 132 Document
Editing DE2 140 209 212

IM1 93 120 293 Image
manipulation IM2 37 99 282

P1 50 176 193
Programming

P2 252 220 156

Total 756 1050 1268

Table 1. Frequency distribution of breakpoints across tasks.

Figure 1. Screenshot of the Breakpoint Annotator tool being
used to annotate one of the Programming task execution videos.

Textbox to enter
explanations

Visualization
of breakpoints

Buttons to select the
type of breakpoint

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

700

Temporal distances between breakpoints are summarized in
Table 2. The average distance between breakpoints ranges
from about 1.5 min (between Fine breakpoints for IM) to
10.7 min (from Fine to Coarse for IM), with the overall
average between any two breakpoints being about 3.8 min.
These results support and extend data reported in [12, 21].

This data is important because it provides some of the first
ecological estimates of how long an interruption reasoning
system would need to defer delivery of information in order
to reduce interruption cost. For example, assuming that
information became available just after a user crossed a
Fine breakpoint, delivery of the information would need to
be deferred up to about 2 min to have some reduction in
cost (next Fine breakpoint), about 4 min to further reduce
cost (next Medium), and about 7 min to have minimal cost
(next Coarse). These values could also inform the design of
interfaces that allow users to specify how long they would
be willing to wait for different types of information [17].

From observers’ explanations, Coarse breakpoints typically
corresponded to a switch in high-level activity, indicated by
switching to other application(s) judged to be unrelated to
the main task, e.g., changing to a music player, checking e-
mail, or reading news online. A Coarse breakpoint was also
often indicated by returning back to the main application.

Medium breakpoints were tied to switching to applications
judged to be relevant to the primary task or to a large shift
in focus within the content of the application. For example,
for DE, this included transitioning to edit a paragraph in
another section of the document, saving the document, and
opening another document. For IM, this included loading
another image, transitioning to edit a different region or
visual feature of the image, and saving the current image.
For P, this included starting to edit a new class in the file,
saving the current source file, switching to another source
file, and switching between the code and debug windows.

Fine breakpoints were usually tied to actions on the content
within an application. For example, for DE, this included
completing formatting commands, searches, and copy/paste
sequences; and starting to edit another paragraph near the
current insertion point. For IM, this included completing
layer manipulations, resize of canvas, and operations such
as color adjustments, blending, cropping, and selection. For
Programming, this included starting a new method, closing
a method, completing a compile, completing the check
in/out of a file; and completing definition of class variables.

Interestingly, observers did not identify lower-level units,
such as completing a specific sentence or line of code, or
moving between fields in a dialog, as Fine breakpoints. The
commonly cited reason, clearly evident in the videos, was
that editing at the level of a sentence, line of code, or area
of pixels exhibited rapid interleaving of pointing, typing,
erasing, selecting, scrolling, etc.; thus offering few visually
identifiable breaks in the interaction. Thus, attempting to

detect breakpoints at this level of detail is probably not
warranted, consistent with earlier empirical findings [18].

Overall, this data offers some of the first evidence as to
where and how often breakpoints occur within interactive
tasks, and offers insight into the types of features that might
be useful in models for detecting and differentiating them.

IDENTIFY GROUND TRUTH FOR BREAKPOINTS
The third step was to combine the breakpoint data across
observers and identify breakpoints that had high agreement.
This would remove “noise” from the data set and provide
the ground truth for the model building process. Figure 2
shows a screenshot of our interactive tool that was used to
facilitate analysis and coding of the breakpoint data.

We first needed to divide the interaction data into discrete
bins, which is necessary since there is natural variance in
the temporal locations that refer to the same breakpoint,
e.g., some observers may take different amounts of time to
decide whether a breakpoint had just occurred.

Our goal was to select a bin size large enough such that
slightly different locations referring to the same breakpoint
would fall into the same bin, but small enough such that
locations referring to different breakpoints would not.
Whether a marked location referred to the same breakpoint
was determined by analyzing observers’ explanations and
the corresponding parts of the interaction videos and logs.

From testing a number of bin sizes, between 1s and 20s, we
found that a bin size of 10s best met our goal and that this
value achieved our goal for each type of breakpoint. This is
slightly larger than bin sizes used in prior work [14, 24, 28],
but our tasks were of much longer duration, on the order of
hours as opposed to minutes. Table 3 shows the number of
bins for each task, and how many of those bins contained

Figure 2. A screenshot of our tool that allows breakpoints to be
aggregated (top window) and interactively analyzed. When a
breakpoint is selected, the video (bottom left) is positioned at the
corresponding temporal location. Candidate features are shown at
the right and allow each bin within the video to be quickly coded.

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

701

each type of breakpoint. If a bin had multiple types of
breakpoints, it was counted multiple times. A chi-square
test showed that observers were biased towards selecting
certain bins as breakpoints across all six tasks (DE-1:
χ2(359)=1323, p<0.0001; DE-2: χ2(424)=1208, p<0.0001;
IM1: χ2(309)=408, p<0.0001; IM2: χ2(433)=997, p<0.0001;
P-1: χ2(405)=1183, p<0.0001; P-2: χ2(370)=957, p<0.0001),
meaning that the selection of breakpoints was not random.

We then had to establish the minimum number of observers
who needed to have indicated that a breakpoint was within
a bin before being able to conclude that that bin contained a
“true” breakpoint. One solution would be to use an absolute
threshold (e.g., more than half of the observers must agree),
but this does not consider the prior likelihood of agreement.

Our approach, following [14], was to compute the average
number of breakpoints per bin, considering only those bins

with at least one breakpoint; add 1.65 standard deviations;
and round. This process establishes an alpha=.05 threshold
[14], and this threshold was calculated for each task and
breakpoint type. A bin with a number of breakpoints (same
type) greater than the computed threshold was considered to
contain a true breakpoint, or breakpoint bin. Table 4 shows
the decision thresholds used in this filtering process.

The number of breakpoints meeting the thresholds was 445
(~25% of all bins with > 1 breakpoint), and are summarized
in Table 5. Inspection of the table shows that the filtering
was fairly uniform. Though this was a stringent filtering
process, the aim was to reduce the number of false positives
in the data set that would later be used for training. Also,
independent sample t-tests confirm that more observers had
detected a breakpoint in a breakpoint bin than in the other
bins across tasks and breakpoint type (p<0.001 in all cases).

What is perhaps most intriguing about this result is that the
observers, all of whom had annotated the videos separately,
identified many of the same moments as breakpoints. This
occurred because observers were likely perceiving similar
cues in the interaction videos. This implies that it should be
possible to build models that leverage those same cues to
detect and differentiate breakpoints for free-form tasks.

Though there were fewer breakpoint bins due to filtering,
the average temporal distances were similar to those listed
in Table 2 and ranged from 1.4 min to 11.9 min, with the
average between any two breakpoint bins being 4.3 min.

IDENTIFY FEATURES INDICATING BREAKPOINTS
Next, we needed to identify features that could be used to
detect and differentiate breakpoints during task execution.
Candidate features were determined based on an analysis of
observers’ explanations and event logs, our own analysis of
the task data, lessons reported in prior work [10, 11], and
whether values could be realistically computed in a system.

For Coarse breakpoints, observers were very consistent in
describing them as a switch to another activity that was not
related to the main task (and back). However, this abstract
description does not yield any specific, usable features and
a model would not be able to know what a user’s main task
was without prior knowledge. Based on detailed inspection
of video segments corresponding to Coarse breakpoints, we
observed that they were frequently tied to switches among
various types of applications or content, e.g., music players,
e-mail and instant messaging, or online shopping and news.
Our observations are also consistent with results derived
from an analysis of users’ activity data, as reported in [8].

We thus created a set of application categories including
Entertainment, Communications, and Web; with the latter
being further categorized based on whether it is a common
news or shopping site based on its URL; and those already
being used as part of this work (DE, IM, and P). Under the
assumption that various applications could be mapped to

Category Task #Bins Bins w/
Coarse

Bins w/
Medium

Bins w/
Fine

DE1 360 78 106 85 Document
Editing DE2 425 60 123 157

IM1 310 43 85 185 Image
manipulation IM2 434 25 73 160

P1 406 19 85 126
Programming

P2 371 108 130 110

Total 2306 333 602 823

Table 3. Frequency distribution of bins and number of bins with
each type of breakpoint. Each bin represents 10s of task execution.

Category Task Coarse Medium Fine

DE1 16 (21%) 40 (38%) 35 (41%) Document
Editing DE2 11 (18%) 25 (20%) 38 (24%)

IM1 8 (19%) 24 (28%) 74 (40%) Image
manipulation IM2 9 (36%) 19 (26%) 29 (18%)

P1 40 (21%) 10 (12%) 47 (37%)
Programming

P2 22 (20%) 23 (18%) 11 (10%)

Table 5. Distribution of true breakpoints. Percentages indicate
what percent of bins (Table 3) satisfied the threshold (Table 4).

Category Task Coarse Medium Fine

DE1 4 (2.3,1.8) 3 (2.1,1.2) 2 (1.5,0.8) Document
Editing DE2 4 (2.3,1.3) 3 (1.7,1.0) 2 (1.3,0.7)

IM1 4 (2.2,1.3) 2 (1.4,0.7) 2 (1.6,0.8) Image
manipulation IM2 2 (1.5,0.7) 2 (1.3,0.7) 3 (1.7,1.3)

P1 5 (2.6,1.9) 4 (2.1,1.5) 2 (1.5,0.8)
Programming

P2 4 (2.3,1.8) 3 (1.7,1.0) 2 (1.4,0.8)

Table 4. Min number of breakpoints (mean, 1.65*s.d.) that had to
be marked within a bin before it was considered a true breakpoint.

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

702

these categories, features were created for the number of
switches between them. Also, the number of applications
started, exited, and moved were included, as these have also
been argued to indicate switches in high-level activity [22].

Though our approach offers a reasonable starting point and
extends prior work for detecting Coarse breakpoints, future
work should explore the value of including features tied to
the degree of similarity among application content, e.g.,
using techniques in [3]. Note that overcoming challenges of
applying such techniques within the domain of interactive
applications is well beyond the scope of our current work.

Medium and Fine breakpoints typically occurred during the
interaction within an application. Our approach here was to
bind features to independent actions at the application
interface level, following work in [11]. For example, for
DE, features included CompletedSwitchToAnotherDoc,
CompletedSetInsertionPoint, and CompletedScroll. If the
first two occurred within a bin, then this would likely
indicate Medium; whereas if the latter two occurred, then
this might indicate Fine, e.g., due to switching paragraphs.

For Coarse breakpoints, we identified 20 features that were
independent of any one application. For Medium and Fine,
we identified 33 features for DE, 33 for IM, and 42 for
Programming, with some overlap. Samples of the features
(with mnemonic descriptions) are provided in Table 6. One
characteristic of many of the features is they correspond to
completion of an action, not the action itself (e.g. completed
scrolling as opposed to scrolling), which is consistent with
observers’ explanations and the notion of a breakpoint.

A coding agenda was developed, comprising a description,
example, and rule for each feature [2]. For each breakpoint
bin (10s clip), values for the features were computed by
applying the agenda to corresponding parts of the videos.
We also computed values for the features for a sample of
bins that had no breakpoint (NAB), enough to compose
25% of the total training cases. Training cases were in the
form of <value of feature 1, …, value of feature N, output>,
where output was one of Coarse, Medium, Fine, or NAB.

The coding was validated by having an independent coder
compute values for the candidate features for 10% of the
bins, randomly selected from the training cases. Cohen’s
Kappa showed satisfactory agreement between them (0.74).

EXTRACT PREDICTIVE FEATURES
Before predictive features could be extracted, we needed to
decide how the models would be built. Our approach was to
create one application-independent model for predicting
Coarse/NAB and a set of application-specific models for
predicting Medium/Fine/NAB, giving a total of 4 models.
This decision was made because Coarse breakpoints were
deemed independent of any one application while Medium
and Fine were more dependent. Training cases were
organized accordingly, but Medium and Fine cases from
each task category were included as part of NAB cases for
Coarse, helping to minimize overlap between the models.

Given this organization of the training cases (models), the
predictive features were extracted using Correlated Feature
Selection (CFS) with a Greedy Stepwise search [13]. CFS
was chosen since some candidate features may have been
correlated. Predictive features are shown in bold in Table 6.

MAP PREDICTIVE FEATURES TO BREAKPOINTS
The last step was to learn models that map the predictive
features to the breakpoint types and NAB. A multilayer
perceptron (MLP) was leveraged to learn each mapping, as
it does not assume independence of features and has been
used to learn similar models in prior work [19]. The model
for Coarse breakpoints had two outputs (Coarse, NAB)
while the models for each category of task had three outputs
(Medium, Fine, NAB). All models had one hidden layer.

For input, the model for Coarse used only those features
that were independent of the task (left column of Table 6)
while inputs for the other models corresponded to features
tied to the application, in addition to the general features.
Mappings were learned using back propagation, and a 10-
fold cross validation was used to evaluate the models.

General (Coarse) Application Specific (Medium and Fine)
App Manipulation (20 total) Document Editing (33 total) Image Manipulation (33 total) Programming (42 total)

#CompletedOpenAnyApp
#SwitchToEntertainmentApp
#SwitchToOnlineNews
#SwitchToDocEditing
#SwitchToImageManipulation
#SwtichToProgramming
#SwitchesToCommunications
#CompletedStartAnyApp
#CompletedMaximizeAnyApp
#CompletedExitAnyApp
#CompletedRelocation

#CompletedFormattingActions
#CompletedSwitchToDocEditing
#CompletedAlt-tabSwitch
someKeystrokes
noMouseClicks
noMouseMoves
someMouseMoves
#CompletedSwitchToAnotherDoc
#CompletedSetInsertionPoint
#CompletedSelections
#CompletedSaves

#CompletedAltTabSwitch
#CompletedSwitchToAnotherImg
#CompletedSave
#CompletedColorManipulation
#CompletedTextManipulation
#CompletedSetupNewImage
#CompletedExitCurrentImage
#CompletedSelectionTools
#CompletedLayerManipulation
#CompletedCanvasResize
#CompletedSelectionToolActions

#CompletedOpenAnyApp
#CompletedSearch
#CompletedSwitchClass
#CompletedSwitchProject
#ControlKeyStrokes
noMouseClicks
#CompletedSetInsertionPoint
#CompletedSwitchMethod
#CompletedCreateMethod
#CompletedCreateClass
#CompletedDebug
#CompleteNavigateCode

Table 6. A representative sample of the candidate features used for detecting breakpoints. The number of occurrences of each feature were
counted for each 10s bin of task execution. The features highlighted in bold were found to be predictive.

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

703

Table 7 shows results for predicting Coarse and NAB. The
model yielded an overall accuracy of 87.1%, which is much
better than the baseline (χ2(1, 139)=76.3, p<0.001; baseline
=50%), where baselines were calculated as the accuracy of
always predicting the most common outcome. The high
accuracy can likely be attributed to the model’s features
detecting a switch between certain application categories
that often indicated a switch between unrelated activities.
More sophisticated analysis of the similarity between the
content of applications may yield further improvements.

Tables 8a-c show results for detecting and differentiating
Medium, Fine, and NAB for the three task categories. For
Document Editing, the model yielded an overall accuracy
of 69.4%, which is much better than the baseline (χ2(1,
85)=33.5, p<0.001; baseline=39%). The model was slightly
less accurate for differentiating between Medium and Fine.
However, the most egregious type of error, detecting either
type of breakpoint when none existed, was low (14.4%).

For Image Manipulation, the model yielded an accuracy of
76.3%, much better than the baseline (χ2(1, 152)=42.1,
p<0.001; base=50%). This model was able to effectively
differentiate Medium and Fine, and Medium and NAB.
However, the model would sometimes predict Fine when
the actual was NAB. This could be due to the mouse
movements being less predictive of users’ intents or there
being less visible structure in this particular task category.

For Programming, the model yielded an accuracy of 75.8%,
which was better than the baseline (χ2(1, 91)=23.3,
p<0.001; base=51%). The model was slightly less effective
at differentiating Fine and NAB, but it was very effective at
differentiating Medium and NAB, and Medium and Fine.

Our models were developed using breakpoints identified by
observers who did not share users’ internal understanding
of their tasks. As a final evaluation metric, we thus wanted
to test how well our models could predict breakpoints
identified by the users themselves. We asked users whose
interaction data was originally annotated by observers to
identify breakpoints in their own data, and then tested the
accuracy of our models on it. Applying our models to the
user’s annotated data sets, the accuracy of the model for
Coarse breakpoints ranged from 40–100%, with an average
of 76.5% across users (one user’s data was excluded as too
few breakpoints were identified). For the application
specific models, the results for each user were (DE1:
56.0%, DE2: 72.7%; IM1: 68.2%, IM2: 85.7%; P1: 14%,

P2: 50.0%). Other than for P1, these results show that our
models were able to accurately predict breakpoints
identified by the users, even though a number of these
breakpoints did not intersect with those identified by the
observers. This validates that our models can predict
breakpoints independent of the knowledge of the task.

Overall, even though there were some errors, our results
demonstrate that it is feasible to build models that detect
and differentiate breakpoints within free-form tasks with
fairly high accuracy. This ability to detect a majority of the
breakpoints should be more than sufficient to allow useful
functionality, e.g., to enable defer-to-breakpoint policies.
Potential solutions for meaningfully improving the accuracy
of the models involve identifying and integrating additional
predictive features into the models, training the models for
specific users, and experimenting with various bin sizes.

DISCUSSION
This research sought to further understand different types of
breakpoints across various tasks and examine the feasibility
of building models that could detect and differentiate them.

Our work has produced several important findings. First,
we were able to identify interactions that characterize each
type of breakpoint. For example, a switch in high-level
activity corresponds to a Coarse breakpoint, a switch in the

Predicted
 Coarse NAB Total

Coarse 62 (89.9%) 7 (10.1%) 69 (100%)
Actual

NAB 11 (15.7%) 59 (84.2%) 70 (100%)

Table 7. Predicted vs. Actual for Coarse breakpoints.
Overall accuracy was 87.1%.

Predicted Medium Fine NAB Total

Medium 20
(60.6%)

11
(33.3%)

2
(6.1%)

33
(100%)

Fine 5
(20.8%)

15
(62.5%)

4
(16.6%)

24
(100%) Actual

NAB 2
(7.2%)

2
(7.2%)

24
(85.7%)

28
(100%)

Table 8a. Predicted vs. actual breakpoints for Document Editing.
Overall accuracy was 69.4%

Predicted Medium Fine NAB Total

Medium 24
(68.6%)

10
(28.6%)

1
(2.8%)

35
(100%)

Fine 5
(6.6%)

71
(93.4%)

0
(0%)

76
(100%) Actual

NAB 2
(4.9%)

18
(43.9%)

21
(51.2%)

41
(100%)

Table 8b. Predicted vs. actual breakpoints for Image manipulation.
Overall accuracy was 76.3%.

Predicted Medium Fine NAB Total

Medium 11
(68.8%)

4
(25.0%)

1
(6.3%)

16
(100%)

Fine 1
(2.2%)

36
(78.2%)

9
(19.6%)

46
(100%) Actual

NAB 0
(0%)

7
(24.1%)

22
(75.9%)

29
(100%)

Table 8c. Predicted vs. actual breakpoints for Programming.
Overall accuracy was 75.8%

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

704

current source object (e.g., document, image, or code file)
of an application corresponds to Medium, and a switch in
the action on the current object corresponds to Fine. This
shows that there is a perceivable structure within free-form
tasks, which models should be able to detect. Interestingly,
these characteristics closely parallel those found to indicate
breakpoints within physical tasks [29].

Second, we found that temporal distances between types of
breakpoints ranged from about 1 to 10 min, with an average
of about 4 min. Our results support previous work showing
that users repeatedly multi-task [12], but also show that this
multi-tasking occurs at multiple levels of detail. Our results
also establish that breakpoints occur often enough such that
interruption management systems could practically employ
defer-to-breakpoint policies for non-critical notifications.

Third, we reported which features of user interaction were
found to be predictive of each breakpoint type. Though our
set of features should by no means be considered final, they
do provide deeper insights into the range of features that
should be included in similar models deployed in practice.

Finally, our models were able to accurately detect 69 to
87% of each type of breakpoint for the observers’ data, and
similar results were obtained for users’ own annotations.
We believe these results are very positive, especially since
no pre-defined specifications of tasks were used. Increasing
accuracy would likely require identifying and integrating
additional predictive features, e.g., indicating similarity of
content, or refining the default models for specific users.

Deploying Models for Detecting Breakpoints
To deploy similar models in practice, one must consider (at
least) how to instrument applications, which breakpoints to
detect and how to train the models, and what bin size to use.

Instrumentation of applications is needed to send relevant
events to a model. Such instrumentation can be achieved by
leveraging existing research efforts such as [9], intercepting
application events by writing plug-ins [5], or adapting the
underlying UI toolkit [11]. Regardless of the method used,
our work provides valuable insights as to the type and level
of detail of the instrumentation needed.

Our work shows that three types of breakpoints can be
detected, but this does not mean that models must detect all
three in practice. For example, in interruption management,
if users are able and willing to have information deferred up
to 4-5 min on average, then a system may only need to
utilize the one model for detecting Coarse breakpoints.

Default models could be deployed and provide reasonable
accuracy, but, if needed, accuracy could be improved by
refining models on a per user basis [10]. This could be
achieved by leveraging toolkits for generating models on-
the-fly [11], assuming users would be willing to provide the
necessary input. Further improvements would require
identifying and integrating additional predictive features.

Finally, to detect breakpoints, a model must typically assess
interaction within a fixed time window. Our work suggests
a window of about 10s, but an implementation may need to
experiment with different values, considering the tradeoff
between computational overhead and discriminatory power.

Limitations
There are several limitations to our work. First, our work
investigated breakpoints within categories of tasks that all
required the generation or manipulation of content. Future
work should thus study models for detecting breakpoints in
other tasks, e.g., those that stress information-seeking.

Second, we analyzed about one hour of task execution data
from each of six users. Thus, our resulting models are only
able to accurately detect breakpoints within the range of
interaction that was captured in our original data. As our
work has now shown that building statistical models for
detecting breakpoints is feasible, more robust models could
be built by applying the methodology in this work on a
much larger sample of interaction data.

Finally, the cognitive duration of a breakpoint is not known,
but would be important for certain applications of our work,
e.g., for interruption management where cost may not be
reduced if information delivery exceeds this duration after a
breakpoint. Future work should try to empirically determine
this duration, which may inform the bin size for the models.

CONCLUSION AND FUTURE WORK
The ability to detect and differentiate breakpoints represents
an emerging need within at least interruption management,
e.g., to enable defer-to-breakpoint policies. Our work has
made several contributions addressing this need.

First, we leveraged work in psychology to better understand
the concept of breakpoints and leveraged unit identification
methodology to identify three granularities of perceptually
meaningful breakpoints during task execution. Second, we
provided insights into the characteristics of interaction that
indicate each breakpoint type and evidence as to how often
each type of breakpoint naturally occurs in practice.

Finally, our models were able to detect 69% to 87% of each
type of breakpoint across tasks for the observers’ data, and
similar results were obtained for users’ own annotations.
Our work has thus demonstrated the feasibility of building
statistical models that are able to detect and differentiate
perceptually meaningful breakpoints during free-form tasks,
without having to create any specifications of those tasks.

Beyond addressing the limitations previously discussed, our
main direction of future work is to build similar models as
part of a broader system for interruption management. The
models would enable various policies to be programmed for
deferring delivery of non-critical notifications, e.g., defer
until next Coarse breakpoint or until the next breakpoint of
any type, and tested with various categories of tasks.

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

705

ACKNOWLEDGMENTS
We thank the participants who volunteered time to be in our
studies. This work was supported in part by the National
Science Foundation under award no. IIS 05-34462.

REFERENCES
1. Adamczyk, P.D. and B.P. Bailey. If Not Now When?

The Effects of Interruptions at Different Moments within
Task Execution. CHI, 2004, 271-278.

2. Altheide, D.L. Qualitative Media Analysis. Sage,
Newbury Park, CA, 1996.

3. Baeza-Yates, R.A. and B. Ribeiro-Neto Modern
Information Retrieval. Addison-Wesley, Boston, 1999.

4. Bailey, B.P., P.D. Adamczyk, T.Y. Chang and N.A.
Chilson. A Framework for Specifying and Monitoring
User Tasks. Journal of Computers in Human Behavior,
22 (4), 2006, 685-708.

5. Bailey, B.P. and J.A. Konstan. On the Need for
Attention Aware Systems: Measuring Effects of
Interruption on Task Performance, Error Rate, and
Affective State. Journal of Computers in Human
Behavior, 22 (4), 2006, 709-732.

6. Card, S., T. Moran and A. Newell The Psychology of
Human-Computer Interaction. Lawrence Erlbaum
Associates, Hillsdale, 1983.

7. Czerwinski, M., E. Cutrell and E. Horvitz. Instant
Messaging: Effects of Relevance and Timing. People
and Computers XIV: Proceedings of HCI, 2000, 71-76.

8. Czerwinski, M., E. Horvitz and S. Wilhite. A Diary
Study of Task Switching and Interruptions. CHI, 2004,
175-182.

9. Dragunov, A.N., T.G. Dietterich, K. Johnsrude, M.
McLaughlin, L. Li and J.L. Herlocker. Tasktracer: A
Desktop Environment to Support Multi-Tasking
Knowledge Workers. Proc. IUI, 2005, 75-82.

10. Fogarty, J., S.E. Hudson and J. Lai. Examining the
Robustness of Sensor-Based Statistical Models of
Human Interruptibility. CHI, 2004, 207-214.

11. Fogarty, J., A.J. Ko, H.H. Aung, E. Golden, K.P. Tang
and S.E. Hudson. Examining Task Engagement in
Sensor-Based Statistical Models of Human
Interruptibility. CHI, 2005, 331-340.

12. Gonzalez, V.M. and G. Mark. "Constant, Constant,
Multi-Tasking Craziness”: Managing Multiple Working
Spheres. CHI, 2004, 113-120.

13. Hall, M.A. Correlation-Based Feature Selection for
Discrete and Numeric Class Machine Learning.
Proceedings of the 17th International Conference on
Machine Learning, 2000, 359-366.

14. Hanson, C. and W. Hirst. On the Representation of
Events: A Study of Orientation, Recall, and Recognition.

Journal of Experimental Psychology: General, 118 (2),
1989, 136-147.

15. Henderson, A. and S.K. Card. Rooms: The Use of
Multiple Virtual Workspaces to Reduce Space
Contention in a Window-Based Graphical User
Interface. ACM TOG, 5 (3), 1986, 211-243.

16. Ho, J. and S. Intille. Using Context-Aware Computing to
Reduce the Perceived Burden of Interruptions from
Mobile Devices. CHI, 2005, 909-918.

17. Horvitz, E., P. Koch and J. Apacible. Busybody:
Creating and Fielding Personalized Models of the Cost
of Interruption. CSCW, 2004, 507-510.

18. Iqbal, S.T. and B.P. Bailey. Investigating the
Effectiveness of Mental Workload as a Predictor of
Opportune Moments for Interruption. CHI, 2005, 1489-
1492.

19. Iqbal, S.T. and B.P. Bailey. Leveraging Characteristics
of Task Structure to Predict Costs of Interruption. CHI,
2006, 741-750.

20. John, B.E. and D.E. Kieras. The GOMS Family of User
Interface Analysis Techniques: Comparison and
Contrast. ACM TOCHI, 3 (4), 1996, 320-351.

21. Mark, G., V.M. Gonzalez and J. Harris. No Task Left
Behind? Examining the Nature of Fragmented Work.
CHI, 2005, 321-330.

22. Nair, R., S. Voida and E. Mynatt. Frequency-Based
Detection of Task Switches. Proceedings of the 19th
British HCI Group Annual Conference, 2005, 94-99.

23. Newtson, D. Attribution and the Unit of Perception of
Ongoing Behavior. Journal of Personality and Social
Psychology, 28 (1), 1973, 28-38.

24. Newtson, D. and G. Engquist. The Perceptual
Organization of Ongoing Behavior. Journal of
Experimental Social Psychology, 12, 1976, 436-450.

25. Newtson, D., G. Enquist and J. Bois. The Objective
Basis of Behavior Units. Journal of Personality and
Social Psychology, 35 (12), 1977, 847-862.

26. Rizzolatti, G., L. Fadiga, V. Gallese and L. Fogassi.
Premotor Cortex and the Recognition of Motor Actions.
Cognitive Brain Research, 3, 1996, 131-141.

27. Shen, J., L. Li, T. Dietterich and J. Herlocker. A Hybrid
Learning System for Recognizing User Tasks from
Desktop Activities and Email Messages. Proc. IUI,
2006, 86-92.

28. Zacks, J., B. Tversky and G. Iyer. Perceiving,
Remembering, and Communicating Structure in Events.
Journal of Experimental Psychology: General, 130 (1),
2001, 29-58.

29. Zacks, J.M. and B. Tversky. Event Structure in
Perception and Conception. Psychological Bulletin, 127,
2001, 3-21.

CHI 2007 Proceedings • Tasks April 28-May 3, 2007 • San Jose, CA, USA

706

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

