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ABSTRACT
Interruptions are prevalent in everyday life and can be very disruptive. An important factor that affects
the level of disruptiveness is the timing of the interruption: Interruptions at low-workload moments are
known to be less disruptive than interruptions at high-workload moments. In this study, we developed a
task-independent interruption management system (IMS) that interrupts users at low-workload
moments in order to minimize the disruptiveness of interruptions. The IMS identifies low-workload
moments in real time by measuring users’ pupil dilation, which is a well-known indicator of workload.
Using an experimental setup we showed that the IMS succeeded in finding the optimal moments for
interruptions and marginally improved performance. Because our IMS is task-independent—it does not
require a task analysis—it can be broadly applied.

1. Introduction

Nowadays it is nearly impossible for a work environment to
be free of interruptions. Interruptions are often part of the job
itself: it is hard to imagine a profession in which one focuses
only on a single task for an extended amount of time. A pilot
has to talk to the air traffic controller while operating a plane,
a professor has to answer a student’s question while giving a
lecture, and a receptionist has to answer the phone in the
middle of providing information to a visitor.

The prevalence of interruptions has been quantified by
several observational studies that show how often people are
interrupted in their workplace (e.g., Czerwinski, Horvitz, &
Wilhite, 2004; Eyrolle & Cellier, 2000; Gonzalez & Mark,
2004). For example, Gonzalez and Mark’s (2004) study
revealed that office workers switched tasks every 3 minutes.
In addition—and perhaps more worrisome—many other stu-
dies have shown that interruptions are very disruptive for the
main task: users make more errors and become slower when
interrupted (e.g., Edward & Gronlund, 1998; Gould, Brumby,
& Cox, 2013; Hodgetts & Jones, 2006; Iqbal & Bailey, 2007; Jin
& Dabbish, 2009). As it seems impossible to ban interruptions
from the workplace, it is crucial to find a way of managing
interruptions that minimizes their negative effects.

With this goal in mind, we developed a task-independent
interruption management system (IMS) that uses real-time
pupil dilation measurements to interrupt users at the least
disruptive moments of a task. We evaluated this system in a
lab study, and showed that our IMS is able to find the optimal
moments for interruptions. Before we describe our IMS in
detail, we will first discuss what aspects of interruptions affect

their disruptiveness and what kind of IMS’s have been devel-
oped previously. We will then show how our IMS is able to
identify the optimal interruption moments on the basis of
pupil size independent of the current task.

1.1. Background

One of the main theories on interruptions is Memory for
Goals (Altmann & Trafton, 2002). In this theory, each task
is characterized by a goal, which has a certain activation level.
When a task is interrupted, its goal is stored in memory and
starts decaying. In the meantime, the goal of the interrupting
task is activated. Returning to the main task entails resump-
tion of its goal. The longer the interruption lasts, the more the
goal has decayed in declarative memory, and the harder it is
to resume the main task.

In order to cover more of the factors that can affect the
disruptive effect of interruptions, Borst, Taatgen, and van
Rijn (2015) extended Memory for Goals theory to Memory
for Problem States. Instead of goals, this model focuses on
problem states. The problem state contains the information
that is necessary to complete the next steps in a task, e.g.,
when trying to find the value for x in an equation such as
2x + 4 = 14, the information 2x − 10 is stored in the
problem state before proceeding to 10/2 = 5. The main
idea in Memory for Problem States is the same as in
Memory for Goals: when the main task is interrupted, its
problem state is stored and starts decaying. However, if the
main or the interrupting task does not require a problem
state, the main task will not be hard to resume even if a
considerable amount of time has passed.
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Memory for Problem States accounts for most of the fac-
tors that can affect the disruptive effect of an interruption. It
is well known that interruptions disrupt the main task and
affect performance (see for instance the seminal work by
Gillie & Broadbent, 1989). However, there are multiple factors
that affect the level of disruptiveness of interruptions. Several
studies showed that a long interruption is more disruptive
than a short one (e.g., Borst et al., 2015; Hodgetts & Jones,
2006; Monk, Boehm Davis, & Trafton, 2004), which is some-
thing that both Memory for Goals (Altmann & Trafton, 2002)
and Memory of Problem States account for, since the longer
the goal or state of a task has to be stored, the harder it is to
resume it. Other studies suggest that a more complex inter-
ruption is more disruptive than a simpler one (e.g., Borst
et al., 2015; Cades, Boehm Davis, Trafton, & Monk, 2007;
Monk et al., 2004). In addition, an interruption different from
the main task is more disruptive than an interruption more
similar to the main task (e.g., Gould et al., 2013; Iqbal &
Bailey, 2008). The timing of the interruption during the
main task also plays an important role. Interruptions at
high-workload moments (typically in the middle of a (sub)
task) are more disruptive than interruptions during low-
workload moments (between (sub)tasks; Gould et al., 2013;
Iqbal & Bailey, 2005, 2006; Katidioti & Taatgen, 2014; Monk
et al., 2004). In this article, we will focus on minimizing the
negative effects of interruptions by adjusting their timing.

In one of the studies focusing on the timing of interrup-
tions, Gould and colleagues (2013) interrupted participants
during a data-entry task either mid-subtask or between sub-
tasks, with the former interruptions being more disruptive
than the latter. Similar results were found by Monk and
colleagues (2004) in a VCR programming task. Iqbal and
Bailey (2006) used GOMS modeling to find high- and low-
workload moments in three different tasks. They interrupted
users at these moments, and showed that the cost of inter-
ruptions during low-workload moments was smaller than
during high-workload moments.

In most of these studies, high workload was defined as
participants’ working memory being occupied and low work-
load as their working memory being unoccupied with task
information. To test whether working memory requirements
indeed play an important role in the disruptiveness of inter-
ruptions, Salvucci and Bogunovich (2010) created a real-life
setup with clear high- and low-workload moments deter-
mined by working memory requirements (the current experi-
ment is based on their study). In Salvucci and Bogunovich’s
study, participants simulated a client service employee for an
electronics company, by answering emails from fictional cli-
ents asking them product prices. Participants had to read the
email, look up the price in a browser, and write a response to
the client. From time to time, a chat message arrived in the
background. Participants were free to choose when to answer
these messages. Results showed that participants preferred not
to interrupt themselves during high-workload moments,
which were the moments they had to remember the product
name or the product price, causing their working memory to
be occupied.

In a follow-up study by Katidioti and Taatgen (2014)
that used the same email-and-chat task, participants were

encouraged implicitly through an artificial delay in the
main task to switch during high-workload moments in
half the experiment. As a result, participants were slower
to complete an email than when they switched at low-
workload moments. Thus, interruptions at high-workload
moments are more disruptive, and workload seems to be
strongly dependent on working memory load.

Memory for Goals (Altmann & Trafton, 2002) does not
account for the effect the moment of interruption can have on
the level of disruptiveness of an interruption, nor for the
complexity of the tasks since the main focus of this theory is
the effect of the length of the interruption. Memory for
Problem States (Borst et al., 2015) can explain the effects of
the moment of interruption on its disruptiveness (e.g., Gould
et al., 2013; Iqbal & Bailey, 2005, 2006; Katidioti & Taatgen,
2014; Monk et al., 2004). According to Memory for Problem
States, if the main task does not require a problem state (and
therefore the working memory is not occupied with task
information), it will be resumed more easily after an inter-
ruption than a main task that requires a problem state, as no
problem state has to be retrieved from memory in the former
case.

1.2. Managing Interruptions

The fact that interruptions can be more or less disruptive
based on the circumstances can be exploited by IMSs, which
aim to find optimal—least disruptive—points for interrup-
tions. McFarlane (2002) was one of the first to exploit this
concept, and created an IMS that calculated the workload of
the specific task he used and interrupted participants when
the workload of the task was low. He then conducted an
experiment in which he used a collection of performance
and personal preference indices to compare four different
kinds of interruptions: immediate, negotiated, mediated and
scheduled. His results showed that mediated interruptions
(determined by the IMS) were less damaging to performance
than scheduled (occurring every 25 s) and immediate (ran-
dom occurrence) interruptions. Negotiated interruptions (in
which the user determined when to be interrupted) were
comparable with the mediated interruptions on most indices,
but required the user to make the decision when to switch.
This suggested that a combination of these two systems would
be beneficial for managing disruptions: a mediated system as
the default, with the possibility to override the mediator and
choose your own moment of interruption.

Arroyo and Selker (2011) developed an IMS that focused
on the similarity between the interrupting task and the main
task. Their IMS allowed relevant interruptions (defined as
those with similar content as the main task) to pass, while it
held back the irrelevant ones. This system led to a perfor-
mance benefit for important/urgent tasks. Züger and Fritz
(2015) used psycho-physiological measures (EEG data, eye
blinks and electrodermal activity) to measure interruptibility
of programmers. Although they did not create an IMS, they
were able to identify a programmer’s state of interruptibility
by means of machine-learning classifiers with high accuracy.
This suggests that such classifiers could be potentially used in
real time to interrupt users at low-workload moments.
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Tanaka, Abe, Aoki, and Fujita (2015) and Kobayashi, Tanaka,
Aoki, and Fujita (2015) have developed an IMS that uses head
motion and computer operations (typing, mouse clicks, open-
ing and closing windows, etc.) in order to identify a user’s
low-workload moments. Their system already shows very
promising results, although it is limited to specific work
environments and restricted to tasks that involve clicking,
typing and window usage. This means, for example, that
their system cannot find an interruption moment if one is
reading a paper on a computer screen.

The goal of the current study is to find a way to interrupt
people at low-workload moments. Therefore, we need a non-
invasive way to measure workload. The studies reviewed
above suggest that the best way to create a task-independent
IMS is to use a physiological measure. The physiological
measure we decided to focus on is pupil dilation.

1.3. Pupil Dilation

Since the 1960s, studies have established that the size of the
pupil is not only affected by changes in light, but also by other
stimuli. Hess and Polt (1960) were the first to show that pupil
size also depends on covert cognitive variables. Nowadays,
pupil dilation is known to react to a wide variety of cognitive
processes such as task difficulty and working memory load
(see Beatty & Lucero-Wagoner, 2000; Laeng, Sirois, &
Gredebäck, 2012 for reviews). In general, it is clear that
mental workload has a considerable impact on pupil size
(e.g., Beatty, 1982; Hoeks & Levelt, 1993). A more difficult
task evokes a larger pupil dilation than an easier task (e.g.,
Beatty & Lucero-Wagoner, 2000; Jennings & van der Molen,
2005). For instance, in a study by Kahneman, Tursk, Shapiro,
and Crider (1969), pupil dilation increased as the difficulty of
mathematical equations increased.

There are many studies linking pupil dilation to working
memory load—an important factor in mental workload.
Kahneman and Beatty (1966) report that participants’ pupil
dilation increased as the number of digits they had to remem-
ber increased from 3 to 7. Pupil dilation increased again to the
same size when participants had to repeat the digits for the
second time. Peavler (1974) measured changes in pupil dila-
tion while participants had to keep strings of 5, 9, and 13
digits in working memory. Results showed that pupil dilation
kept increasing until the 7th or 8th digit and then reached an
asymptote, reflecting the limits of working memory.

Besides working memory, pupil dilation is used in the
study of many different forms of cognitive effort, operationa-
lized as task complexity (e.g., Moresi et al., 2008; Prehn,
Heekeren, & Van der Meer, 2011), Stroop interference effects
(Laeng, Ørbo, Holmlund, & Miozzo, 2011), or difficulty of
retrieving information from memory (van Rijn, Dalenberg,
Borst, & Sprenger, 2012). Despite the fact that pupil dilation
is widely used in cognitive science, there is one drawback of
using it as a real-time measure: there is a delay of approxi-
mately 1 s before the pupil reaches its maximum dilation after
the onset of a stimulus (e.g., Hoeks & Levelt, 1993).

Pupil dilation has also frequently been used in interruption
research (e.g., Iqbal, Adamczyk, Zheng, & Bailey, 2005;
Katidioti, Borst, & Taatgen, 2014). For example, Iqbal and
colleagues (2005) found that pupil dilation decreased between
subtasks, which are low-workload moments. In a follow-up
study, Iqbal and Bailey (2005) found that there were smaller
time costs when participants were interrupted at those low-
workload moments, compared to high-workload or random
moments. Combining all their findings, Iqbal and Bailey
(2010) created the OASIS IMS, which delays interruptions
until there is a natural breakpoint in the task. However,
those breakpoints were decided by statistical models, based
on behavioral data from previous studies (Iqbal & Bailey,
2007, 2008) and not by real-time changes in pupil dilation.
Thus, this system, as does the Arroyo and Selker (2011) IMS,
requires a task analysis before it can be used.

The IMS we describe here chooses the optimal moments
for interruption based only on changes in pupil dilation,
independent of the specific task. When the user’s pupil size
drops below a certain threshold (which is constantly updated),
it is considered a low-workload moment, and the user is
interrupted. Since our IMS does not require a task analysis,
it is task-independent.

2. Interruption Management System

We developed an IMS that uses real-time changes in pupil
dilation to identify the low-workload moments of a task. We
then tested it on the email task that is interrupted by chat
messages (Katidioti & Taatgen, 2014; Salvucci & Bogunovich,
2010) with minor adjustments to fit the current setup. As the
task progresses, the IMS calculates a workload identifier value
(WIV). When pupil size is below the WIV it is considered to
be a low-workload moment. If there are consecutive low-
workload moments for 200 ms,1 the IMS interrupts the parti-
cipant (Figure 1). The WIV is calculated by using the follow-
ing values: the baseline pupil size, the percentage change in
pupil size (PCPS; Iqbal et al., 2005), the live average, and a
threshold adapter.

The baseline pupil size is measured at the beginning of the
study. During the experiment, pupil size is measured con-
tinuously and then transformed into PCPS values by subtract-
ing the baseline pupil size from each measurement and
dividing the result by the baseline pupil size. In order to
avoid multiplication with negative numbers, 1,000 was
added to each PCPS value. Thus, PCPS is given as follows:

PCPS ¼ current pupil dilation� baseline
baseline

þ 1000: (1)

The live average is defined as the average PCPS over the
last minute and is used to account for possible changes in
pupil dilation due to familiarity with the task, changing head
position or changes in light (the latter two did not occur
during the experiment).

1The 200 ms interval was chosen after pilot studies. Because of blinks, saccades, and noise, a smaller interval might not have provided enough information.
A bigger interval might have indicated wrong moments in the current task, which has quick changes from low to high-workload moments.
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The threshold adapter is set to 0.997 at the beginning of the
task (the value was chosen after a pilot study). The threshold
adapter is multiplied by the live average to calculate the WIV:

WIV ¼ live average� threshold adapter: (2)

The IMS allows for an interruption if pupil size measure-
ments are below the WIV for 200 ms consecutively. In order
to find the optimal WIV for each participant, the threshold
adapter increases or decreases by 0.001 when there are more
than one or no interruptions, respectively, during a specific
time interval.

During the interruption, pupil measurements are not
taken into account by the IMS, because the interruption is
a task that may have different characteristics from the main
task and pupil measurements may therefore not be repre-
sentative. In addition, for 5 s after the end of an interrup-
tion, there cannot be another interruption. That restriction

allows pupil measurement samples to return to baseline.
Finally, eye blinks are ignored.

To test the IMS, we performed a lab study that tested
whether the IMS could find the optimal interruption
moments, and compared its performance to random inter-
ruptions and no interruptions at all.

3. Methods

The main and the interrupting task of the experiment
were based on Salvucci and Bogunovich (2010). The
experiment simulates the working environment of an
employee of an electronics company who has to answer
clients’ emails while being interrupted by chat messages.
The main task was the email-answering task and the
interrupting task was the chat-answering task. The win-
dows used in the experiment are shown in Figure 2. In the
actual experiment, the windows were overlapping and

Figure 1. Percentage change in pupil size (PCPS) during a random email sequence. The top line is the value of the live average, the bottom line is the value of the
WIV (workload identifier value) and the low workload moments of this email are indicated with arrows. The IMS added 1000 to the PCPS values for calculation
reasons, which is not shown in the figure.

Figure 2. All the windows used in the experiment. In the top left corner there is the Mail window, top right corner is the Browser window, bottom left corner is the
Composer window and bottom right corner the Chat window.
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could not be moved. The participant had to click on a
window in order to see it. This forced them to remember
the information in windows that were not currently
visible.

The steps of the main task are shown in Figure 3. The
participant first opens an email by clicking on it, reads the
question (e.g., “What is the price of laptop Zanium A-63?”),
goes to the simulated browser, clicks on the product category
(Link 1), then the product name (Link 2) and finally the product
code (Link 3). After a 2-s delay, the price of the product loaded,
the participant could read it, return to the email window and
press the “Reply” button. The composer window would appear,
the participant had to type the price, press the “Send” button
(which caused the composer window to disappear) and then
drag and drop the answered email in the Archive folder.

The interrupting task simulated a casual chat conversa-
tion. The chat questions were in the form of “What is your
favorite. . .?” (e.g., color, food, movie, book). One in four
questions was a follow-up question to the previous one,
asking “Which is your least favorite?,” which referred to
the previous question. We used these follow-up questions
to engage the participants more into the simulated conver-
sation. When an interruption occurred, the chat window
appeared in front of the other windows and could not be
unfocused until the participant responded. Participants
were instructed to immediately answer one chat message
and then continue with the email task. Although in our
experiment the chat questions were of a private nature, this
simulates situations in some working environments in
which the employees have to give priority to the live-chat
questions that clients ask them.

The email task has high- and low-workload moments
(see Figure 3). High-workload moments are considered
the moments where working memory was occupied by
either the product name or the product price. Low-

workload moments are defined as the moments that work-
ing memory was not occupied by task information. At first,
after opening the email, the participant has to memorize the
product type and name until finishing the search (Link 3).
Link 3 is a low-workload moment, since participants no
longer have to retain the product name in working mem-
ory. When the price of the product loads, there are again
high-workload moments, since participants have to keep the
price in their working memory until the answer is sent. A
similar task analysis has been used at Salvucci and
Bogunovich (2010) and Katidioti and Taatgen (2014).
Both these papers have used the same e-mail task (with
some small differences in Salvucci & Bogunovich, 2010).
Both these papers gave participants the freedom to self-
interrupt and results confirm this task analysis of high
and low-workload moments.

3.1. Conditions

We used a within-subject repeated-measurement design with
three conditions: Control, IMS and Random. During a Control
block there were no interruptions: the participant only had to
perform the email task to measure baseline performance. In a
Random block, interruptions occurred at random moments. At
the beginning of the block a random interruption moment
between 10 and 30 s in the future was picked. The pilot study
showed that the average time to complete an email sequence is
about 20 s, so this interval would result in approximately one
interruption per e-mail. When the designated moment arrived
in the experiment, an interruption occurred. After the interrup-
tion finished, a new interruption moment between the next 10
and 30 s was picked for the next interruption, etc.

In the IMS blocks, the moments of the interruptions were
determined by the IMS. As in the Random condition, a ran-
dom moment between 10 s and 30 s was picked. The time

Figure 3. The sequence of the main task. The high-workload moments are indicated with gray and the low-workload moments with white.
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until that moment was the interruption interval. If the IMS
detected no suitable interruption moments during the inter-
ruption interval, the threshold adapter was increased by 0.001,
so that an interruption would be more likely in the next
interval. If the IMS interrupted the participant more than
once during the interruption interval, the threshold adapter
was decreased by 0.001 each time an extra interruption hap-
pened. The time spent on the interruptions was added to the
interruption interval. When the interval finished, another
random moment between 10 and 30 s was picked, etc.

3.2. Apparatus and Setup

Participants were tested individually in a small windowless
room. They were seated at a desk with a 20 inch LCD monitor
with screen resolution of 1600 × 1200 pixels and screen
density of 64 pixels/inch. Participants were asked to use a
chin-rest during the experiment. The eyetracker was an
Eyelink 1000 from SR Research, positioned approximately
45 cm from the end of the desk.

Eye fixations were measured with a sample rate of 250 Hz.
Calibration and drift correction were performed before the
experiment started. A calibration accuracy of 0.8° was con-
sidered acceptable. The eye tracker’s default parameters were
used to convert gaze positions into fixations and saccades.

3.3. Procedure

Participants started with a practice phase of 6 uninterrupted
emails, during which the baseline pupil dilation was calcu-
lated. After the sixth email was archived, the first block started
immediately.

The experiment consisted of three parts, each of the parts
containing three blocks in random order: one Control block,
one Random block and one IMS block. Each block finished
after 10 emails were archived and the participant could then
take a break. The experiment finished after all 9 blocks were
completed. The experiment lasted approximately 50 minutes.

3.4. Participants

Twenty-six (19 female) participants were tested. Four partici-
pants were removed because they had at least two blocks
where the IMS hardly interrupted them. The reason for the
scarce interruptions is that it took a long time before the IMS
managed to find the optimal WIV for these participants. A
possible explanation for that is that the original threshold
value (0.997) was too high for these participants and the
IMS kept interrupting them in the beginning of the block.
Although the IMS lowered the threshold, the fact that they
had to deal with so many interruptions and typing of the
answers probably made the participants’ pupils dilate, result-
ing in a threshold that was too low for them. If the blocks had
been longer, the IMS might have managed to find the optimal
threshold. We decided to remove these participants because
their uninterrupted IMS blocks are not representative of how
the IMS works.

The remaining 22 participants (15 female) had a mean age
of 23.2. All participants had normal or corrected-to-normal
vision, gave informed consent for their participation and
received monetary compensation of 8 euros.

3.5. Preprocessing

Two blocks were removed because participants did not follow
instructions, one from the control condition and one from the
IMS condition. Furthermore, 62 emails were removed because
each of them had 4 or more interruptions. Only six of these
belonged in the random condition, the rest were mostly the
first emails of the IMS condition, when the IMS needed some
time to find the appropriate WIV value.

In order to construct Figure 7—not for the IMS—eye
blinks were removed from the pupil dilation data, starting
100 ms before the blink up to 100 ms after the blink. The
removed pupil dilation data were replaced by a linear inter-
polation and then all data were down-sampled to 100 Hz. We
calculated the percentage change in pupil dilation from a
baseline, which was defined by a very slow lowess filter

Figure 4. Average PCPS values for every move for uninterrupted emails (Control condition). The gray lines show the standard error.
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(a smooth curve that follows pupil dilation, with the para-
meter values as provided by R, 2008) given by a weighted
linear least squares regression over the span (following
Katidioti et al., 2014).

4. RESULTS

4.1. Pupil Dilation and Interruption Moments

Figure 4 shows the average percentage change in pupil dilation
(PCPS) values at each email sequence moment for the Control
condition, i.e., emails that contained no interruptions. It is clear
that pupil size increases on high-workload moments and then
decreases on low-workload moments. The IMS identifies the
low-workload moments by the comparing the percentage
change in pupil dilation of the last 200 ms with the threshold.
Overall we observe the highest PCPS during the “Compose
Focus” move, probably because participants had to type at
that point. That is the reason why—although there is a large
drop in the PCPS in the next step (“Compose Sent”)—the value
is still higher than that of other high-workload moments.

Link 3 is an interesting point in the task. It is a low-workload
moment but only lasts about 2 s and it is in the middle of the
task, between high-workload moments. Nevertheless, the size of
the pupil decreases at this point (Figure 4) and the IMS is able to
detect that decrease (see Figure 5).

Figure 5 shows the number of interruptions for each
moment in the email sequence. The IMS succeeded partly in
shifting the interruptions to the low-workload moments
(green moments in Figure 5). Compared to the Random
condition, using the IMS resulted in more low-workload
moment interruptions and fewer high-workload moment
interruptions. On average, there were 10.27 interruptions
per block in the Random condition (4.7 during high-workload
moments and 5.58 during low-workload moments) and 6.26
interruptions per block in the IMS condition (2.15 during
high-workload moments and 4.1 during low-workload
moments). Proportionally this means that in the IMS condi-
tion 66.8% of the switches occurred at low-workload
moments and 33.2% at high-workload moments, whereas in

the Random condition the percentages were 54.0% and 46.0%,
respectively (Figure 6).

According to a two-way repeated measures ANOVA with
Condition (IMS vs Random) and Workload (low vs high) as
factors, there were significantly more low-workload than high-
workload interruptions (F(1,21) = 21.15, p < .001, ηp

2 = 0.5) and
significantly more interruptions in the Random condition than
in the IMS condition (F(1,21) = 23.89, p < .001, ηp

2 = 0.53). Most
importantly, the interaction between Condition and Workload
was significant (F(1,21) = 5.29, p = .032, ηp

2 = 0.2), indicating
that the IMS changed the proportion of interruptions to more
interruptions at low-workload than at high-workload moments.
Furthermore, block analysis showed that the IMS increased the
percentage of low-workload interruptions as the blocks pro-
gressed, from 58.04% in the first IMS block to 67.38% in the
last IMS block.

Taking into account the 1-s delay in pupil dilation reaction
(e.g., Hoeks & Levelt, 1993), we checked what type of moment
occurred 1.1–0.9 s before the high-workload moment

Figure 5. Average number of interruptions that occurred in each step of the main task for the IMS and the Random conditions. The high workload moments are
indicated with a dark gray line and the low workload moments with a light gray line.

Figure 6. Average number of interruptions on high and low workload moments
per block for both conditions.
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interruptions that the IMS created. Results showed that at
62.2% of the time that was indeed a high-workload moment
and 37.8% of the time it was a low-workload moment.

To assess whether the IMS interrupted users when their
pupil dilation was low, as we intended, we compared the
average pupil dilation for the Random and the IMS condi-
tion around the interruption point, time-locked at the
moment of interruption (time = 0 s, Figure 7). This figure
shows that the IMS indeed interrupted users when their
pupil dilation was low. In both conditions there is an
increase in pupil dilation approximately 700 ms after the
interruption. This increase likely reflects the pupil’s reac-
tion to the interruption itself.

4.2. Performance

In order to verify that high-workload moment interruptions
are worse than low-workload ones, we compared emails in
which participants were interrupted at a high-workload
moment to emails in which they were interrupted at a
low-workload moment (independent of condition). When
interrupted at a high-workload moment, participants were
significantly slower in completing the email sequence
(22.37 s) than when they were interrupted at a low-work-
load moment (20.21 s; t(21) = −3.76, p = .0012).

The success of the IMS in detecting low-workload moments
was reflected in the participants’ performance on the main
email task. The average time to complete an email (after
removing the time spent on interruptions and emails that
deviated more than 3 SDs from the mean) per condition was
18.16 (SE = 0.73) s for the Control condition, 20.30 (SE = 0.71)
s for the IMS condition and 21.53 (SE = 1.19) s for the Random
condition. An ANOVA revealed a significant difference
between conditions (F(2,42) = 19.18, p < .001, ηp

2 = 0.48),
and a pairwise t-test with Bonferroni-Holm correction revealed
that the difference between the IMS and the Random condition
was marginally significant (t(21) = −2.05, p = .053). Participants

were significantly faster in the Control condition then in the
IMS or the Random condition (both ps < .001).

Participants seldom made mistakes (such as typing the
wrong price or looking up the wrong product). However,
there were times that participants forgot the product name
while browsing and revisited the email window in order to
read it again. There were on average 0.32 (SE = 0.05) revisits
per email in the Control condition, 0.44 (SE = 0.08) in the
IMS condition and 0.46 (SE = 0.07) in the Random condition.
An ANOVA showed that this difference is significant (F
(2,42) = 4.567, p = .016, ηp

2 = 0.18), and a follow-up pairwise
t-test showed that the only significant difference was between
the Control and the Random condition (t(21) = −2.82, after a
Bonferroni-Holm correction p = .031).

Another performance measure used often in interruption
studies is the resumption lag: the time one needs to resume
the main task after being interrupted. In this setup,
resumption lag is the time between sending the answer in
the chat and the next main task move. The resumption lag
was 1.55 s for the IMS condition and 1.37 s for the Random
condition, a difference that was not significant according to
a t-test (t(21) = 1.37, p = 0.18, d = 0.37).

5. Discussion

The aim of this study was to create and test an IMS that
interrupts users at optimal moments of an ongoing task. It
has been shown by many studies (e.g., Gould et al., 2013;
Iqbal et al., 2005; Iqbal & Bailey, 2005; Katidioti & Taatgen,
2014; Salvucci & Bogunovich, 2010) that interruptions at
low-workload moments are less disruptive than interrup-
tions at high-workload moments. In order to measure
workload and find low-workload moments, we used pupil
dilation, a well-known measure of cognitive workload (e.g.,
Beatty, 1982; Beatty & Lucero-Wagoner, 2000; Hoeks &
Levelt, 1993; Iqbal et al., 2005). We developed a task-inde-
pendent IMS that interrupts users when their pupil dilation
drops below an adaptive value (Figure 1). We then tested

Figure 7. Average pupil dilation around the interruption point (indicated by the dashed line) for the IMS and the Random conditions. The lighter area around each
line represents the standard error.
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this IMS in an experimental study, using an email-and-chat
setup that resembles client service in an electronics com-
pany (Salvucci & Bogunovich, 2010).

PCPS increased on the known high-workload moments of
this task and decreased on the low-workload moments
(Figure 4), confirming that pupil dilation reacted to the work-
load changes. Behavioral results showed that the IMS suc-
ceeded in interrupting participants on the low-workload
moments of the main task (Figure 5). Even Link 3, which is
a low-workload point lasting only about 2 s was detected by
the IMS, as seen in Figure 6. In the Random condition,
switches were almost equally distributed between low-work-
load (53.95%) and high-workload (46.05%) moments. In the
IMS condition, the IMS managed to increase the difference,
by interrupting participants 66.81% of the time on low-work-
load moments. In addition, pupil dilation results confirmed
that these interruptions happened when pupil dilation was
low or decreasing in the IMS condition (Figure 7). Taking
all of the above into account, we can conclude that the IMS
was successful in interrupting people at low-workload
moments by detecting a decrease in their pupil dilation.

Performance in this setup was measured by the average
time needed to complete an email sequence. High-workload
interruptions (across both conditions) made participants sig-
nificantly slower than low-workload interruptions. This result
is in line with previous studies on the timing of interruptions
(Gould et al., 2013; Iqbal et al., 2005; Iqbal & Bailey, 2005;
Katidioti & Taatgen, 2014; Salvucci & Bogunovich, 2010),
which all suggest that low-workload interruptions are less
disruptive than high-workload interruptions.

Although there was no difference between being interrupted
by the IMS or randomly in some performance measures
(resumption lag and number of revisits to the email window),
participants were marginally faster to complete an email in the
IMS than in the Random condition. This is promising, especially
given that the IMS did not result in 100% low-workload
switches, but only 67%. There are two possible explanations for
that. The first explanation is that since pupil dilation reacts to
stimuli with a 1-s delay (Hoeks & Levelt, 1993), the behavioral
task we used alternated too quickly from low- to high-workload
moments for the IMS to perform optimally—and consequently,
100% low-workload switches were impossible. By the time the
IMS decided that the pupil dilation was low enough to interrupt,
the low-workload moment of the task might have already chan-
ged to a high-workload one—for example, opening an email is a
low-workload moment, but reading it lasts only a couple of
seconds and then working memory is occupied again. Analysis
of the task moments that occurred 1.1–0.9 s before high-work-
load interruptions during the IMS blocks revealed that they were
mostly also high-workload moments (62.2%). Thus, the remain-
ing 37% of the high-workload switches might be due to a low-
workload moment about a second earlier. The second explana-
tion is that the IMS needs some time to find the optimalWIV. In
some cases, that led to participants being constantly interrupted
in the beginning of the IMS blocks, or not interrupted at all. The
fact that the percentage of low-workload interruptions increased
from 58.04% in the first IMS block to 67.38% in the last IMS
block supports this explanation. In a real-life environment this

should be less of a problem if pupil dilation can be measured
continuously and the WIV updated throughout the day.

A substantial advantage of our IMS is that it is task-indepen-
dent. Some parameters (i.e., the 10–30-s interval between inter-
ruptions that was used in order to have a fair comparison with the
Random condition, the 200 ms pupil dilation judging period and
the rate/amount of the threshold adaptor changing) were chosen
to fit this specific task, such that we could make a valid compar-
ison between the IMS and random interruptions. However with
fewminor changes (e.g., having only a set number of interruptions
per hour), the IMS can be adapted to different tasks. The IMS is
task-independent because it interrupts people only based on the
changes in their pupil dilation, not on the properties of the main
task. It can therefore be applied without first having to perform a
task analysis, which is required for most other systems (e.g.,
Arroyo & Selker, 2011; Iqbal & Bailey, 2010). Furthermore, the
pupil dilation during the interruption is not taken into account,
which means that the IMS is not affected by the extent to which
the interrupting task is relevant to the main task. Since our IMS is
task-independent, it is possible to integrate it into an operating
system and use it across tasks. For instance, simple office work
could benefit from such an IMS, which could defer email and
social media notifications until a low-workload moment.
Naturally, it could also be employed in single-task environments
such as the cockpit or air-traffic control. In those cases, the current
system might be combined with a task analysis to identify crucial
processes that may never be interrupted.

One issue with a pupil-dilation-based IMS is that one needs to
measure pupil dilation in real time in an uncontrolled environ-
ment, where lighting conditions might affect the pupil. Although
pupil dilation has traditionally been measured with expensive
eye-tracking systems, in recent years webcams have rapidly
become more capable, to the extent that most current webcams
are high definition. Such high-quality webcams can be used to
measure pupil dilation changes and calculate workload in nor-
mal office conditions (Rafiqi, Wangwiwattana, Fernandez, Nair,
& Larson, 2015), promising to make eye tracking and pupil
dilation widely available.

The IMS used a specific algorithm that compares 200 ms
worth of pupil dilation to an adaptive threshold in order to
judge whether the pupil dilation indicated a low-workload
moment. We could change the algorithm to fit the task better,
by comparing the pupil dilation of each step of the task to the
pupil dilation of the previous step. This would be a better idea
for this task, since the changes from a high to a low-workload
moment can be very quick. Although this change would
probably yield better results with this specific task, it would
also make the IMS task-dependent. Another idea is to take the
direction of the pupil change into account. Only if the pupil
size keeps decreasing for a specific amount of time, then the
workload decreases and it is a good moment for an interrup-
tion. Although this seems a good idea on the basis of the
average data, its robustness still has to be investigated online.

IMSs are becoming a necessity in the world we live in that
is full with interruptions that endanger our work. There are
many studies that point out what makes interruptions dis-
ruptive and how to minimize their negative effects (e.g.,
Edward & Gronlund, 1998; Gould et al., 2013; Hodgetts &
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Jones, 2006; Iqbal & Bailey, 2007; Jin & Dabbish, 2009) but
few have implemented this knowledge in a usable system for
managing interruptions. In the study presented here we
focused only on one aspect of interruptions (timing of the
interruption) and one psycho-physiological measure (pupil
dilation), avoiding the need for extensive task analysis that is
required in many previous systems. We showed that a pupil-
dilation-based IMS can identify low-workload moments in
real time, and interrupt users at opportune moments, leading
to marginally better performance than random interruptions.
Although our IMS can be further optimized—for instance by
taking into account other sources of data (Züger & Fritz,
2015)—it already showed promising results.

Acknowledgments

We thank Dario Salvucci for providing the code for the experiment.

Funding

This research was funded by ERC-StG grant 283597 awarded to Niels
Taatgen.

References

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activa-
tion-based model. Cognitive Science, 26, 39–83.

Arroyo, E., & Selker, T. (2011). Attention and intention goals can
mediate disruption in human–computer interaction. Interact, 1
(6947), 454–470.

Beatty, J. (1982). Task-evoked pupillary responses, processing load, and
the structure of processing resources. Psychological Bulletin, 91(2),
276–292.

Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T.
Cacioppo, L. G. Tassinary, & G. Berntson (Eds.), Handbook of psycho-
physiology (pp. 142–162). Cambridge, MA: Cambridge University Press.

Borst, J. P., Taatgen, N. A., & van Rijn, H. (2015). What makes inter-
ruptions disruptive? A process-model account of the effects of the
problem state bottleneck on task interruption and resumption. Paper
presented at the SIGCHI Conference on Human Factors in
Computing Systems (CHI ‘15), Seoul, South Korea.

Cades, D. M., Boehm Davis, D. A., Trafton, J. G., & Monk, C. A. (2007).
Does the difficulty of an interruption affect our ability to resume? Paper
presented at the Human Factors and Ergonomics Society Annual
Meeting 2007, Baltimore, MD, October 1–5.

Czerwinski, M., Horvitz, E., & Wilhite, S. A. (2004). A diary study of task
switching and interruptions. Paper presented at the SIGCHI Conference
on Human Factors in Computing Systems (CHI ‘04), Vienna, Austria.

Edward, M. B., & Gronlund, S. D. (1998). Task interruption and its
effects on memory. Memory, 6(6), 665–687.

Eyrolle, H., & Cellier, J. M. (2000). The effects of interruptions in work
activity: Field and laboratory results.Applied Ergonomics, 31(5), 537–543.

Gillie, T., & Broadbent, D. E. (1989). What makes interruptions disrup-
tive? A study of length, similarity, and complexity. Psychological
Research, 50, 243–250.

Gonzalez, V., & Mark, G. (2004). “Constant, constant, multi-tasking
craziness”: Managing multiple working spheres. Paper presented at
the SIGCHI Conference on Human Factors in Computing Systems
(CHI ‘04), Vienna, Austria.

Gould, S. J. J., Brumby, D. P., & Cox, A. L. (2013).What does it mean for an
interruption to be relevant? An investigation of relevance as a memory
effect. Paper presented at the Human Factors and Ergonomics Society
Annual Meeting 2013, San Diego, CA, September 30–October 4.

Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of
visual stimuli. Science, 132, 349–350.

Hodgetts, H. M., & Jones, D. M. (2006). Interruption of the tower of
London task: Support for a goal activation approach. Journal of
Experimental Psychology: General, 135(1), 103–115.

Hoeks, B., & Levelt, W. J. M. (1993). Pupillary dilation as a measure of
attention: A quantitative system analysis. Behavior Research Methods,
Instruments, & Computers, 25, 16–26.

Iqbal, S. T., Adamczyk, P. D., Zheng, X., & Bailey, B. P. (2005). Towards
an index of opportunity: Understanding changes in mental workload
during task execution. Paper presented at the SIGCHI Conference on
Human Factors in Computing Systems (CHI ‘02), Minneapolis, MN.

Iqbal, S. T., & Bailey, B. P. (2005). Investigating the effectiveness of mental
workload as a predictor of opportune moments for interruption. Paper
presented at the SIGCHI Conference on Human Factors in
Computing Systems (CHI ‘05), Portland, OR.

Iqbal, S. T., & Bailey, B. P. (2006). Leveraging characteristics of task structure
to predict the cost of interruption. Paper presented at the SIGCHI
Conference on Human Factors in Computing Systems (CHI ‘06),
Montreal, Quebec.

Iqbal, S. T., & Bailey, B. P. (2007). Understanding and developing models
for detecting and differentiating breakpoints during interactive tasks.
Paper presented at the ACM Conference on Human Factors in
Computing Systems, San Jose, CA.

Iqbal, S. T., & Bailey, B. P. (2008). Effects of intelligent notification manage-
ment on users and their tasks. Paper presented at the SIGCHI Conference
on Human Factors in Computing Systems (CHI ‘08), Florence, Italy.

Iqbal, S. T., & Bailey, B. P. (2010). Oasis: A framework for linking notifica-
tion delivery to the perceptual structure of goal-directed tasks. ACM
Transactions on Computer–Human Interaction, 17(4), 1–28.

Jennings, J. R., & Van der Molen, M. W. (2005). Preparation for speeded
action as a psychophysiological concept. Psychological Bulletin, 131(3),
434–459.

Jin, J., & Dabbish, L. A. (2009). Self-interruption on the computer: A
typology of discretionary task interleaving. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(CHI ‘09) (pp. 1799–1808). New York: ACM. doi:10.1145/
1518701.1518979

Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory.
Science, 154(3756), 1583–1585. doi:10.1126/science.154.3756.1583

Kahneman, D., Tursk, B., Shapiro, D., & Crider, A. (1969). Pupillary,
heart rate and skin resistance changes during a mental task. Journal of
Experimental Psychology, 79(1), 164–167. doi:10.1037/h0026952

Katidioti, I., Borst, J. P., & Taatgen, N. A. (2014). What happens when we
switch tasks: pupil dilation in multitasking. Journal of Experimental
Psychology: Applied, 20(6), 380–396.

Katidioti, I., & Taatgen, N. A. (2014). Choice in multitasking: How delays
in the primary task turn a rational into an irrational multitasker.
Human Factors: The Journal of the Human Factors and Ergonomics
Society, 56(4), 728–736.

Kobayashi, Y., Tanaka, T., Aoki, K., & Fujita, K. (2015). Automatic
delivery timing control of incoming email based on user interrupt-
ibility. In Proceedings of the 33rd Annual ACM Conference Extended
Abstracts on Human Factors in Computing Systems (CHI EA ‘15) (pp.
1779–1784). New York, NY: ACM.

Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary
Stroop effects. Cognitive Processing, 12, 13–21.

Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to
the preconscious? Perspectives on Psychological Science, 7(1), 18–27.

McFarlane, D. C. (2002). Comparison of four primary methods for
coordinating the interruption of people in human–computer interac-
tion. Human–Computer Interaction, 17(1), 63–139.

Monk, C. A., Boehm Davis, D. A., & Trafton, J. G. (2004). Recovering
from interruptions: Implications for driver distraction research.
Human Factors: The Journal of the Human Factors and Ergonomics
Society, 46(4), 650–663.

Moresi, S., Adam, J. J., Rijcken, J., Van Gerven, P. W. M., Kuipers, H., &
Jolles, J. (2008). Pupil dilation in response preparation. International
Journal of Psychophysiology, 67, 124–130.

Peavler, W. S. (1974). Pupil size, information overload and performance
differences. Psychophysiology, 11, 559–566. doi:10.1111/j.1469-8986.1974.
tb01114.x

800 I. KATIDIOTI ET AL.

http://dx.doi.org/10.1145/1518701.1518979
http://dx.doi.org/10.1145/1518701.1518979
http://dx.doi.org/10.1126/science.154.3756.1583
http://dx.doi.org/10.1037/h0026952
http://dx.doi.org/10.1111/j.1469-8986.1974.tb01114.x
http://dx.doi.org/10.1111/j.1469-8986.1974.tb01114.x


Prehn, K., Heekeren, H. R., & Van der Meer, E. (2011). Influence of
affective significance on different levels of processing using pupil
dilation in an analogical reasoning task. International Journal of
Psychophysiology, 79(2), 236–243.

R Development Core Team. (2008). R: A language and environment for
statistical computing. Vienna, Austria: R Foundation for Statistical
Computing. ISBN 3-900051-07-0. http://www.R-project.org

Rafiqi, S., Wangwiwattana, C., Fernandez, E., Nair, S., & Larson, E.
C. (2015). Work-in-progress, pupilware-M: Cognitive load estima-
tion using unmodified smartphone cameras. Paper presented at
MASS 2015, SocialSens 2015, Dallas, TX, October 19–22.

Salvucci, D. D., & Bogunovich, P. (2010). Multitasking and monotasking:
The effects of mental workload on deferred task interruptions. Paper
presented at the SIGCHI Conference on Human Factors in
Computing Systems (CHI ‘10), Atlanta, GA.

Tanaka, T., Abe, R., Aoki, K., & Fujita, K. (2015). Interruptibility estima-
tion based on head motion and PC operation. International Journal of
Human–Computer Interaction, 31(3), 167–179.

van Rijn, H., Dalenberg, J. R., Borst, J. P., & Sprenger, S. A. (2012). Pupil
dilation co-varies with memory strength of individual traces in a
delayed response paired-associate task. PLoS One, 7, e51134.
doi:10.1371/journal.pone.0051134

Züger, M., & Fritz, T. (2015). Interruptibility of software developers and
its prediction using psycho-physiological sensors. Paper presented at the
SIGCHI Conference on Human Factors in Computing Systems (CHI
‘15), Seoul, South Korea.

About the Authors

Ioanna Katidioti earned her PhD from the Department of Artificial
Intelligence of the University of Groningen in 2016.

Jelmer P. Borst is a senior postdoctoral researcher at the Department of
Artificial Intelligence of the University of Groningen. He investigates
how computational cognitive models can be used to inform the analysis
of neural data. He earned his PhD in artificial intelligence from the
University of Groningen in 2012.

Douwe J. Bierens de Haan is a master student of Human Machine
Communication in the Department of Artificial Intelligence of the
University of Groningen in 2016.

Tamara Pepping is a master student of Human Machine
Communication in the Department of Artificial Intelligence of the
University of Groningen in 2016.

Marieke K. van Vugt is an assistant professor of cognitive modeling at
the Department of Artificial Intelligence of the University of Groningen.
She investigates how decision making and distraction can be modeled
and are implemented by the brain. She earned her PhD in neuroscience
from the University of Pennsylvania in 2008.

Niels A. Taatgen is full professor of cognitive modeling at the Department of
Artificial Intelligence of the University of Groningen. He earned his PhD in
psychology from the University of Groningen in 1999.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 801

http://www.R-project.org
http://dx.doi.org/10.1371/journal.pone.0051134


Copyright of International Journal of Human-Computer Interaction is the property of Taylor
& Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


