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ABSTRACT 
Information workers perform jobs that demand constant multi-
tasking, leading to context switches, productivity loss, stress, 
and unhappiness. Systems that can mediate task transitions 
and breaks have the potential to keep people both productive 
and happy. We explore a crucial initial step for this goal: find-
ing opportune moments to recommend transitions and breaks 
without disrupting people during focused states. Using affect, 
workstation activity, and task data from a three-week field 
study (N = 25), we build models to predict whether a person 
should continue their task, transition to a new task, or take a 
break. The R2 values of our models are as high as 0.7, with 
only 15% error cases. We ask users to evaluate the timing of 
recommendations provided by a recommender that relies on 
these models. Our study shows that users find our transition 
and break recommendations to be well-timed, rating them as 
86% and 77% accurate, respectively. We conclude with a 
discussion of the implications for intelligent systems that seek 
to guide task transitions and manage interruptions at work. 

Author Keywords 
Affect; Productivity; Workplace; Recommendations 

CCS Concepts 
•Human-centered computing → User models; User stud-
ies; •Computing methodologies → Model development 
and analysis; 

INTRODUCTION 
Information workers operate in an environment where mul-
titasking is common [18, 45] and task priorities shift con-
stantly [66]. In practice, multitasking often leads to context 
switching as people try to manage different tasks and commu-
nication channels at once [20, 28]. As a result, information 
workers may switch context at inopportune moments—when 
they have maximum context about their current task and are in 
a state of flow [16]—resulting in high task-resumption costs 
and loss of productivity [45]. Switching out of unproductive 
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states, though, is important, since these can lead to stress and 
unhappiness at work [30], which also leads to loss of produc-
tivity [63]. This vicious cycle is hard to break if we consider 
productivity and affect in isolation: a person’s affective state 
is crucial to their workplace effectiveness [33, 58]. Indeed, the 
happy-productive worker hypothesis claims that information 
workers cannot be their most productive selves, or do their 
best work, without first being happy [82]. 

One way to keep information workers both happy and produc-
tive is to recommend state changing actions (such as, “tran-
sition to a different task” or “take a break”) at times when 
we believe people to be in unhappy or unproductive states. 
Such recommendations must be well-timed, as prior work sug-
gests that intelligent systems can do more harm than good if 
people are interrupted at the wrong times [5, 26, 46, 50]. It 
is challenging to identify the ideal moments for such recom-
mendations without a fine-grained understanding of people’s 
affective state and work context. Most prior work has relied on 
wearable sensors to gain some understanding of these factors 
(e.g., [84]), but several of these sensors are challenging to wear 
continuously, and are subject to technological failure [11]. 

Our goal is to identify opportune moments for guiding people 
towards effective states at work in a minimally invasive way. 
We rely on a tool that logs workstation activity, daily task 
information, and affect derived from facial expressions in a 
privacy-preserving way; and conduct a four-week field study 
with 25 participants at a large technology company. Our work 
has two phases: (1) we use three weeks of data collected via 
our tool to build predictive models that jointly optimize peo-
ple’s positive affect and productivity, and (2) we deploy these 
models to make real-time recommendations of transitions and 
breaks for our participants, and obtain their feedback on the 
timing of these recommendations. 

Our results show that we can jointly model positive affect and 
productivity with reasonable goodness-of-fit (R2 0.2–0.7) and 
low error (<15%). While all our logged features are impor-
tant for the models, the importance of each feature varies by 
individual. When applied in practice, these models identify op-
portune moments for transitions and breaks in real-time with 
85.7% and 77% accuracy, respectively. Our user study shows 
that participants appreciate timely reminders about these ac-
tions, follow them to replenish their energy, and are more re-
flective about their work as a result. We end with implications 
for building intelligent systems for workplace well-being. 
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RELATED WORK 
Our work relies on principles from HCI, ubiquitous computing, 
organizational behavior, and psychology, as described below. 

The Happy-Productive Worker 
Organizational behavior studies show that people who have 
a happy disposition at work tend to have higher rated (i.e., 
more productive) performance measures [33, 82]. Coined the 
“happy-productive worker hypothesis,” this has been studied 
in several organizational settings with different operational-
izations of happiness (e.g., job satisfaction, lack of emotional 
exhaustion) and productivity (e.g., meeting monthly targets, 
ratings from manager). The hypothesis has been supported by 
prior work in specific domains [15, 73, 75, 81]. 

Observing 42 software developers—an important class of in-
formation workers—Graziotin et al. [31] find that happy de-
velopers are indeed better at analytical problem solving and 
critical thinking. Similarly, several researchers have mined 
publicly available issue-tracking data from software reposi-
tories (e.g., Apache Jira) to find that positive emotions are 
correlated with shorter issue fixing time [21, 55, 65]. In a 
more recent paper, Graziotin et al. suggest that it is more 
cost-effective to study unhappiness and reduce it—this auto-
matically reduces stress and improves productivity [30]. It 
is evident from this work that productivity and happiness are 
intertwined; thus, we consider both in our study. 

Multitasking and Interruption Management 
Humans are prone to multitasking because they are cognitively 
capable of switching between tasks [71, 79] and technology 
supports this practice [9, 18, 28, 64]. However, multitasking 
often results in switching tasks at inopportune moments, due to 
internal [2, 49] and external [17, 41] interruptions. Information 
workers switch windows every 40 seconds [59] and working 
spheres every 3 minutes [28]. Once interrupted, they can take 
∼15 minutes to resume their task [45]. An interruption at the 
wrong time, e.g., when people are in a state of flow [16], can 
result in lower task productivity [63] and increased frustration, 
anxiety and annoyance [4, 5, 26, 43, 46, 56]. 

Theoretical Studies of Breaks and Transitions 
Several papers in the psychology literature have studied peo-
ple’s behavior in the context of breaks. Strongman and Burt 
find that people often take breaks due to internal states of 
tiredness, boredom, or hunger; and for activities such as walk-
ing, socializing, or exercising [74]. Observing 107 employees 
from diverse industries, Kühnel et al. also find that mental 
exhaustion is a key reason for taking a break [52]. Prior work 
is split on what is the most helpful way of taking a break: 
several studies note that taking shorter breaks more often is 
ideal for productivity [38, 74], whereas others show that short 
breaks lead to more fragmented work and thus reduce overall 
productivity [19]. One reason for these differences could be 
that people’s practices for breaks vary by task and timeline 
requirements [10, 22, 66]. We explore this hypothesis by 
combination of task and affect factors in our models. 

Task transitions are harder to ascertain for information work: 
there are minimal changes in the environment, but people 

perform deliberate attentional reorientation when they switch 
tasks [69]. McFarlane proposes four methods of interrupting 
a user for switching tasks: immediate, negotiated, mediated, 
and scheduled [62]. Our work relies on a mediated strategy, 
where the system uses contextual information to decide when 
to recommend a task switch or a break to the user, thereby 
reducing the burden on the user to pick an optimal moment. 

Sensor-based Affect and Productivity Monitoring 
Prior work has employed sensor-based monitoring to identify 
opportune moments for a task switch: [47, 51] use pupillary 
response to measure cognitive load; [37, 39] study heart rate 
variability (HRV) as a proxy for focus; and several other stud-
ies, including [12, 34, 35, 67, 70, 77] use electromyogram, 
accelerometry data, electrocardiogram data, skin conductance, 
sleep and circadian rhythms, mobile phone context, and other 
signals to measure stress and cognitive load. 

A comprehensive overview of sensor-based psychological, 
physiological, behavioral, and contextual measurements of 
stress can be found in [3]. Most related to our work is Züger 
et al.’s prediction of interruptible moments in people’s work-
days based on a combination of sensor-based data outlined 
above [84]. They collect ground truth self-reports of inter-
ruptibility from people and train personalized models that use 
data from several sensors to predict if an individual is inter-
ruptible at a given time. Complementary to their approach, 
our models are based on a joint optimization of productivity 
and happiness, and we build on their work by using data from 
an emotion, activity, and task logging tool, but without any 
wearable sensors. Our work extends sensor-based monitoring 
studies, specifically, those that demonstrate that even simple 
sensors are valuable for modeling interruptability [25]. 

Tool-Based Productivity Mediation 
Researchers have leveraged different sources of user data to 
develop systems that help people better manage their attention 
spans, todos, and overall productivity. For example, systems 
like Active Progress bar [42], Busybody [40], Groupbar [72], 
Lilsys [8], Oasis [44], and several others rely on various forms 
of log data analysis to reduce interruptions and support easy 
task switching for productive outcomes at work. 

Most related to our overarching goal, several papers in the 
HCI literature have studied work-related breaks and built tools 
to support them. Epstein et al. conducted an extensive anal-
ysis of people’s definition of a break and found that these 
are subjective, though the desired outcomes (e.g., feeling re-
laxed) are consistent [24]. They designed 13 visualizations 
to support learning and reflection of people’s unique break 
patterns. Cambo et al. introduced BreakSense, a multi-device 
application that employs location-based challenges to promote 
mobility in the workplace [11]. Similarly, Luo et al. designed 
“Time for Break,” a break-prompting system aimed at combat-
ing prolonged sedentary behavior, and found that pre-existing 
habits play an important role in system adoption [54]. Most 
recently, Tseng et al. developed and studied UpTime, a con-
versational system built into Slack that improves transition 
between breaks and work time by blocking distractions (e.g., 
social media sites) for a fixed period of time [76]. 
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While the goal of these systems is to support taking breaks and 
maximizing productivity, leveraging user affect remains rela-
tively unexplored in this context. As a first step, we leverage 
affect, workstation activity, and task information to predict 
opportune moments for task transitions and breaks for people, 
to help them become happy-productive workers. 

RESEARCH GOALS 
Our broad research goal is to help people achieve their work-
related goals while also optimizing positive affect in the work-
place. To approximate this, we use predicted emotion labels 
for people’s facial expressions, their workstation activity, and 
their daily task list, to recommend actions for productivity and 
positive affect at any given time—specifically, switching to a 
different task or taking a break. Our research question is: 

RQ. Can we identify opportune times for transitioning tasks 
and taking breaks for people during their workday? 

We study this in two phases: in Phase 1, we develop mod-
els to predict opportune moments for intervention using a 
jointly optimized value for positive affect and productivity; in 
Phase 2, we study how people respond to recommendations of 
transitions and breaks based on the jointly optimized value. 

PHASE 1: MODEL DEVELOPMENT 
To guide people towards positive affect and productivity at 
work, we performed optimization over data collected about 
people’s emotions, workstation activity, and tasks. Here, we 
describe how we collected this data, followed by the specifics 
of our features, the models used for prediction, and the metrics 
we used for evaluating our prediction models. 

Tracking Emotion, Workstation Activity, and Tasks 
We collected 9 categories of data for our prediction task: (1) 
emotion, (2) heart rate, (3) physical movement, (4) interaction 
data, (5) time of day, (6) day of week, (7) task information, (8) 
digital actions being performed, and (9) productivity and affect 
reports. We used an existing Emotion and Activity Logging 
Software [61] to collect categories 1–6 and 8, and built an 
interface, FLOWZONE (Figure 1), on top of this software for 
categories 7 and 9. Categories 1–8 are used as inputs for our 
models and 9 is used to compute the output. 

Emotion and Activity Logging Software 
We got emotion expressions and workstation activity by pro-
cessing data collected by the software via a standard webcam 
(participant privacy was preserved by never storing raw data). 
The software [61] analyzes people’s facial expressions while 
at their desk. It consists of a visual and an activity pipeline. 

Visual Pipeline. The software processes video data from 
a webcam. First, it detects faces in the video and extracts 
landmark positions of key facial features. The distance of 
the user’s face from the camera is extracted using the inter-
ocular distance calculated from the facial landmarks. Next, 
the facial regions of interest are analyzed using an emotion 
detection algorithm, returning eight probabilities for each of 
the following basic emotional expressions—anger, disgust, 
fear, joy, sadness, surprise, contempt, and neutral [23]—with 
an accuracy of ∼87%. It uses Microsoft’s publicly-available 

EmotionAPI to detect emotion expression (for more informa-
tion on its classification of facial expressions, see [7]). Using 
image frames, the software also extracts heart rate via the 
photoplethysmographic signal [60, 68]. 

Activity Pipeline. The software logs information about the 
open applications and interactions with computer peripherals. 
Each time applications are opened, closed, in focus (the front 
application), minimized, or maximized, it records these activi-
ties with the corresponding timestamp. The software only logs 
the title of the window—indicating the page or application— 
and these values are hashed before storing. It also logs mouse 
movements and clicks and keyboard inputs. 

FLOWZONE: An Interface to Collect Task Information 

and Self-Reports on Productivity and Affect 
We developed FLOWZONE, a user interface on top of the 
aforementioned Emotion and Activity Logging Software [61] 
to collect additional information on people’s daily tasks, and 
self-reports of task progress, productivity, and affect. FLOW-
ZONE is comprised of two components: the Task Tracker, and 
the Productivity and Affect Self-report interface. 1 The data 
collected through FLOWZONE is temporally aligned with the 
data collected by the Emotion and Activity Logging Software. 

Task Tracker. The Task Tracker is a simple to-do list inter-
face which asks people about the type of activities involved 
in doing each task on the to-do list. These activities can be 
selected from a list of eight: reading, writing, coding, digital 
communication, brainstorming, paper-based reading/writing, 
creating spreadsheets, and online information search. The 
interface also asks for each to-do item’s urgency and difficulty, 
and an estimate for the anticipated completion time for it (Fig-
ure 1). Prior work shows that the emotion and activity-based 
markers can change based on the task being performed [10, 
22], making this task information critical for our models. 

Productivity and Affect Self-Reports. The Emotion and 
Activity Logging Software captures 8 emotion labels based 
on people’s facial expressions. Prior work also relies on self-
reported affect, noting that these values (emotion from facial 
expressions and affect from self-reports) are similar but unique 
signals of people’s affective state [83]. The relationship be-
tween the two is an ongoing topic of research (e.g., [6, 27, 32] 
describe the challenges in determining this relationship). 

Given this prior work, we collected self-reports of affect and 
task progress in addition to emotion from the logging software. 
People reported affect via 6 variables derived from the Positive 
and Negative Affect Scale (PANAS) [78]. Of the 6, 3 are 
positive items (inspired, enthusiastic, determined) and the 
other 3 are negative items (irritable, nervous, upset) from the 
original 20 on the scale. People selected values for these 
using sliders ranging from 0–10. We used a smaller subset 
of PANAS items to minimize time spent filling out the report 
(reducing interruption costs)—a practice that has been seen in 
prior work with similar goals of reducing self-report costs [57, 
80]. People also reported on how productive and busy they 
felt (range: 0–10), and their progress per task (range: 0–100). 

1Pictures of the interface are included in the supplementary material. 
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Figure 1. Emotion, Workstation Activity, and Task Tracking setup. The different components are: (1) a logging software that tracks rich emotion and 
workstation activity data via a webcam [61]; (2) time and day tracking; (3) a daily task list interface where people enter information about the task type, 
urgency, difficulty, and anticipated completion time; and (4) hourly self-reports of task progress, overall affect, and feeling of productivity–given–stress. 

Data Collection for Model Building 
We recruited 30 participants from a large technology com-
pany and asked them to install our data collection tool on their 
desktop computers for four consecutive weeks. We used data 
from the first 3 weeks to build models and the last week for 
validation (see Phase 2). 5 participants had incomplete data 
due to incorrect setup, insufficient self-reports, or taking time 
off. Our dataset thus comprised of data from 25 people (F=6, 
M=19) with job roles: Software Engineer (8), Senior Soft-
ware Engineer (5), Designer (3), Data Scientist (2), Finance 
Manager (2), Senior Program Manager (1), Senior Content De-
veloper (1), Principal Development Manager (1), Applied ML 
Engineer (1), and Project Manager (1). Participants were com-
pensated with $150 post-study. They were asked to engage in 
their regular activities on their computers; the only change to 
their routine was filling out the Task Tracker at the start of their 
day, and the hourly productivity and affect self-reports (Fig-
ure 1). The Emotion and Activity Logging Software collected 
data in the background, with informed consent. 

Input: Features Categories 
We generated a list of 24 input features in eight categories 
from the collected data (see Figure 1 for a full list of features). 

1-Emotion. Classified into eight emotion categories—anger, 
contempt, disgust, fear, happiness, neutral, sadness, surprise— 
by the logging software, with probabilities that represent the 
magnitude of each emotion at a given time, adding up to 1. 

2-Heart rate (HR). Prior work shows that a low heart rate and 
low heart rate variability is reflective of focus [37, 39]. Heart 
rate variability cannot yet be calculated without using wearable 
sensors; we used heart rate captured by the logging software 
to observe if the magnitude accounts for any importance. 

3-Physical Movement. This includes eye movement and dis-
tance from screen, captured via the logging software. 

4-Interaction Data. Also captured by the logging software, 
this includes mouse and keyboard activity, number of tab 
switches, and number of open windows. 

5-Time, 6-Day. We encoded time (hours at work) and day 
of week (categorical variable using 7 binary features, one for 
each day) as two feature proxies for circadian rhythms. 

7-Task Information. Includes eight features: task urgency; 
task difficulty; anticipated task completion time; and task type 
as binary coded values for reading, coding, content creation, 
digital communication, brainstorming, paper-based reading or 
writing, creating spreadsheets, and searching for information 
online. Each feature vector includes this information for tasks 
that show progress between self-reports at different time inter-
vals. If multiple tasks show progress, task type information is 
a union of the type values, difficulty and anticipated time are 
added, and urgency is an argmax over the individual values. 

8-Potential Actions. At any given time, a person can take 
one of three actions to change their work environment: (1) 
transition to a different task, (2) take a break, or (3) continue 
their current task (i.e., take no action). Breaks may be digital 
(e.g., visit social media) or physical (e.g., walk away from their 
computer). Without wearable sensors, we do not have data 
for what people do during physical breaks; we encode these 
when there is absence of data. A time sample is considered 
a digital break if people visit one of the following websites 
during that time: Facebook, Twitter, LinkedIn, Instagram, 
Reddit, YouTube, Twitch. It is considered a transition if the 
foreground windows and tabs being used change completely in 
that timeframe. All other time samples fall under “continue”. 

Output: Joint Productivity–Happiness Expected Value 
We defined the output of this model as the Joint Productivity– 
Happiness Expected Value (Expected Value going forward), 
which considers both productivity and positive affect. Ex-
pected Value is computed from the hourly self-report data 
from FLOWZONE, thus including self-reported task progress 
and affect, normalized and scaled to be in the range of 0–100. 

Prior work shows that people’s productivity and affect are 
correlated. Mark et al. present a framework for this interaction 
effect using engagement and challenge as axes for attentional 
states [58]. They classify the quadrants as rote, focus, bored 
and frustrated work. For example, people can be happy doing 
rote work, which may or may not be productive, or people can 
be focused but also stressed because of a deadline. We scaled 
people’s self-reports of feeling productive (task progress scale) 
and busy (modified PANAS slider) from -5–5 each, and mul-
tiplied these to obtain a value that matches [58]’s quadrants 
(e.g., low challenge and high engagement means rote work 
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in [58]; we used productivity 0–5 and feeling busy -5–0 to rep-
resent this, which gave the interaction effect a negative value). 
We normalized and scaled this multiplied value to range from 
0–100 as well, and called this productivity–given–stress. 

For our study, Expected Value was calculated as a cumulative 
sum that weights each of the three components equally: 

ExpectedValue = ( 1 × TaskProgress) +3 
( 1 × A f f ect) + ( 1 × Productivity |stress)3 3 

We elaborate on how alternative weightings could be used 
(e.g., prioritizing a particular component) in our Discussion. 

Datasets 
Original Dataset. Our original dataset is comprised of data 
collected over three weeks (N = 25). Emotion and worksta-
tion activity were logged at a microsecond-level granularity; 
self-reported data was collected at hourly intervals. Since we 
did not force people to answer self-reports (to minimize dis-
ruptions), there were some hours with missing datapoints. On 
average, there were 7 hourly self-reports collected per partici-
pant, per day (min=4, max=15). Expected Value is dependent 
on self-reports; thus our original complete dataset only had in-
stances for which the self-report value was available—hourly 
at best. This gave us 62.44 datapoints per participant, on 
average (min=33, max=122). 

Original + Simulated Dataset. Our two data sources—log 
data and self-reported data—operate at different time intervals 
(microsecond and hourly, respectively). To better align these 
and get a complete picture of a user’s day, we up-sampled the 
self-reported hourly data using growth and decay functions, 
thus getting Expected Value at more granular time intervals. 
Given a value at hour h1 and another at h2 (where h1 < h2), we 
applied a growth function to value at h1 and a decay function 
to that at h2, and took the max value for every time interval 
t between h1–h2. We experimented with several growth and 

1 1decay functions: exponent with γ = 5 , 1, 5, 25; natural 25 , 
log (Ln); and Log10. We also tested different time samples 
for up-sampling: 1,2,3,4,5, 7,8,10,15, 20,25,30 mins. The 
microsecond-level data obtained from the logging software 
was similarly down-sampled to the same time samples by 
applying aggregation functions. 

Models 
We built models that took as input all of our data sources and 
predicted an Expected Value. Our data effectively represents 
a timeseries per person, and our output variable’s continu-
ous nature called for regression models. We thus modeled 
our setup as a classic timeseries forecasting problem using 
Auto-Regressive Integrated Moving Average (ARIMA) mod-
els. ARIMA models have 3 main components: (1) the Auto-
Regressive part, the number of prior (lagged) values of the 
dependent variable to be used for each new training and pre-
diction datapoint; (2) the Integrated part, the degree of dif-
ferencing required to convert a non-stationary variable into a 
stationary timeseries; and (3) the Moving Average part, the 
number of random errors of the past to be used to account for 
current datapoint’s errors. ARIMA models traditionally use 
only one timeseries: the main variable being regressed (here, 

Expected Value). We build ARIMAX models—ARIMA mod-
els with eXogenous variables—to account for input features 
(e.g., emotion labels, task information) which are potential ex-
planatory variables, called exogenous in ARIMA terminology. 

While ARIMAX models are the best representation of our 
timeseries data, they are complex and thus expensive to com-
pute. With our deployment goal for Phase 2, we also modeled 
our data using other regression models. We tried several differ-
ent ones (e.g., Support Vector Regression–SVR and Multiple 
Linear Regression–MLR), and finally picked Random Forest 
Regression (RFR) models for our real-time recommendation 
task because these had the best performance (metrics for gaug-
ing performance are explained below) and assigned feature 
importances similar to ARIMAX. We relied on this similarity 
of feature importances between the two types of models as a 
form of validation for using the less computationally demand-
ing RFR models for deployment in Phase 2. 

Cross-validation. When using the original dataset, we ap-
plied leave-one-out cross-validation (LOOCV), training on 
n-1 datapoints and testing on 1, and averaging the results of all 
possible model combinations done this way. For the original 
+ simulated dataset, we used holdout cross-validation, using 
60% of data for training, and 20% each for validation and test-
ing. For both these methods of cross-validation, we followed 
day forward chaining to ensure that future values are never 
used to predict past values. That is, for each day, we treated 
each future datapoint as a new test case and used all prior 
ones as our training set. Similarly for the train–validation–test 
dataset split, we used ordered splitting such that no future 
datapoints were in the training or validation sets. 

Metrics. For the ARIMAX models, we used Akaike Informa-
tion Criterion (AIC) values to find the best-fitting model. AIC 
values are used for timeseries models because they represent 
goodness-of-fit for past and future of the timeseries data; lower 
AIC values indicate better fit. We used R2 and Adjusted-R2 to 
evaluate the goodness-of-fit of our RFR models. These metrics 
are used to report how well the selected independent features 
explain the variability of our dependent variable (Expected 
Value). For example, an R2 value of 0.X is read as “the model 
explains X% of variance in the data.” R2 values can be biased 
to the addition of new features, even when the features do not 
add any explanatory power. Adj-R2 handles this bias, and thus 
is a better measure for model comparison. We report both for 
our RFR models, but pick the best models using the Adj-R2 

values. We also computed Root Mean Square Error (RMSE) 
values for both types of models to quantify the difference 
between actual and predicted Expected Values. 

PHASE 1: MODEL EVALUATION 
We used emotion, workstation activity, and task data to model 
our output variable—the Expected Value of people’s workday 
(which is designed to jointly capture their productivity and 
affect). We tested several regression models on our original 
and original + simulated datasets. We ultimately relied on 
the original + simulated dataset for all our model-building 
after validating this dataset against the original dataset: there 
is no significant difference (p > 0.1) in model performance or 
feature importances between the two datasets. 
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Table 1. Results from the ARIMAX models per participant: AR, I, MA 
denote values for the auto-regressive, integrated, and moving average 
components of the model. Features presented are those with significant 
estimate values, and AIC values represent goodness-of-fit. Significance 
levels: *=p<0.05 **=p<0.01 ***=p<0.001 

ARIMAX Model Performance 
ARIMAX models are commonly applied to timeseries data 
like ours. Since each timeseries is unique to the context it was 
collected in, we treated all participants’ data separately, and 
built personalized ARIMAX models for all of them. The core 
AR, I, MA features of an ARIMAX model rely on this unique 
context per timeseries (see AR, I, MA values in Table 1). 
ARIMAX models output results in the form of estimates for 
each independent variable along with p-values for significance. 

We find that ARIMAX models output 2-3 significant features 
per participant. To better understand the broader categories 
of features that are important, we binned our 24 features into 
the 8 categories in our setup, each representing a different 
data source (Figure 1): Emotion, Heart Rate (HR), Physical 
Movement, Interaction Data, Time of Day, Day of Week, Task 
Information, and Action. Noting the categories with at least 
one significant feature per participant, Action is the most 
popular category (21 out of 25 participants show at least one of 
break, transition, or continue as having a significant estimate), 
followed by Task Information (12 out of 25), Interaction Data 
(10 out of 25), Emotion (8 out of 25), Physical Movement (5 
out of 25), Day of Week (5 out of 25), Time of Day (2 out of 
25), and Heart Rate (2 out of 25). 

ARIMAX models consistently return significant estimates for 
a feature in the Action class: whether someone has recently 
taken a break, transitioned tasks, or has been continuing the 
same task, is important for predicting future actions. Time-
series models are well-known for capturing such historical 
nuance. We find that samples aggregated at 7- and 10-minutes 
(time sample variable t used in Original + Simulated dataset) 
provide the best results for these models, with average AR and 
MA values being 3 and 4, respectively. This means that the 

ARIMAX models consider the past 21-30 minutes (3x7 and 
3x10) of data in forecasting the Expected Value for a given 
time interval, and do this with an average RMSE of 8.6% and 
AIC value of 2374. The validation split highlights Exp( −1 

25 x) 
as the time decay function for the best performing model. 

Random Forest Regression Model Performance 
ARIMAX models are complex and computationally demand-
ing (processing time of ∼15 mins per participant), making it 
hard to use them in real-time settings. We tested other regres-
sion models (e.g., SVR, MLR), settling on Random Forest 
Regression (RFR) models because they have the best perfor-
mance. Since ARIMAX models are more naturally suited to 
our timeseries data, we relied on the results of the ARIMAX 
models to validate the performance of the RFR models. 

We built RFR predictive models at three levels: general, per 
participant, and per cluster, where clustering is done based 
on job role. A general model with good performance has the 
potential of being applied at a larger scale, because it indicates 
that people’s data can be used interchangeably. Personalized 
models per participant with good performance can help us 
understand which features matter most when modeling dif-
ferent individuals. Models for different job role clusters can 
highlight whether people’s work practices, productivity, and 
affect are defined by something specific about their job role. 

Table 2 presents results for all RFR models using the metrics 
explained above. It also includes the distribution of data (mean 
and S.D.) for each participant and cluster, to better contextual-
ize our R2 and Adj-R2 results. Further, Table 2 highlights the 
best values of the constants used for modeling via the holdout 
validation set. All models with the best validation set perfor-
mance use Exp( −1  x) 25 as their time decay function; the best 
values for Time Sample per model are indicated in Table 2. 
Below, we share results from each of these models, and then 
compare the feature importances seen across them. 

General Model Performance 
Given prior work that suggests that people have unique pat-
terns of affect, activity, and daily to-dos at work, it comes 
as no surprise that our general model that includes all partic-
ipants as one data source has mediocre performance. With 
an R2 and Adj-R2 value of 0.2, the general model is able to 
explain 20% variance in data, making it a moderate fit. The 
Root Mean Squared Error (RMSE) for this model is 26.5, on 
a scale of 0–100; RMSE values share the same scale as the 
output variable, Expected Value (Table 2, header “All”). 

Personalized Model Performance 
Our personalized models have high R2 and Adj-R2, especially 
when considering the wide distributions of data per participant. 
R2 values range from 0.2 − 0.7, with an average of 0.52, and 
Adj-R2 values range from 0.2 − 0.7, with an average of 0.47 
(Table 2, header “Participants”). High values for both these 
metrics indicate that our models are a good fit for people’s 
data, and a large percentage (up to 70% in the best case) of 
the variance in data is explained by the models. The RMSE 
values range from 3.5 to 13.2, the average value being 7.1. 
Overall, these models perform extremely well both in terms 
of goodness-of-fit and low error values. 
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Table 2. Results of Random Forest Regression models for all individual Participants (P1–25) and Clusters (C1–5), and a Generalized Model for “All” 
Participants. Participants are color-coordinated according to their cluster membership. E.g., P1–8 belong to cluster C1. 

Cluster   
Our cluster models have similar performance to the person-
alized models, with R2 values ranging from 0.4 − 0.7, and 
RMSE values between 3.9− 5.2. In fact, in some cases, these 
models perform better than the personalized models for the 
participants in the cluster. Since the clusters are formed based 
on job role, this suggests that people doing similar jobs have 
similar task progress, affect, and productivity-given-stress 
rates. In a cold-start setting—when we do not yet have enough 
data from a participant to build personalized models for them 
immediately—modeling based on data from their job role 
cluster could be a viable alternative. The clusters we chose 
here were based on the official job roles of our participants: 
Software Engineer, Senior Software Engineer, Designer, Data 
Scientist, Finance Manager, Other (which included Senior Pro-
gram Manager, Senior Content Developer, Principal Develop-
ment Manager, Applied ML Engineer, and Project Manager). 

Understanding Feature Importance 
We binned our 24 features into the same 8 categories to un-
derstand the importance of each category. The feature impor-
tances of all categories sum up to 1; the maximum importance 
value assigned to any individual category is 0.60 (Figure 2). 2 

We find interaction data to be the most important feature 
category on average, followed by task information, emo-
tion, physical movement, time, heart rate, day, and po-
tential actions. The average feature importances for dif-
ferent categories across all participants were: interaction 
data=0.22, task information=0.19, emotion=0.17, physical 
movement=0.14, time=0.13, heart rate=0.08, day=0.07, and 
potential action=0.02. Even though interaction data is the 
2Expanded version of Figure 2 with all 24 features is included in 
supplementary material. 

Model Performance most important feature category on average, it is not the most 
important feature for each participant. For example, emotion 
is the most important category for P13, task information for 
P2 and P20, and combinations of other categories are equally 
important for other participants. The order of feature impor-
tance remains the same if we look at the frequency at which 
each feature is most important. 

Interaction data—the most important feature category for per-
sonalized models, on average—is not as important for the 
clusters or general model (Figure 2, Clusters start with “C” 
and general model under “All”). On average, the feature im-
portances per cluster are not aligned with their members’ per-
sonalized models, and instead have job-based patterns: task 
information and interaction data are the most important cate-
gories for C1 (Software Engineers) and C2 (Senior Software 
Engineers), whereas time of day is crucial for C5 (Finance 
Managers). The important categories intuitively match the re-
quirements of the job role (e.g., finance managers might have 
less collaborative roles than software engineers, keeping them 
at their desks and following a 9am–5pm day). The general 
model’s feature importances are more spread out across all 
feature categories, as expected in an aggregated model. 

Overall, we find that different features are important for per-
sonalized, cluster, and general models. This is interesting 
given that the R2, Adj-R2, and RMSE values are not too differ-
ent across these, especially for personalized and cluster models. 
Indeed, it seems that an important consideration when apply-
ing these models in a real-world setting is the eventual need 
for personalized models. While starting with cluster-based 
models might rid one of the cold-start problem, no general or 
cluster model represents the participant and what is important 
for their Expected Value in the same way as their own data. 

Figure 2. Feature importance output from the random forest regression models for all participants, clusters, and the general model. 
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Comparing ARIMAX and RFR Models 
At least one of the features with significant estimates in the 
ARIMAX models also consistently belonged to an important 
feature category in the RFR results. For example, task informa-
tion is the most important feature class for P2, and anticipated 
completion time (a feature that falls under the task informa-
tion category) has a significant estimate from the ARIMAX 
model for P2. The primary difference between the two models 
is in the Action class: ARIMAX models consistently return 
significant estimates for a feature in the Action class whereas 
RFR models do not. We hypothesize that this is due to the 
nature of the action variable: whether someone has recently 
taken a break, transitioned tasks, or has been continuing the 
same task becomes a more important consideration over time. 
Timeseries models capture exactly this nuance, whereas RFR 
models do not consider these historical values. 

Performance Tradeoffs. We used RFR models for deploy-
ment; while we tested ARIMAX models in this setting, the 
high processing time for ARIMAX (∼15 mins per participant 
compared to ∼2 mins for RFR models) made it infeasible 
to use them in a real-time context. Even though ARIMAX 
models better capture the nuances of past actions in predicting 
future ones, we made this tradeoff because all other feature 
categories have similar importances in both ARIMAX and 
RFR models. More nuanced engineering efforts could reduce 
processing times to make ARIMAX models also work in real-
time settings—we leave these explorations to future work. 

PHASE 2: MODEL DEPLOYMENT 
In Phase 2, we built a system that uses the models from Phase 1 
to recommend transitions and breaks in real time. We deployed 
this system to observe how people perceive the timing of our 
recommendations—whether we were able to find opportune 
moments for transitions and breaks. 

FLOWZONE v2: Real-time Recommendations 
We added frontend and backend components to FLOWZONE to 
recommend transitions and breaks in real time. 

Frontend Modifications. We added two Windows forms that 
appear for transition and break recommendations; nothing 
appears for “continue”. Each form showed the recommenda-
tion along with an explanation (e.g., for breaks, it said “Wow, 
you’ve been working hard! FlowZone thinks a break right now 
will replenish your energy and keep you going!”). We did not 
provide personalized explanations for the recommendations. 
The forms asked participants to select one of the following 
options for each recommendation: (1) “Yes, going to take a 
break,” (2) “Yes, it’s time for a break, but I can’t take one right 
away,” (3) “Yes I just took a break,” and (4) “No, this is not 
a good time for a break.” The granularity in “Yes” options 
supports our goal of observing whether the recommendation 
is an interruption or comes at an opportune time. 

Model-based Backend. Our backend enabled real-time 
queries to the logging databases and the models built in Phase 
1. We hosted a webserver that interacted with these compo-
nents using API calls; the logging databases were hosted on 
Azure Table Service, and the model files were hosted on our 
webserver after being converted to a compressed format. Our 

backend pipeline was: (1) logging software stored data every 
microsecond (as before); (2) for each participant’s chosen time 
sample t (i.e., the Time Sample parameter, in minutes, with the 
best performance in Phase 1), FLOWZONE pinged the server to 
get the last t minutes of data; (3) the backend computed three 
feature vectors by aggregating t minutes of data and adding 
a binary encoding for transition, break, and continue to each 
of these vectors, respectively; (4) the backend computed an 
argmax over the output Expected Value for the three vectors, 
one each for transition, break, and continue; (5) the potential 
action with the maximum Expected Value was returned as a 
recommendation to the frontend, where it was shown to the 
participant with the corresponding form. 

Study Design 
We deployed our updated FLOWZONE app for three days 
during the fourth week of our study (model condition, M 
going forward). To ensure that our participants’ responses 
about the recommendations were not biased by system nov-
elty, we added a control condition (C going forward) which 
used the same system setup and outputs, but relied on pseudo-
random, heuristics-based rules for recommending transitions 
and breaks. Our goal was not to compare the two conditions; 
rather, to validate that people were rating the timing, and not 
rating favorably because of the novelty of the system. 

For Condition M, participants received recommendations for 
transitions or breaks using the predictive models built in Phase 
1. For Condition C, we did not use models; we assigned 
heuristics-based probabilities to the potential actions: transi-
tion and break were assigned 1 th probability each, and con-6 
tinue was assigned 2

3 rd probability because continuing a task 
is more common than task transitions or breaks. At every 30-
minute interval, the Condition C recommender picked one out 
of the three options based on the probabilities assigned, and 
recommended that to the participant. We set recommendation 
checks at 30-minute intervals for Condition C because this 
is traditionally the smallest time interval on people’s work 
calendars. Both M and C condition participants were shown 
the same interface and explanations. 

Post-Study Survey. All participants took a post-study survey 
that included: (1) open-text questions about people’s opinion 
of FLOWZONE—whether the transition and break recommen-
dations were well-timed or not, appropriately frequent or not, 
examples of cases of good and bad recommendations (and 
why), and if they felt better after following a recommendation 
than the state they were in before; and (2) two Likert questions 
on whether FLOWZONE made them feel more productive and 
happy at work (range: strongly disagree–strongly agree, 1–5). 

The survey also included questions about the idea of intelli-
gent systems guiding people at work to jointly optimize their 
happiness and productivity. We asked an open-text question on 
what people thought would be good or bad about this idea, and 
4 Likert questions on whether they thought this tool would: (1) 
be useful for their work practices, (2) make them feel positive 
at / about work, (3) make them feel negative at / about work, 
and (4) be helpful for their productivity at work (all ranged: 
strongly disagree–strongly agree, 1–5). 
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Figure 3. The percentage of times transition and break recommenda-
tions fell under each of the categories provided to participants. 

Data Collection 
We set up the study with 15 participants in Condition M and 
10 in Condition C. The 10 participants for Condition C had 
relatively low data volume in Phase 1—there were some gaps 
in their data due to frequent meetings away from their desk 
(the tool was recording data only at their desk), remote work 
days, or unexpected vacation time. The Adj-R2 values for their 
models ranged from 0.2 − 0.4 (moderate to low variance in 
data explained by the model). We worried that these partici-
pants may not be naturally receptive towards recommendations 
given their low response rate during data collection. We gave 
them the option to opt out before Phase 2, but they wanted to 
continue and assured us that the low data collection was due 
to external factors, not our setup. 

We designed Condition M to represent the best case modeling 
we could do, and Condition C to counteract any novelty effects 
from the FLOWZONE. Participants were not aware of any 
system differences, and their data was only included in the 
Phase 2 results if they stayed active at their workstations, per 
our request. 11 out of 15 people in Condition M, and eight out 
of 10 in Condition C continued to use FLOWZONE with the 
updated real-time recommendations. Since this was the fourth 
week of a field study, the dropouts were not surprising. 

Deployment Results 
Participants in Condition M received on average 1.2 recom-
mendations for transitions and 5.6 for breaks (s.d. transi-
tion=0.56, break=1.6), and those in Condition C received 3.5 
transition and 4 break recommendations every day (s.d. transi-
tion=0.72, break=2.7). Thus, participants in Condition M saw 
relatively more recommendations for breaks over transitions, 
whereas the number was even in Condition C. This was not 
unexpected given Condition C setup—equal probabilities for 
transitions and breaks. The large difference in the number of 
transitions for Condition M vs. C shows that our models have 
a nuanced understanding of the number of tasks performed in 
a day and when people should transition between them. 

Condition M recommendations had a high chance of being at 
opportune times. We calculated accuracy via summation of 
responses for all “Yes” categories divided by the total number 
of responses, per condition. Using this descriptive metric, we 
find model-based recommendations of transitions and breaks 
to be 85.7% and 77% accurate, respectively (Figure 3). In 
comparison, Condition C transitions and breaks were only 
47% and 60.6% accurate, respectively, indicating that people’s 
evaluation in favor of Condition M was due to different, more 
opportune-timed recommendations, rather than a novelty bias. 

When asked about whether FLOWZONE made them more 
productive at work, Condition M participants leaned posi-
tive (Agree=6, Neutral=2, Disagree=4), whereas Condition C 
participants had mostly neutral responses (A=2, N=4, D=1). 
When asked the same question in the context of happiness 
at work, Condition M participants were positive (Strongly 
Agree=1, A=6, N=2, D=3), and those in Condition C remained 
neutral or negative (N=5, D=2). 

When asked to rate if this future intelligent system would 
be useful at work, most people responded positively (SA=1, 
A=12, N=4, D=2). They similarly had a positive response for 
whether this tool could help them feel positive about work 
(SA=2, A=10, N=6, D=1) and help their productivity (A=12, 
N=4, D=3). Most people were appreciative of the idea behind 
task tracking, productivity, and positive affect at work, and 
were excited about tools like this becoming commonplace in 
the future: “it can be a digital assistant looking after you and 
your well-being, what more could you want?!” (P13). 

DISCUSSION AND FUTURE WORK 
We have shown that it is possible to build models that jointly 
optimize happiness and productivity at work, using emotion, 
workstation activity, and task-based data (R2 0.2− 0.7; RMSE 
<15%). When deployed, these models allowed us to recom-
mend transitions and breaks to people at opportune times (peo-
ple evaluated the accuracy of the timing as: transitions=85.7%, 
breaks=77%). Below, we discuss several design implications 
and considerations that resulted from our studies. 

Frequency and Timing of Recommendations is Crucial 
We began our exploration of recommending transitions and 
breaks with the intuition that finding opportune times is im-
portant to avoid disrupting people’s focused work times. Our 
participants highlighted the same need for well-timed recom-
mendations, making it an important design consideration for 
systems in this space. Participants in our model condition felt 
that the frequency of recommendations was “just right” (P3) 
or “frequent, but good for my health” whereas those in the con-
trol condition felt that the frequency “very rarely matched my 
own assessment” (P11). In addition to frequency, the timing of 
recommendations is important for people’s decision to follow 
through: “I found the timing to be surprisingly good. Follow-
ing the recommendations did help me feel happier and more 
productive because I took more breaks that I realized after the 
fact that I needed. Hours turn to blurs without something to 
break them up so taking breaks helped the day seem more full” 
(P4). When the timing was not right, the pop-up served as an 
interruption. Critically, the notion of “opportune” timing is 
personalized—future work should consider further analysis of 
factors that make a moment “opportune” for an individual. 

Intervention Design Needs Personalization 
FLOWZONE was meant to study the timing of recommenda-
tions, but looking ahead, this is simply a starting point for 
designing interventions that might help people follow through 
a recommended action. These intervention-style applications 
that might apply our recommender need to design personal-
ized strategies. Indeed, prior work also suggests that people’s 
definitions of breaks and transitions are subjective and task-
dependent [11, 24]. We built personalized models to support 
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this subjectivity; future work can extend these models to be 
suited to particular task settings, individuals’ moods, person-
ality traits, or workplace behavior trends. Our participants 
agreed, and mentioned some preferences for what a break 
recommendation could look like: “if you can provide a joke 
instead of asking me to take a break, or sending me analytics 
about what other employees are doing at this moment, or how 
many people are suffering at the same problem I have may 
help me feel better” (P12). Prior work has evaluated other 
forms of personalization via gamified, guided breaks [11], 
visualizations and analytics about workdays and break-time 
behavior [24], or conversational agents [76]—more opportuni-
ties exist for combining these complementary approaches. 

Keeping Control with the User 
People in our deployment study were generally positive about 
an intelligent system that guided them towards happy and 
productive states, but they wanted control as needed. Knowl-
edge of deadlines, meetings, and other external factors affect 
people’s workday. Unless the tool let them manipulate these 
meta-level factors, some people felt that an intelligent system 
could not guide their workflow effectively. Technology can 
never completely meet the fluid social needs of users. Ack-
erman calls this the “social-technical gap” and suggests that 
instead of attempting to build the impossible perfect solutions, 
we should build first order approximations of them [1]. As 
such, we added opportunities for user-control in our models 
via the design of the output variable which assigns weights 
to productivity, affect, and their interaction variable. We use 
equal weights, but this could be user-controlled, as seen in 
related recommender systems work [36]. Understanding how 
parameter weights—user-controlled or learned by the system— 
impact system utility is an interesting avenue of future work. 

Understanding Context in the Workplace 
People rarely work in isolation—they are a part of teams 
within organizations, often collaborating on a daily basis [13]. 
Several participants mentioned a desire for a team-centric 
version of FLOWZONE. This requires context about how a 
team works together: group coherence, communication, and 
reliance become important. It is not as simple as jointly opti-
mizing happiness and productivity for each individual team 
member—when people rely on each other in a team setting, 
their productivity and happiness are dependent on that of other 
members. While we wait for technical advances that can en-
able an understanding of team context, we apply cluster-based 
data aggregation as a starting point. We were able to achieve 
reasonable goodness-of-fit using clusters (R2 values ranged 
from 0.4 − 0.7), but the feature importances that were unique 
to an individual were lost. Future work should consider more 
nuanced clusters by conducting studies to surface the tacit 
roles people perform under the umbrella of an official job title. 

Ethical Considerations 
While emotion, workstation activity, and task data logging 
can help build accurate models for happiness and productivity, 
there are concerns about worker privacy, both from us and our 
participants: “feeling like you’re being watched all the time 
would just be bad” (P3). This is an important consideration, as 

prior work (e.g., [29]) cautions us of the privacy breaches that 
are impossible to manage once tracking becomes a required or 
coerced aspect of work. Beyond privacy, building tools for pro-
ductivity and efficiency is often seen as supporting Taylorism, 
where employees’ effort is optimized for the most output, with 
no consideration of the individuals [53]. Our efforts oppose 
this, instead aiming to keep employees happy while com-
pleting fulfilling work. We believe in the “happy-productive 
worker”—being happy at work is what causes people to be 
more productive [82]—thus our focus is to optimize happiness, 
while recognizing that getting things done is also necessary. 

LIMITATIONS 
One limitation of our study is that, similar to prior work 
(e.g., [84]), our setup relies on hourly self-reports of productiv-
ity and affect. Even though we make it easy to dismiss these 
reporting forms, the hourly requests can be a form of inter-
ruption. However, note that these reports are only for model 
building purposes. Once the model is deployed, these would 
only be required periodically for model updates. Another 
limitation is that we validated our approaches via a deploy-
ment study lasting three days. Since users can take time to 
adapt to suggestions and integrate them in their work patterns, 
longitudinal studies of such recommendations may provide 
additional insights. Further, we evaluated our models against 
a simple, heuristics-based control, to account for any nov-
elty bias. In future work, we hope to compare our results to 
other existing approaches (e.g., the Pomodoro approach [14]) 
in a longitudinal study. Finally, our models use simulated 
datasets (in combination with real user data) to enable complex 
modeling techniques such as timeseries forecasting. While 
simulated datasets are commonplace in other domains (e.g., 
natural language processing [48]), they are new to domains 
like workplace recommendations. We validated the integrity 
of our original + simulated dataset via comparison tests with 
the original dataset, but hope that future work will consider 
other ways to acquire and validate these simulated datasets. 

CONCLUSION 
We explore how affect, workstation activity, and task data can 
be used to develop predictive models for recommending task 
transitions or breaks, with the goal of guiding information 
workers towards more productive, happy work. We find these 
models to be highly personalized, though some commonalities 
exist across the same job roles. Validation of our models with 
real-time recommendations shows 86% accuracy in predict-
ing opportune moments for transitions and 77% accuracy for 
breaks. While open research questions remain around how to 
support users in following through with the recommendations 
and how to support team / collaborative settings, our work is 
a crucial first step towards building intelligent systems that 
consider both: people’s happiness and their productivity. 
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