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Abstract

In this paper we propose to use context information ob-
tained from body–worn sensors to mediate notifications for
a wearable computer. In particular we introduce a model
which uses two axes, namely personal and social interrupt-
ability of the user in order to decide both whether or not
to notify the user and to decide which notification modality
to use. Rather than to model and recognize the complete
context of the user we argue that personal and social inter-
ruptability can be derived directly from various sensors by
the combination of tendencies. First experimental results
show the feasibility of the approach using acceleration, au-
dio, and location sensors.

1 Introduction
With the increasing number of wearable devices used by

people in their everyday lives, there is an equally increasing
number of applications that aim to grab the user’s attention
by various notifications. Be it arriving e–mails or telephone
calls, upcoming meetings, changes in the stock market or
navigation directions, the list of notifications on a wearable
computer that can happen anywhere at any time in any situ-
ation is increasing. Clearly, there is a need to carefully han-
dle and manage these increasing number of notifications in
order to prevent wearable devices to become highly annoy-
ing. Importantly, management of notifications should take
into account that the value of receiving a notification varies
depending on the user’s context.

Any notification has two sides for the user: on the one
hand it has a value and on the other hand it comes at the
cost of interrupting the user. It is well known that interrup-
tions can decrease work performance considerably. In ev-
eryday life, the user’s primary task is often unrelated to the
wearable computer, such that interruptions can be highly
annoying and may be even dangerous. For example while
crossing a street, the user should not be distracted by a flash-
ing head–mounted display notifying him of the arrival of an
unimportant e–mail.

As pointed out before, the decision whether to notify or
not depends on the user’s context. In particular we differen-
tiate five important factors of the current user context: the

importance of the event, that is being notified, the activity
of the user, the social activity (if the user is interacting with
others and if so, in which way), the social situation (‘in a
restaurant’, ‘in a tram’, etc.), and finally the location.

It is important to point out that none of these factors is
sufficient alone to make the best possible decision. For ex-
ample, a user in his office (a location) may well receive noti-
fications if he is working alone (the activity of the user), but
it is less appropriate to receive notifications while having
a meeting with his supervisor in the same location (social
activity).

The first factor of the five, i.e. the importance of the
event, defines the value of the notification to the user. It is of
quite different nature from the other four since it is mostly
unrelated to the user’s context. Since the automatic determi-
nation of the importance of events is a research topic on its
own we assume that the importance is given for the purpose
of this paper. Therefore this paper deals with the remaining
four factors which are related to the cost of a notification
event, i.e. the interruptiveness of that event.

There exist three principal ways to obtain those four fac-
tors. Firstly they can be supplied by the user. But since
our goal is to reduce the load of the user, this option is
clearly suboptimal and undesirable. Secondly, the factors
could be inferred from usage patterns of the device. How-
ever it is hard to imagine that the four factors can be deter-
mined successfully in cases where the primary task of the
user does not use the wearable device and is therefore not
used. In our opinion the most promising possibility is the
third, using sensors to capture and recognize information
about those four factors automatically. Since the four fac-
tors span a wide space it is of course not possible to use
one single sensor to perceive all of the factors. Hence we
propose to use multiple, body–worn sensors to acquire the
necessary context information.

In today’s context-aware computing it is common to de-
fine or describe special situations or contexts which are di-
rectly related to the behavior of a ’context-aware’ applica-
tion. In the case of notification however this approach does
not seem appropriate. Take again the example of the context
’working in your office’. Since the user might be alone or

1

Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC’03) 
1530-0811/03 $ 17.00 © 2003 IEEE 



might have a meeting with another person this context has
a wide range of different notification requirements. There-
fore, ’working in your office’ does not seem to be the ap-
propriate level of context abstraction for the management
of notification. Further specifying the context would obvi-
ously help here but would require to specify many special
cases for typically a large number of contexts.

In this paper we therefore do not aim to model and spec-
ify all potential contexts which might be encountered by the
user. Rather we concentrate on a lower level of context ab-
straction which is more directly linked to the management
of notifications. More specifically, we propose a notification
system where the decision whether to notify or not is based
on a set of low–level contexts, such as the ‘user is having a
conversation’, without the intermediate step of recognizing
the entire situation.

There are three principal contributions in this paper.
Firstly we propose a model that allows to classify situations
and notifications and to select the best notification modal-
ity (section 3). Secondly, a method is developed to combine
multiple context sources in order to find the best notification
(section 4). Finally we have investigated the acquisition of
context information from audio (section 5) and acceleration
sensors (section 6) and show the feasibility of the proposed
methods with first experimental results (section 7). The last
section (section 8) discusses the approach and future work.

2 Related Work
The importance of managing user interruption in HCI

design is well–known. Until recently managing user at-
tention and mediating notifications was mainly applied for
highly specialized applications, such as Military Command
Control [13] or Space Shuttle Monitoring [8], where the
main task of the user is bound to the computer and requires
the entire user attention. Cutrell et al. [4] have recently
shown, that interruptions by instant messaging applications
decrease human performance and have a negative effect on
the memory required for resuming the original primary task.

Several people have tried to address notifications in a
systematic way. McCrickard et al. [12] suggest to classify
notifications according to three axes: the user’s interrup-
tion, the required reaction, and the comprehension of the
underlying event. However, they do not address the issue
of interrupting the environment. Hanson et al. [7] address
this issue explicitly. They introduce a model that allows to
classify notifications according to their publicity and sub-
tleness. They restrict themselves however to auditory and
tactile notification cues.

Sawhney and Schmandt [14] address the issue of scal-
able, context–aware notifications for wearable computers.
They restrict themselves to auditory context classification
and audio notifications.

Few people have tried to estimate the user’s interrupt-
ability using various sensors. Hudson et al. [9] published

a Wizard of Oz study that explores how well the interrupt-
ability of office workers can be estimated using audio and
video. According to their results the interruptability can be
derived with some 75–80% accuracy. They do not address
the issue of mobile interruptions.

Auditory Scene Classification. While auditory scene
classification is not a new problem, it has seldom been used
in practical applications. Büchler [2] gives a good survey
on state of the art supervised techniques and their use for
automatic hearing aid adaptation. He classifies into four
classes Speech, Noise, Music, Speech in Noise, which are
especially suited for the hearing aid application. Eronen et
al. [5] have published an extensive supervised classifica-
tion system and also performed a study how well humans
perform in classifying auditory scenes. Clarkson et al. [3]
employ a non–supervised approach to classify short dura-
tion sound objects and longer term sound scenes.

Since we use the output of the auditory scene analysis
for further classification, we require more control over the
auditory scene classification and hence opt for a supervised
approach.

Activity Recognition. Classifying human activity based
on acceleration data is a relatively new concept. Van Laer-
hoven [15] uses multiple, different sensors, to classify mul-
tiple user–specified contexts. Kern et al. [11] use multiple
acceleration sensors to recognize and record the user’s ac-
tivity during a meeting.

3 Design Space of Notification

When considering notifications in a mobile setting, there
are three principal aspects to consider. Firstly the current
user activity and social situation, which together determine
whether to notify or not, secondly the most appropriate no-
tification means and finally the possibility of user interven-
tion in exceptional situations. We devised a model, that al-
lows to evaluate situations (section 3) and to serve for di-
rect user control (section 3.3). A related model allows us to
assess the intensity and modality of a notification (section
3.2).

3.1 Spanning the Design Space

Notifications are used to notify the user about an event
that has happened, such as incoming phone calls or new e–
mails. The event generally has a certain importance for the
user. The notification itself has two sides for the user: on the
one hand it has a value, because it conveys some important
information about an event. On the other hand, it has a cost,
because it interrupts the user in his current task. The value
depends directly on the importance of the event to the user.
As explained before in this paper, we focus on estimating
the cost and assume the importance as given.

The cost depends directly on the degree of interruption.
The degree of interruption depends on the interruptability
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Figure 1. The Design Space of Notification

of the user. This is highly depend on the current situa-
tion and activity of the user: e.g. while having a drink in
a bar with some friends, a private call from the one missing
friend would be appreciated, while the same call on the way
home, while driving a car, would be much more interrup-
tive. Therefore the interruptability of the user (referred to
as personal interruptability in the following) is the key to
evaluate the cost of a notification. It can be seen as a con-
tinuous variable that ranges from the extreme Don’t Disturb
over the intermediate range Interruption OK to the other
end of the scale Interruption No Problem.

A notification does not necessarily reach the user only.
An audio alarm can also be perceived by the environment —
a potentially embarrassing situation, e.g. in a lecture. Thus
we distinguish between the interruptability of the user (per-
sonal interruptability) and that of the environment (social
interruptability). This allows us to choose a means of no-
tification that interrupts the user only or interrupts both the
user and the environment.

Since the social interruptability depends mainly on the
social situation it is less dynamic than the personal inter-
ruptability, which depends strongly on the activity of the
user. The social interruptability in a restaurant is the same
whether the user is eating alone or not. However, the per-
sonal interruptability might be quite different and changing
dynamically during the restaurant visit.

Our model consists thus of the two–dimensional space
that is spanned by the personal interruptability and the so-
cial interruptability. Figure 1 shows the space with some
example situations. The activity of ‘Driving a car’ requires
much attention by the user, which has thus a low personal
interruptability. It would however not disturb others, if he
was notified, thus the social interruptability is high. For
the situation ‘Boring Talk’ or ’Waiting Room’ things are re-
versed: it would be highly unacceptable to notify the envi-
ronment, e.g. using a loud ring, however an interruption of
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the user would probably be no problem if not appreciated.

3.2 Multi-Modality & Notification Intensity
Notifications are not binary, some allow to grab only part

of the user’s or the environment’s attention. They can carry
different amounts of information, they can be conveyed us-
ing different modalities, and some devices also allow to
scale their interruptiveness (e.g. audio by changing the vol-
ume) [14]. The right notification modality should be chosen
depending on the personal and social interruptability. We
propose a scheme that allows to classify a notification’s in-
tensity and facilitates the matching from personal and social
interruptability.

The intensity of a notification can be scaled from not no-
tifying at all to trying explicitly to grab the entire user at-
tention. We have to distinguish between the intensity for
the user and the intensity for the environment. For example,
a notification can be intense for the user, such as a flash-
ing head mounted display (HMD), and completely imper-
ceivable to the environment. We can thus classify notifica-
tion modalities according to their intensity, as depicted in
figure 2. Since it becomes harder to ignore a notification
with increasing intensity, intense notifications can only be
used when the user or the environment have enough atten-
tion available. This corresponds directly to the interrupt-
ability we are using in the Design Space of Notifications.
Hence we can discretize the Design Space of Notification
and make a simple one–to–one mapping to choose the best
notification modality depending on the personal and social
interruptability.

The intensity of a notification also varies with the
amount of information conveyed. The amount of informa-
tion can be varied from a simple binary pulse ‘something
has happened’ to very complex information, such as the
complete text of an e–mail. Depending on the device this
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can be a near–continuous space in which any amount of in-
formation can be conveyed or, for simpler devices, one of
several distinct levels. Since the user needs more attention
to deal with an information–rich notification, the intensity
of a notification increases with the amount of information
conveyed. In figure 2 the grey level indicates the amount of
information that can be conveyed with a given notification.

Depending on the available devices this space has to be
populated differently. In figure 2 we have depicted a selec-
tion of possible notification devices, that could be available
to a wearable computer. Audio, as a classical notification
means (a short beep, a loud ring, or a speech message), can
be used in a wide variety of situations and modes, as long
as the environment may perceive the notification. An HMD
generally offers very intense notifications, so that it may
only be used, when the user is highly interruptible. Notifi-
cations using an HMD are however not perceivable by the
environment. Both amount of information conveyed and the
intensity can be scaled using techniques such as size, colour,
or animation of the notification. Finally a small vibrating
device combined with a watch that has a built-in display,
such as [10], can transfer a medium amount of information
that is very easy to perceive and also to ignore.

3.3 User Control
An important aspect is that the user must be able to con-

trol the way he is notified. The Design Space of Notifica-
tions is simple enough that users can directly choose their
personal and social interruptability by hand, if need be.

As opposed to the direct configuration of the notifica-
tion modality, this allows to still select the best modality
automatically, depending on the available devices. If the
user left the HMD at home, he would not have to configure
that he does not want notifications on the HMD. Instead the
system can choose the best available notification modality
automatically, depending on the available devices.

4 Estimating the Interruptability
In order to estimate the interruptability of user and envi-

ronment, we propose to combine the inputs from all sensors
and the prior that is given by the user. As pointed out in
section 1 we do not model or recognize entire situations,
but estimate the interruptability directly from the sensors,
which give us a tendency for the interruptability.

When considering a single sensor only, we can already
infer something about the user’s and environment’s inter-
ruptability. In the social situation ‘Lecture’, the user is
probably personally little interruptible and quite certainly
socially not interruptible. The sensor gives us a tendency
which is the most probable interruptability. This tendency
can be any kind of function that return the likelihood of in-
terruptability on the entire Design Space of Notifications.

Figure 3 shows the tendencies we chose for the exper-
iments in section 7. While activities such as ‘Sitting’ or
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Figure 3. Tendencies for the sensors of sec-
tion 7

‘Standing’ can occur in nearly any situation, they cover a
large area. However activities such as ‘Stairs’ or social sit-
uations such as ‘Lecture’ imply very specific interruptabil-
ities. In the first case, the user needs much attention for
finding his way, hence the personal interruptability is low,
but he is generally in a public situation, where an interrup-
tion does not disturb. In the latter case, the user is devoting
his attention to the lecture, thus he is little interruptible, and
the environment must not be disturbed.

Location can only give quite coarse priors about the cur-
rent interruptability, especially the coarse location sensor
we employ. Therefore the location tendencies all have a
large variance and cover large portions the the Design Space
of Notification. The space that is covered by the Cafeteria
location is very large, covering not only the cafeteria but
also substantial parts of the stair case. Hence the influence
is practically neglegible for the interruptability estimation.

The next step after defining tendencies for all sensors
is combining them to obtain a final estimation. Since our
‘sensors’ are not physical sensors, but rather classification
sub–systems, we can obtain for every ‘sensor–reading’ a
likelihood. We use this likelihood to combine the tenden-
cies: they are weighted according to their classification like-
lihood and summed. This is a preliminary step for the final
estimation and called the sensor estimate.

The final part to take into account is the user’s prior. As
explained in section 3.3 the user can set his personal and
social interruptability manually. This can be seen as an ad-
ditional tendency. However, it has to be treated separately,
because it has to have the possibility of overriding all other
tendencies. The sensor estimate is weighted with a confi-
dence measure in its correctness, e.g. using its variance or
entropy. The weighted sensor estimation is combined with
the user’s prior to produce the final estimate of personal and
social interruptability.
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Mathematical Formulation. This section describes
how to encode the tendencies proposed above in a mathe-
matical construct, that can be implemented on a computer.

As the tendencies are defined as any kind of function,
there is an unlimited number of possible representations for
them. They can be discrete on a regular grid of the design
space of notification, or they can be continuous. The contin-
uous ones can be simple linear functions or complex non–
linear ones. Not all representations make necessarily sense
for all sensors.

We chose for this paper to represent the tendencies by
2-dimensional Gaussian functions, because they combine a
high expressiveness with few parameters that need to be set.
Thus the tendency for sensor s at position x, y in the Design
Space of Notification can be expressed as

T (x, y, s) = N(ms, Σs)(x, y)

With mean vector ms and, in our case, diagonal covariance
matrix Σs. Figure 3 shows the tendencies we chose for the
experiments in section 7.

Every sensor s recognizes the corresponding context at
time t with likelihood l(s, t). Thus we can compute the
combined sensor estimate SE at time t in the Design Space
of Notification

SE(x, y, t) =
∑

s

T (s, x, y) · l(s, t)

The final estimate of the interruptability at time t is the com-
bination of the sensor estimate SE and the prior of the user:

Interruptability(t) = argmaxx,y(δ · SE(x, y, t) + U(x, y))

where U(x, y) is the user’s prior and δ the weighting factor
for the sensor estimate. We currently assume δ as 1 and
U(x, y) as zero for all (x, y). We compute the argmax over
the Design Space of Notification by sampling it on a regular
grid.

5 Auditory Context Extraction
The goal of the auditory context extraction is to clas-

sify the social situation of the user. This problem is also
called auditory scene classification. We classified the audi-
tory scene into four social situations, that we found useful
for notification, namely street, restaurant, lecture, and con-
versation. Here we introduce the approach and report ex-
perimental results. In section 7 we use it for the notification
experiment.

Features. We use six features for the classification [2],
based on the spectral centre of gravity, the tonality of the
signal, the amplitude onsets, and the amplitude histogram
width. Every audio sample is divided into 1sec segments.
For all features but the tonality and the amplitude histogram
width the segments are again divided into 30ms frames, for

a sensible calculation of the spectrum. The classification is
done on the segments, i.e. there is one feature vector every
second.

The first two features are based on the Spectral Cen-
tre of Gravity. For the first, the centre of gravity is cal-
culated on the spectrum of every frame. These centres
are then averaged to obtain the feature for the segment.
The second feature describes the temporal fluctuations of
the centre of gravity. It is calculated using: CGF =
log E[CG]/STDEV [CG], where CGF is the feature value
for a segment, E[CG] is the expected centre of gravity over
one segment and STDEV[CG] is the corresponding stan-
dard deviation.

The third feature describes the tonality of the signal. It is
based on the normalized autocorrelation function (NACF)
computed over a frame. If the maximum coefficient is suf-
ficiently large, the signal is considered tonal. The feature
value over one segment is the number of tonal frames.

The fourth and fifth feature are based on the Amplitude
Onsets, which describe the activity in a certain band of the
signal. The spectrum is divided into 20 Bark–bands [6].
The change in a bark band from one frame to the next de-
fines the onset (onsets that are too small are set to zero). The
first of the two features is the mean over a segment of the
sum of all onsets in a frame. The second is the mean of the
number of non–zero onsets per frame.

The sixths and last feature describes the width of the am-
plitude histogram. The histogram is computed on the maxi-
mum of 3ms sub–frames, scaled to DB units. The width be-
tween the 10– and 90–percentiles define the feature value.

Classification The classification is done using two–state
ergodic Hidden Markov Models (HMM). Every class is de-
scribed by a separate model. The class of the model with the
highest a–posteriori likelihood is chosen as the final class
for the preliminary experiments. For the notification exper-
iment the likelihoods are used for combining the tendencies.

Experiments To show the performance, we evaluated
the above classification scheme on a test–database. The
database itself is composed of 54 samples of each 1min
length recorded in 44kHz stereo. It contains 17 Street sam-
ples, 15 Restaurant, 12 Lecture, and 10 Conversation sam-
ples. They were recorded with a Sony ECM–TS125 clip–on
microphone attached to the collar of the user. The samples
are recorded at 44kHz sampling rate using 16 bit precision
in stereo.

Table 1 summarizes the recognition results on the test
database. To factor out the influence of a specific test or
training set, we used 5–fold cross validation. The over-
all recognition result of 83.17% is satisfying. However,
the two classes ’lecture’ and ’conversation’ are often con-
fused. While they are similar (both contain indoor speech)
it should be possible to differentiate one from the other,
e.g. using signal strength. In this case it is however probably
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Recognized Class
street restaurant lecture conv.

street 82.35 17.65
restaurant 6.67 86.67 6.67

lecture 91.67 8.33
conv. 28.00 72.00

Table 1. Evaluation of the audio context ex-
traction on the test database using 5-fold
cross validation (overall 83.17% recognition
rate)

due to the fact, that the database is not sufficiently diverse
for these two classes.

6 Activity Context Extraction
The goal of the activity context extraction is to classify

the user’s physical activity using an acceleration sensor. We
classified the activity into sitting, standing, walking, walk-
ing upstairs, walking downstairs, and running. Here, we
describe the approach and present experimental results. In
section 7 we use it for the notification experiment.

Sensing. We use a Smart-It sensor board [1] to capture
the sensor data. It contains a single 2–axis acceleration sen-
sor. It is placed above the user’s right knee on the thigh.
The first axis points downward and the second in forward
direction. The data is sampled at 50 Hz. The sensor board
is attached to a Compaq IPAQ. It both records the data and
allows for online annotation of the data using an interactive
application.

Classification. The classification of the activity is done
using Bayes’ rule. The mean and variance for every axis
over the last 50 samples are used as features. They are
assumed to be independent. The a–priori–likelihoods are
computed using the annotated data. The resulting proba-
bility distribution functions are represented as 100 bin his-
tograms.

Experiments. To show the performance of the activ-
ity recognition, we have evaluated it on a test sample. The
sample is 12.6min long and consists of the activities sitting
(13.3% of the data), standing (27.4%), walking (34.7%), up-
stairs (8.8%), downstairs (7.0%), and running (8.8%).

Table 2 summarizes the recognition results on the test
sample. While in general the recognition seems to work,
the activities upstairs and downstairs are problematic. They
are often confused with walking. This is probably due to the
small amount of training data for both activities and to the
similarity to the movement of the activity walking.

Figure 4 shows the recognition results over time. The
system oscillates between walking and up/downstairs,
which is expected given the previous results. Furthermore,
the recognition has a small systematic delay over the entire
sample. This is caused by the window over which the fea-
tures are calculated (currently 50 samples corresponding to

Recognized Activity
sit stand walk up– down– run

stairs stairs
sit 98.5 1.5

stand 1.5 94.1 4.4
walk 2.3 94.7 1.6 0.3 1.1

upstairs 0.1 14.7 85.2
downstairs 45.8 53.4 0.8

run 0.1 6.8 93.1

Table 2. Evaluation of the activity context ex-
traction (overall 86.5% recognition rate)

one second). However, reducing the window size introduces
more noise to the features and thus lowers the recognition
performance.

7 Experiments

To show the feasibility of our approach we have con-
ducted an experiment that includes both audio and accel-
eration context extraction, as well as location context from
wireless LAN access points, in order to estimates the social
as well as the personal interruptability of a user from them.

7.1 Experimental Setup

We recorded a 37.78min stretch of audio and accelera-
tion data, in which we covered a broad variety of differ-
ent situations. Sensors were attached to a laptop which
recorded and synchronized the data. The audio and acceler-
ation context was annotated manually during the recording
using an externally attached Compaq IPAQ. Right after the
recording misannotations were removed and the interrupt-
abilities manually annotated by hand (see figure 5).

The recording contains a large variety of different situa-
tions and activities. Figure 5 shows the encountered situa-
tions at the very bottom. We started the recording in our lab
and had a short walk on the street, during which we had two
brief discussions. After coming back we attended a lecture
for a short while and had a coffee in the computer science
students’ restaurant. We then went to our secretary and to
our office, having a short chat with the secretary and our
co–worker. On the way back to the lab we met a colleague
on the corridor. After a short conversation we finished the
recording in the lab.

For the context recognition we employ the audio and ac-
celeration recognizers as described in sections 5 and 6 and
location from the current wireless LAN access point. We
have to change audio and acceleration recognition slightly,
so that the frequencies of audio recognition, acceleration
recognition and interruptability estimation matched. See
figure 3 for the tendencies of every sensor.

For the audio context recognition we used a slightly dif-
ferent set of classes, Conversation, Lecture, Restaurant,
Street, and Other. Classification is done every ten seconds,
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which proved sufficient for the relatively slow changing au-
ditory scene. The classification results are duplicated, so
that one classification is available every second. The results
are normalized to 1.

For the acceleration context recognition we changed the
set of classes slightly. For this experiment we used Sitting,
Standing, Walking, and Stairs. The former classes Upstairs
and Downstairs are merged, because for notification there
is no difference between walking up– and downstairs. The
classification is done at a frequency of 55Hz. The results
are down sampled to 1Hz and normalized to 1.

For the location context we use the wireless LAN access
point to which the computer is currently associated. Due to
the high density of access points, there was generally more
than one access point per physical location in our record-
ing. We have thus grouped the actual access points into the
five groups Office, Outdoor (no access point), Lecture Hall,
Lab, and Cafeteria. The current access point is sampled ev-
ery second. The thus acquired location data is used both as
‘ground truth’ and as sensor value for the later experiments.

7.2 Discussion
Figure 5 shows an overview of the experimental results.

The interruptabilities we use are in the range [0; 3] (as in
figure 1). The axis at the bottom indicates the situation the
user was in. While the first and third plot show the ground
truth of social resp. personal interruptability, the second and
fourth plot show the interruptability estimation error for the
social and personal interruptability respectively.

It is important to note, that although the space and the
estimation of the interruptabilities are continuous, the se-
lection of notification modalities requires a discretization of
the space. Using the discretization in three bins as shown in
figure 2, we can tolerate errors up to 0.5 in either direction,
because the interruptability will be discretized into the same
bin.

In order to verify that using tendencies is a sensible ap-
proach, we used the context ground truth as sensors and esti-
mated the interruptabilities. The dark lines in plots two and
four indicate these results. The small variance of the esti-
mation error of 0.20 for the social interruptability and 0.13
for the personal interruptability show that using tendencies
is a feasible approach. The error of the social interruptabil-
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Figure 5. Ground Truth Interruptability and
Estimation Error

ity estimation is below 0.5 and thus sufficiently precise for
88.5% of the time resp. 96.3% for the personal interrupt-
ability.

The estimation error of the personal interruptability us-
ing real sensors is indicated in the fourth plot in grey. The
sensing introduces little additional error. The variance of
the estimation error is with 0.16 close to the one where we
used the ground truth as ‘sensor’. The error is 96.2% of
the time below 0.5 and thus sufficiently small for modality
selection. The outlier at second 2230 is due to a misclassi-
fication in the auditory scene.

The second plot in figure 5 shows the estimation error for
the social interruptability using real sensors. When compar-
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ing the error variance of 0.58 with the error variance of 0.20
when using the ground truth as sensors leads to the con-
clusion, that the sensing introduces considerable noise. The
error is for 86.0% of the time below 0.5 and thus sufficiently
precise. It is important to note, that the error tends to be neg-
ative. This means that the system would rather have chosen
not to notify the environment instead of notifying too ag-
gressively. As opposed to the contrary, notifying too much
instead of too little, this is the ‘better’ kind of error.

In order to determine which part of the sensing to im-
prove, we consider the respective recognition rates of au-
dio and acceleration context recognition. While the ac-
celeration context is recognized in 91.9% of the time, the
audio context is context is recognized only 65.5% of the
time. Given this and the fact, that the social interruptability
mainly depends on the social situation, we conclude, that
audio context recognition needs to be improved in order to
improve the estimation of the social interruptability.

Although the location information we use is quite coarse,
it provides useful additional priors. Without the location in-
formation, the error of the social interruptability estimation
is below 0.5 77.0% of the time, as opposed to 86.0% when
using the location. The impact on the personal interrupt-
ability estimation is smaller: the estimation error is below
0.5 94.61% of the time without location and 96.16% of the
time when using location.

8 Conclusion and Outlook
Managing notifications is an important problem for fu-

ture wearable computing devices and applications. They
should be mediated automatically in order to avoid user an-
noyance. To this end we propose to use context acquired
from multiple, body–worn sensors.

We have introduced a model that classifies notifications
according to the personal and social interruptability of the
user. It allows both to handle notifications in a systematic
manner and to enable the automatic selection of the best
notification modality.

We do not model the entire user context but estimate the
interruptabilities directly from the sensor readings. Every
sensor contributes a tendency about the user’s current per-
sonal and social interruptability. The user’s prior is inte-
grated as a special tendency that can override the other ones.

Preliminary experiments have shown the feasibility of
the approach experimentally. We used context information
from acceleration and audio sensors. The estimation of the
personal interruptability provides a sufficiently precise es-
timate 94.6% of the time. The estimation of the social in-
terruptability is not quite as reliable, due to the less reliable
audio context recognition.

Of course, several issues need to be addressed further.
Since our results are only preliminary, further investigation
will be necessary. The audio context recognition should be
improved, in order to improve the estimation of the social

interruptability. In general, other types of sensors could
supply interesting context information. To investigate the
influence of various kinds of sensors and contexts, we are
planning more experiments as well as user studies.
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