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Abstract

There is an increasing interest in developing intelligent human–computer interaction systems that can fulfill two functions—

recognizing user affective states and providing the user with timely and appropriate assistance. In this paper, we present a general unified

decision-theoretic framework based on influence diagrams for simultaneously modeling user affect recognition and assistance. Affective

state recognition is achieved through active probabilistic inference from the available multi modality sensory data. User assistance is

automatically accomplished through a decision-making process that balances the benefits of keeping the user in productive affective

states and the costs of performing user assistance. We discuss three theoretical issues within the framework, namely, user affect

recognition, active sensory action selection, and user assistance. Validation of the proposed framework via a simulation study

demonstrates its capability in efficient user affect recognition as well as timely and appropriate user assistance. Besides the theoretical

contributions, we build a non-invasive real-time prototype system to recognize different user affective states (stress and fatigue) from

four-modality user measurements, namely physical appearance features, physiological measures, user performance, and behavioral data.

The affect recognition component of the prototype system is subsequently validated through a real-world study involving human

subjects.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The field of human–computer interaction (HCI) has
moved from a focus on user-friendly graphical user
interfaces (GUIs) to systems that bring to bear powerful
representations and inferential machinery (Maes and
Schneiderman, 1997) in understanding, explaining, justify-
ing, or augmenting user actions. An important example of
this new wave in HCI is the design of user assistance
systems that enhance users’ daily performance (Horvitz,
1999). Although progress is being made in user-modeling
(Bauer et al., 2001), augmented cognition, and adaptive
e front matter r 2006 Elsevier Ltd. All rights reserved.
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user interfaces (Hass and Hettinger, 2001), the majority of
existing systems continue to assume normative perfor-
mance, and all existing systems fail to adapt to user affect.
A constellation of recent findings, from neuroscience,
psychology, and cognitive science, suggests that emotion
plays surprisingly critical roles in users’ rational, func-
tional, and intelligent behaviors (Picard et al., 2001). In
fact, the situations where affective considerations are most
critical are precisely the types of situations where the
consequences of the human–machine interaction failures
are most severe. It is especially important to recognize
dangerous affect in the increasing numbers of HCI systems
in critical, typically high-stress, applications such as air
traffic control, process control in nuclear power plants,
emergency vehicle dispatchers, pilots and drivers, and a
variety of military operational contexts. In fact, the
increasing frequency of accidents and incidents attributed
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to the broad area of ‘‘human error’’ in a variety of settings
could be reduced by considering the user affective states in
system design, particularly such negative states as stress,
fatigue, anxiety, and frustration. Therefore, recognizing
such negative user affect and providing appropriate
interventions to mitigate their effects is critical for the
successful completion of a task, for avoiding (often
disastrous) errors, for achieving optimal performance, for
improving HCI experience, and for improving learning and
decision-making capability.

The causes and manifesting features of various user
affective states have been extensively investigated in
psychology, computer vision, physiology, behavioral
science, ergonomics and human factor engineering (Beatty,
1982; Gardell, 1982; Ortony et al., 1988; Breazeal, 1999;
Mindtools, 2004). In spite of the findings from diverse
disciplines, it is still a rather challenging task to develop an
intelligent user affect recognition and assistance system.
First, the expression and the measurements of user affect
are very much person-dependent and even time or context
dependent for the same person. Second, the sensory
observations are often ambiguous, uncertain, and incom-
plete. Third, users’ affective states are dynamic and evolve
over time. Fourth, both affect recognition and user
assistance must be accomplished in a timely and appro-
priate manner. Finally, lack of a clear criterion for ground-
truthing affective states greatly increases the difficulty of
validating affect recognition approaches and user assis-
tance systems.

In this paper, we propose a general dynamic probabil-
istic decision-theoretic model based on Influence Diagrams
(IDs) (Howard and Matheson, 1981) for unifying affect
recognition with user assistance. We are interested in
recognizing negative task-dependent affective states (e.g.
stress, fatigue, anxiety, confusion, frustration, etc.) and
providing assistance to mitigate their effects in order to
maintain user in a productive state. Such an ID explicitly
includes random variables that represent affective states
and sensory observations, decision variables that represent
user assistance and sensory actions, and utility functions
that represent the benefits and costs associated with user
assistance. Within the proposed framework, efficient user
affect recognition can be achieved by an active inference
based on selecting and integrating a subset of most
informative observations; meanwhile, timely and appro-
priate assistance can be achieved by a decision choice
balancing between the benefit of the assistance and their
operational and interruption costs. Compared with other
existing mathematical tools, ID enjoys several unique
advantages. First, it provides a coherent and fully unified
hierarchical probabilistic framework for representing and
modeling the uncertain knowledge about user affect and
assistance determination at different levels of abstraction.
Second, within the unified framework, affect recognition is
cast as a standard probabilistic inference procedure, while
user assistance is formulated as a decision-making proce-
dure. Third, it naturally incorporates the evolution of user
affect and accounts for the temporal aspect of decision-
making with the dynamic structure. Thus, such a model is
an ideal candidate to accommodate the aforementioned
challenges.
This paper intends to make contributions in both theory

and applications. Theoretically, we provide a formal
treatment of ID-based user modeling that addresses the
theoretical foundations of affect recognition and automatic
user assistance determination within a unified framework.
In addition, an active sensing strategy is proposed to decide
an optimal sensory action set to collect the best user
measurements for efficient affect recognition and for timely
decision-making for user assistance. Practically, based on
the theoretical model, we develop a non-invasive and real-

time prototype system that monitors two affective states—
stress and fatigue. The system collects sensory data from
four modalities: physical appearance, behavior, physiolo-
gical measures, and performance. The system is non-

invasive in that all the measurements are collected in a
non-intrusive manner without interrupting the user.
The remainder of this paper is organized as follows. A

brief literature review is presented in Section 2. Section 3
proposes the dynamic ID framework and Section 4
describes how this framework enables us to bridge between
inferring affective states and deciding appropriate user
assistance. Section 5 illustrates a simulation system to
validate the proposed framework and Section 6 discusses a
real-world user affect monitoring system and its validation.
Finally, Section 7 concludes the paper with several future
research directions.
2. Related work

In this section, we first review the related work in user
affect modeling and recognition. This is then followed by a
review of current work in user assistance.
2.1. User affect modeling and recognition

2.1.1. General approaches

In predicting and recognizing user affect, the methods
can be classified as predictive inference (top-down),
diagnostic inference (bottom-up), or a hybrid combining
both predictive and diagnostic inference. For predictive
inference, affect is recognized based on prediction using
factors that influence or cause affect. A predictive
approach usually rests itself on the established psycholo-
gical theories. For instance, Ortony et al. (1988) defines
emotions as valenced (positive or negative) reaction to
situations consisting of events, actors, and objects. The
valence of one’s emotional reaction depends on the
desirability of the situation, which, in turn, is defined by
one’s goals and preferences. The theory defines 22
emotions as a result of situation appraisal. If a person’s
goals and perception of relevant events are known, they are
used to predict the person’s emotions.
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In contrast to a predictive approach, diagnostic
approaches infer affect from physiological or behavioral
measurements of the user. A rich body of literature has
revealed the use of various features to infer user affect. In
Kaapor et al. (2001), the authors discuss how to monitor
eyebrow movements and body posture to provide evidence
of students’ engagement while interacting with a computer-
based tutor. Heishman et al. (2004) propose to use eye
region biometrics (including eyebrow, pupil, iris, upper/
lower fold, and upper/lower eyelid) to reveal user affective
(fatigue) and cognitive (engagement) states. In Ji et al.
(2004), physical appearance features extracted from real-
time videos are used to assess users’ fatigue status. The
work by Berthold and Jameson (1999) studies the effects of
cognitive workload on two speech symptoms—sentence
fragments and articulation rate. Cowie and co-workers
(Cowie et al., 2001) develop a hybrid system capable of
using information from faces and voices to recognize
people’s emotions.

To improve recognition accuracy, diagnostic and pre-
dictive methods may be combined. For example, affect-
influencing factors such as task, environment, time of day,
or user traits or physical conditions are often combined
with physiological or behavioral data to provide a more
consistent and accurate affect characterization. Most
probabilistic approaches, to be surveyed later, belong to
hybrid ones (Conati, 2002; Ji et al., 2004).

We can also classify the approaches in affect recognition
based on the mathematical tools they used. The first group
uses traditional classification methods in pattern recogni-
tion. The approaches include rule-based systems (Pantic et
al., 2002), discriminate analysis (Ark et al., 1999), fuzzy
rules (Elliott et al., 1999; Massaro, 2000; Hudlicka and
McNeese, 2002), case-based and instance-based learning
(Scherer, 1993; Petrushin, 2000), linear and nonlinear
regression (Moriyama et al., 1997), neural networks
(Petrushin, 1999), Bayesian learning (Qi et al., 2001; Qi
and Picard, 2002; Kapoor et al., 2004) and other learning
techniques (Heishman et al., 2004). Most of these research
efforts focus on the low-level mapping between certain
sensory data and the underlying affect. The mapping is
often performed statically and independently, ignoring the
history or current context that might influence the
interpretation of user affective states. In fact, a common
criticism of these approaches is their inadequacy in
systematically representing prior knowledge, the depen-
dencies among affect variables, the dynamics of affect, and
in accounting for the uncertainties in both user affect and
its measurements.

To overcome these limitations, the second group of
approaches uses probabilistic graphical models such as
Hidden Markov Models (HMMs), Bayesian networks
(BNs), etc. With the aid of causal and uncertainty
representation structure, these methods maintain a
balance between global and local representations as
well as provide powerful capabilities for handling
complex situations in practical systems. HMMs have been
used as a framework for recognizing the affective states
(hidden) from observational data. For example, Picard
(1997) uses HMMs to model the transitions among
three affective states, namely, interest, joy, and distress.
She also discusses the utility of HMMs for capturing
environmental, cultural, or social context. Cohen et al.
(2000) propose an HMM approach to recognize facial
expressions and then classify user affect based on the
recognized expressions. For each of the affective states
studied, an HMM corresponding to an affective state is
constructed. The features, based on the Facial Action
Coding System (Ekman and Friesen, 1978), are extracted
from the real-time videos. These measures are used to
compute the posterior probability of a particular user
affect. One problematic assumption made in the paper is
that facial expression always reflects emotion. This
assumption is unrealistic as facial expressions are ambig-
uous, therefore unable to uniquely characterize emotions.
Yeasin et al. (2004) exploits HMMs to learn the underlying
models for each universal expression. It is shown that
HMMs can be used to accurately recognize six basic
emotional facial expressions—surprise, happiness, sadness,
fear, anger and disgust. The average recognition rate of the
proposed facial expression classifier is 90.9%. The assump-
tion behind this work is that facial expressions have a
systematic, coherent, and meaningful structure that can be
mapped to affective dimensions (Breazeal, 1999; Machleit
and Enoglu, 2000). HMMs, however, lack the capability to
represent dependencies and semantics at different levels of
abstraction between emotion and the factors that cause
emotion as well as the various observations that reflect
emotion.
As a generalization to HMMs, BNs use graphical models

to represent, at different levels of abstraction, the prior
knowledge of affective states and the dependencies among
user affect, the factors influencing affect and the observa-
tions reflecting affect. In Ball and Breeze (2000), a two-
layer BN is created to model valence and arousal of users’
affect during the interaction with an embodied conversa-
tional agent. The model uses measurements from linguistic
behavior, vocal expression, posture and body movements.
HMMs and BNs can be also combined within one
framework. For example, Kaliouby and Robinson (2004)
develop a real-time system for inferring six mental states,
including agreement, concentrating, disagreement, inter-
ested, thinking, and unsure, from facial expressions and
head gestures. The system consists of three levels: action
unit analysis, facial and head display recognition, and
mental state inference. The first two levels are implemented
via an HMM approach. The output of HMMs is fed to a
dynamic Bayesian network (DBN) for inferring user
mental states. In summary, BNs are expressive in modeling
conditional dependency and have been used for affect
recognition. However, they do not explicitly model
decisional choices and their utilities. Within the BN
framework, decisions must be made separately and often
in an ad hoc manner.
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2.1.2. User stress and fatigue recognition

In this section, we especially review related work in
recognizing human stress and fatigue since they are usually
the significant factors causing a variety of human–machine
interaction failures. Especially, these are the two affective
states that we have experimented in our real-world system.

Human stress is a state of tension that is created when a
person responds to the demands and pressures that arise
from work, family, and other external sources, as well as
those that are internally generated from self-imposed
demands, obligations, and self-criticism. Although some
stress is beneficial in certain circumstances, due to the
adverse effects of excessive stress in our daily life, it is
important to detect stress in a timely manner and treat it
properly. In the past, researchers from different disciplines
have developed inference approaches or pragmatic systems
to recognize user stress level. The approaches or systems
differ from each other in either the sensory modalities, or
inference techniques, or both. In Healy and Picard (2000),
a sequential forward floating algorithm (SFFS) is used to
find an optimal set of features from the physiological
measures (electrocardiogram, electromyogram, respiration,
and skin conductance) and then the k-NN (nearest
neighbor) classifier is applied to classify the stress into
four levels. In Rani et al. (2003), after extracting
physiological parameters from the measures of cardiac
activity, electrodermal activity, electromyographic activity,
and temperature, regression tree and fuzzy logic methodol-
ogies are used to classify human anxiety into 10 levels. A
non-contact skin temperature measuring system is devel-
oped to evaluate stress in Kataoka et al. (1998), where only
the skin temperatures on nose and forehead are measured.
Rimini-Doering et al. (2001) combines several physiologi-
cal signals and visual features (eye closure, head move-
ment) to monitor driver drowsiness and stress in a driver
simulator.

Over the years, many efforts have been made in the field
of fatigue modeling and monitoring and the results are
reviewed by Ji (2002) and Hartley et al. (2000). Tradition-
ally, physiological measures have been widely used for
fatigue detection. The popular physiological measures
include the electroencephalograph (EEG) (Empson, 1986)
and the multiple sleep latency test (MSLT) (Carskadon and
Dement, 1982). EEG is found to be useful in determining
the presence of ongoing brain activity and its measures
have been used as the reference point for calibrating other
measures of sleep and fatigue. MSLT measures the amount
of time a test subject falls asleep in a comfortable sleep-
inducing environment. Unfortunately, most of these
physiological parameters are obtained intrusively, making
them unacceptable in real-world applications. Thus, in
recent years, there has been increasing research activity
focused on developing systems that detect the visual facial
feature changes associated with fatigue using a video
camera. These facial features include eyes, head position,
face or mouth. This approach is non-intrusive and becomes
more and more practical with the rapid development of
camera and computer vision technology. Several studies
have demonstrated their feasibility and some of them
claimed that their systems perform as effectively as the
systems detecting physiological signals do (Saito et al.,
1994; Ueno et al., 1994; Boverie et al., 1998; Grace, 2001).
However, efforts in this direction are often directed to
detecting a single visual cue such as eyelid movement. Since
a single visual cue is often ambiguous, varies with time,
environment or subjects, its validity is questioned (Heit-
mann et al., 2001). To overcome this limitation, it is
necessary to combine multiple measures to produce more
accurate fatigue-related performance estimation. Our real-
world system works towards this goal as will be detailed
later.

2.2. User assistance

Appropriate and timely user assistance is crucial for a
HCI system. Ensuring that the intervention will be as
welcomed as it will be valuable and timely is an important
research issue. Here, we briefly review current methodol-
ogies in user assistance.
In Li and Ji (2004), a DBN is proposed to recognize user

affect by modeling multiple visual appearance variables. If
the user affect level exceeds a pre-determined threshold,
certain assistance is provided. The reported experiments
show that the framework works well with synthetic data.
Unfortunately, a limitation of this approach is that the
threshold is manually set and therefore needs human
intervention. This is different from the proposed work
where the user assistance is automatically generated, based
on the utility of assistance.
Murray et al. (2004) describe a decision-theoretical

approach based on dynamic decision network for selecting
tutorial actions while helping a student with a task. The
theoretical schema is specifically designed for two applica-
tion domains: calculus-related rate problems and elemen-
tary reading. These applications exploit a rich model of the
tutorial state, including attributes such as the students’
knowledge, focus of attention, affective state, and next
action(s), along with task progress and the discourse state.
Via an extensive simulation, their work focuses on
evaluating whether the selected tutorial action is rational
and fast enough under a variety of tutorial situations. Both
Murray’s and our work decide optimal actions with the
maximal expected utility and exploit the temporal proper-
ties, although Murray’s work looks multiple steps ahead
while ours looks one step ahead. Murray’s work and ours
are different in several ways. First, Murray’s work is more
concerned with how an optimal tutorial action can be
selected given the tutorial state instead of studying how to
recognize the tutorial state, such as the student’s affective
states, focus of attention, etc.; while our work focuses on
both how to automatically and efficiently recognize users’
affective states from multiple-modality measurements and
on how user assistance can be timely and appropriately
applied within the integrated framework. More specifically,
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instead of developing a component of user affect recogni-
tion system, we develop an integrated system. This involves
development of both the sensing system and the inference
engine as well as their systematic integration into a
prototype system. Second, Murray et al. systematically
evaluate the effectiveness of the selected tutorial actions
through simulations; we also evaluate the effectiveness of
the user assistance through simulations, but the evaluation
is limited to the effect of the assistance on the users’
affective states. For our studies, a real-time and non-
invasive prototype system is built based on the proposed
framework for, respectively, recognizing human fatigue
and stress using sensors of different modalities. In addition,
real-world experiments are conducted to validate the affect
recognition part of the system.

In Conati (2002), a dynamic decision network based on
ID is used in pedagogical agents to monitor a user’s
emotions and to generate interventions aimed at achieving
the best tradeoff between the user’s learning and engage-
ment during their interaction with educational games. Like
ours, in inferring user affective states, the work accounts
for both the possible causes of the user’s emotional arousal
and its effects such as bodily expressions. Also, the
intervention is decided by maximizing expected utility.
However, there are apparent differences between their
work and ours. First, our method integrates affect
recognition and intervention in a unified framework,
allowing affect recognition and intervention to be per-
formed simultaneously. Second, we consider a larger
evidence set. Their work uses only bodily expression-
related features, while our work utilizes physical appear-
ance, physiological, behavioral measures, and performance
data. Third, their work assumes user measurements that
are already provided (such as facial expressions, etc.), while
we develop methods to obtain various measurements in our
system.

In Horvitz et al. (2003), a decision-theoretic model is
proposed to help a user in choosing actions by inferring
her/his attention, a concept closely related to user affective
states. The attention focus is inferred from the observed
states of several sensors such as microphones, cameras,
accelerometers and location sensing facilities. The atten-
tional focus is also reflected by the user’s interactions with
software and devices, background information about the
history of the user’s interests, and prior patterns of
activities. The work differs from our work in that it
emphasizes performing attention inference mostly from
desktop activities, while ours emphasizes performing affect
inference from sensory evidence of different modalities.

In summary, there are numerous efforts in developing
systems for user affect recognition and for user assistance.
They tend to focus on either affect recognition or user
assistance. In addition, the sensory modality that is used
for user state measurements is often limited and the sensory
measurement acquisition is often intrusive. Our research
intends to build an integrated system that can simulta-
neously fulfill the two functions: affect recognition and user
assistance. Compared with the cited ones, the significance
of our framework is that it employs dynamic inference and
sequential decision-making techniques to unify affect
recognition with user assistance, utilizes evidence from
multiple modalities and acquires them in real-time and in a
non-intrusive manner, and applies active sensing strategies
for selecting most informative measurements for efficient
and timely affect recognition. In addition to validating the
proposed framework with a simulation system, the affect
recognition component is validated with a real-world
study.

3. A unified framework for modeling affect and user

assistance

3.1. Influence diagrams

Since IDs were introduced by Howard and Matheson in
1981 (Howard and Matheson, 1981), it has been widely
used as a knowledge representation framework to facilitate
decision and probabilistic inference problems under
uncertainty. An ID is a directed acyclic graph consisting
of nodes and the directed links between nodes. Nodes are
grouped into decision nodes, chance (random) nodes, and
utility nodes. Decision nodes, usually drawn as rectangles,
indicate the decisions to be made and their set of possible
alternatives. Chance nodes, usually drawn as circles,
represent uncertain variables that are relevant to the
decision problem. Utility nodes, usually drawn as dia-
monds, are associated with utility functions to represent
the utility of each decision. The arcs connecting different
types of nodes have different meanings, based on their
destinations. Arcs among chance nodes represent the
probabilistic dependencies among the connected nodes
while arcs between decision nodes represent time prece-
dence. Arcs connecting to utility nodes represent the value
influence. Fig. 1 gives an ID example.
The top node Y indicates the target hypothesis variable,

for example, it could be affective states. Each bottom node,
E1; . . . ; En, indicates the possible observations of the target
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variable. The big ellipse indicates all the chance nodes
between the E nodes and Y node. These nodes are
collectively called hidden nodes. They model the probabil-
istic relationships between the Y node and Ei nodes with
different abstraction levels. The decision node D indicates
the possible actions associated with the hypothesis node Y
while each decision node Si controls whether to obtain
observations from an information source or not. Each
utility node U connected with Si defines the cost of
obtaining data from the information source. The utility
node connected with both nodes Y and D indicates the
benefit (penalty) of taking appropriate (inappropriate)
actions with respect to a particular target hypothesis state.
In addition to the semantic relationships, an ID need be
parameterized. This involves quantifying each chance node
with a probability matrix describing the conditional
probability of the node given all possible outcomes for its
parent(s), and each utility node a utility function. Overall,
such an ID can be used to decide a best evidence set to
reduce the uncertainty of the hypothesis Y as well as to
decide a best decision D associated with such a hypothesis.

In summary, IDs use an acyclic directed graph repre-
sentation to capture the three diverse sources of knowledge
in decision-making: conditional relationships about how
events influence each other in the decision domain,
informational relationship about what action sequences
are feasible in any given set of circumstances, and
functional relationships about how desirable the conse-
quences are (Pearl, 1988). The goal of ID modeling is to
choose a decision alternative maximizing the expected
utilities. We call this decision alternative as an optimal
policy and call the maximized utility as optimal expected
utility. Evaluating an ID is to find such an optimal policy
as well as compute the optimal expected utility (Shachter,
1986).

3.2. Modeling affect recognition and user assistance with

influence diagrams

In this section, we present our framework based on ID
for simultaneously modeling affective states and user
assistance. The framework actually has a similar structure
to the example ID in Fig. 1. We discuss the details of the
proposed framework in both qualitative part (the structure,
the various nodes and their links) and quantitative
part (conditional probability distributions and utility
functions).

Central to user affect modeling are affective states, the
measurements used to infer user affect, and the user
assistance that can be provided. In addition, a complete
model ought to include the factors that influence user
affect, and the sensory nodes that enable evidence
collection. In our model, the following components
constitute the affect detection and the user assistance
system: a set of user affective states, a set of external
assistance that may alter user affective states, a set of user
state measurements (also called evidence), a set of
conditional probability distributions that characterize the
conditional dependencies among related variables, and a
set of utility functions that characterize the benefits or costs
of performing assistance/sensory actions. An ID imple-
mentation of these components is shown in Fig. 2.
The schematic diagram captures the information neces-

sary for two purposes: providing user assistance and
recognizing affective states. The upper, predictive portion,
of the diagram depicts contextual factors that can alter
affective states. Such elements include environmental
context, user profile, goal that the user is pursuing,
workload, etc. The lower, diagnostic portion, depicts the
observable features that reflect user affective states. These
features may include quantifiable measures on physical
appearance, physiology, behaviors, and performance. The
left, temporal portion, models the temporal evolution of
user affect and sequential decision-makings on user
assistance. The inference of user affect and the determina-
tion of the appropriate assistance based on integrating the
predictive, diagnostic, and temporal inference is more
accurate and consistent than any of them alone.

3.3. Model description

This subsection describes the qualitative part of the
model, namely the affective states, evidence, actions and
utilities.

3.3.1. Affective states

An affective state is an integration of subjective
experience, expressive behavior, and neurochemical activ-
ity. We focus on negative affective states such as stress,
fatigue, and confusion since they can adversely alter users’
productivity and negatively affect their decision-making
and learning abilities. An affective state has a set of
possible values. For instance, stress may vary from low to
normal and to high. Naturally, affective states are not
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mutually exclusive. For example, a subject can be both
fatigued and stressed. Accordingly, if multiple affective
states are of interest, each of them needs to be represented
by a separate random node in the model.
3.3.2. Factors influencing affective states

User affective states could be affected by a variety of
factors. These factors may include the environmental
context, the user profile (or personal traits), the workload,
and importance of the goal the user is pursuing. The
environmental context reflects the exterior impact from the
outside situation on user affective states. The workload and
the importance of the goal lead to interior influence on a
user (Karasek, 1979; Ortony et al., 1988; Jones and Bright,
2001). And the profile information may include age,
experience, skills, health, etc., which plays an important
role in adapting the model to individual differences among
users. Thus, these factors are represented as parent
variables of the ‘‘affective states’’ node and form the
predictive portion of the model.
3.3.3. Sensory measurements

An evidence is an observable feature that is capable of
providing clues about the user’s internal affective state. We
consider four classes of measurable evidence: the user’s
physical appearance features, physiological measures,
behavioral characteristics, and performance measures.
physical
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Physical appearance evidence includes the visual features
that characterize user’s eyelid movement, pupil movement
(eye gaze movement, pupillary response, etc.), facial
expression, and head movement. These features have a
systematic, coherent, and meaningful structure that can be
mapped to affective states (Beatty, 1982; Breazeal, 1999;
Machleit and Enoglu, 2000; Partala and Surakka, 2003).
Specifically, eyelid movement can be characterized by
average eye closure speed, blinking frequency, etc.; pupil
movement can be characterized by gaze spatial distribution
and fixation, pupil dilation, pupil size variation, etc.; facial
expression can be happy, sad, angry, scary, etc.; and head
movement can be characterized by head pose, tilting
frequency, etc. The importance of these features may vary
with different affective states. For example, head tilting
frequency is a useful feature for identifying fatigue, while it
may not be effective for recognizing stress. An ID diagram
modeling the physical appearance evidence for estimating
human affective states is shown in Fig. 3. In the figure, the
‘‘physical’’ node is added as an intermediate node between
‘‘affective states’’ and the physical appearance evidence in
order to model the correlations among the evidence. The
intuition is that the user affect influences his physical
status, which, in turn, influences the physical appearances
such as eyelid, gaze, etc. The ‘‘physiological’’ and
‘‘behavioral;; nodes are added in Figs. 4 and 5, respectively,
for similar reasons.
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The physiological variables provide physiological evi-
dence about user affect (Gardell, 1982; Picard, 1997; Jones
and Bright, 2001). The physiological evidence can be
electromyography (EMG) measures that assess the elec-
trical signal generated by muscles when they are being
contracted, electrocardiograph (ECG) measures that assess
the electrical pulse of the heart, galvanic skin response
(GSR) measures that assess the electrical properties of the
skin in response to different kinds of stimuli, general
somatic activity (GSA) measures that assess the minute
movement of human body, electroencephalography (EEG)
measures that assess the electrical activity produced by the
brain and many others such as respiration and blood
pressure. A typical approach to modeling the physiological
evidence is shown in Fig. 4.

User behavior may be influenced by user affective states.
For example, an emotional user might press the keyboard
heavily and irrationally. The behaviors in question may be
patterns of interaction between user and computer, e.g. the
interaction between user and the mouse or the keyboard.
For this research, we monitor several user behaviors
including mouse/keyboard pressing pressure, mouse click
frequency and speed, character input speed from the
keyboard, and cursor movement speed and pattern, etc.
An ID that models behavioral evidence is shown in Fig. 5.

Performance can vary with user affective states and
therefore may indicate user affect. In a task specific
environment, the performance may be accuracy rate, user
response time, or other measures derived from these two.
As an instance of affective state influencing user perfor-
mance, Karasek (1979) demonstrated that occupational
stress was affected by the tasks presented to a user.

3.3.4. Assistance, sensory actions, and utilities

In addition to random nodes, an ID has decision nodes
and utility nodes. Two types of decision nodes are
embedded in the proposed framework. The first type is
the assistance node associated with the affective state node.
Assistance actions may have different degrees of intrusive-
ness to a user. For example, in one extreme, the assistance
can be null if the user is at positive affective states; in the
other extreme, the user may be interrupted and forced to
quit if he is in a dangerous level of negative affective states.
Some typical assistance could be ‘‘warning’’ (friendly
inform the user his negative affective states), ‘‘alleviating’’
(simplify user interface, decrease task difficulty, etc.),
‘‘intervening’’ (stop user from work), and etc. How to
design appropriate assistance should depend on the
applications. Another type of decision node is the sensory
action node. It controls whether to activate a sensor for
collecting evidence or not.

Corresponding to the decision nodes, there are three
types of utility nodes. The utility node associated with the
assistance node denotes the physical cost of performing
assistance. The utility node associated with both affective
states and assistance node indicates the benefit (penalty) of
taking appropriate (inappropriate) assistance with respect
to a particular user state with respect to a particular user
state. The utility node associated with a sensory node
denotes the cost of operating the sensor for evidence
collection. More details will be given in Section 3.4.

3.3.5. Dynamics

While a static ID only models the static aspect of affect
states and user affect evolves over time, it is important to
model the temporal evolution of affect and the sequential
decision-making on user assistance with a dynamic ID. In
general, a dynamic ID is made up of interconnected time
slices of static IDs, and the relationships between two
neighboring time slices are modeled by an HMM, i.e.
random variables at time t are affected by variables at time
t, as well as by the corresponding random variables at time
t� 1. Each time slice is used to represent the snapshot of
an evolving temporal process at a time instant. These time
slices are interconnected by the arcs joining particular
temporal variables from two consecutive slices.
For modeling affect and assistance, the temporal nodes

include the affect node and the assistance node. The
temporal links between the temporal affect nodes in two
consecutive slices represent temporal evolution of the user
state over time, with the nodes at time t� 1 providing a
diagnostic support for the corresponding nodes at time t.
Specifically, the temporal state node Yt�1 at time t� 1
provides a diagnostic support for the affect node Yt at time
t. And the temporal link from the assistance node at t� 1,
Dt�1, to current state Yt indicates the assistance applied in
the previous step may influence affective state in the
current step.

3.3.6. The complete model

We are now ready to combine the above components
into a complete model for affect recognition and user
assistance. Combining physical appearance (Fig. 3),
physiological features (Fig. 4), behavioral features
(Fig. 5), performance features, and the dynamic, and the
dynamics into the schematic graph (Fig. 2), we obtain a
complete graph in Fig. 6. Overall, the complete model
consists of the predictive portion that models the con-
textual factors that can alter/cause user affective states, the
diagnostic portion that models the observable features that
reflect user affective states, and the temporal portion that
models the evolution of affective states and sequential
decision-making on user assistance. In addition, it consists
of two types of decision nodes, the assistance node for
providing appropriate assistance to maintain user in
positive affective states, and the sensory action nodes for
controlling whether to activate sensors for collecting
valuable evidence. Such a model demonstrates a coherent
and fully unified hierarchical structure for representing and
integrating various variables that are closely related with
user affective states and assistance.
In addition, the generic model is flexible to allow

variables to be inserted and modified. For example, the
random variables under the behavioral node may vary with
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different applications, the random variables under the
physiological node may change, depending on the avail-
ability of the required measuring devices. Furthermore,
variables can be inserted between the evidence ðEÞ nodes
and their parent nodes to model the reliability of the
corresponding sensors. Fig. 7 summarizes some of the
discrete variables and their states in the model.

3.4. Model parameterization

This subsection introduces the quantitative part of the
model, namely the conditional probability tables (CPTs)
and utility functions.

3.4.1. CPTs

Once the topology of the dynamic ID is specified, the
next step is to quantify the relationships between connected
nodes—this is done by specifying a conditional probability
distribution for each chance node and a utility function for
each utility node. As we are only considering discrete
variables, the conditional dependencies among the vari-
ables are characterized by CPTs. For each random node,
given a value assignment of its parents, a CPT is a
probability distribution over all possible values of the
random node. If the node has no parents, a CPT
degenerates to a priori distribution. For example, for the
node ‘‘workload’’, pðworkloadÞ denotes the prior distribu-
tion of the variable ‘‘workload’’ over the values ‘‘low’’,
‘‘normal’’, and ‘‘high’’. For an evidence node (say E linking
to EEG), the CPT pðEjEEG;Sensor ¼ onÞ is a distribution
of the variable E over the measurable range of EEG given
the EEG and that sensor is turned on.
Similarly, if a node has a temporal link, its CPT
characterizes the conditional dependence of the node on
its parent nodes, some of which come from the previous time
step. Let us take the affective state node as an example. Its
CPT pðaffectjprevious_affect, previous_assistance, context,
profile, goal, workloadÞ denotes a probability distribution
over the current affective states for each value assignment
of the parent nodes. In particular, if the assistance is null,
the CPT describes how the affective state evolves over
time given the values of other parent variables; if the
user is provided with an assistance, the CPT describes
how the assistance alters the user affective state given the
values of other parent variables. Fig. 8 gives some CPT
examples.
In general, CPTs are obtained from statistical analysis of

a large amount of training data. For this research, the CPT
parameters come from two sources. First, we refer to
several large-scale subjective surveys and domain experts
(Ortony et al., 1988; Picard, 1997; Rosekind et al., 2000;
Sherry, 2000; Picard et al., 2001; Zhang and Ji, 2005a) to
obtain initial CPTs. An experienced expert can often
produce rather accurate estimates of local probabilities.
For the case of a random node that has multiple parent
nodes, certain causal-independence assumptions (e.g.
noisy-or or generalized noisy-or principle, Diez, 1993;
Zhang and Poole, 1996; Lemmer and Gossink, 2004) may
be used to simplify the parameterization. Second, we
obtain training data from the human subjects study we
conducted. These data are then used to train the ID model
with the existing learning algorithms (Buntine, 1994;
Lauritzen, 1995; Jordan, 1999) such as the EM method
(Lauritzen, 1995). With the learning algorithm, the initial
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Fig. 7. Some variables and their states in the ID model.
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CPTs are automatically refined to match each individual
subject.

3.4.2. Utility

When deciding upon the user assistance and sensory
actions, we need to consider our preferences among the
different possible outcomes of the available actions. The
ID uses utility functions associated with utility nodes to
provide a way for representing and reasoning with
preferences. A utility function quantifies preferences,
reflecting the ‘‘usefulness’’ (or ‘‘desirability’’) of the
outcomes, by mapping them to real numbers (Kevin and
Ann, 2003). Specifically, for the proposed framework,
utility functions are defined according to the three types of
utility nodes. A utility node associated with the assistance
node only denotes the physical and interruption cost of
performing that assistance. We would assign a higher cost
to actions that require more resources and time, or
interrupt the user more. The cost would map to negative
values in the utility function. A utility node associated with
both assistance and affective state nodes denotes the benefit
(penalty) of providing appropriate (inappropriate) assis-
tance with respect to user affective state. For example, if a
user is very stressed, an appropriate assistance may be to
reduce workload, while an inappropriate assistance would
be to let the user continue his work or increase task
difficulty. Thus the former should be assigned a high
positive value while the latter should be given a low
negative value in the utility function. A utility node
associated with a sensory node denotes the cost of
operating the sensor for evidence collection. The cost
includes the computational cost, physical cost, etc. For
example, when a device is used to measure EEG, there is a
cost for operating the device as well as analysing the data.
We want to emphasize that all the utilities need to be
calibrated with a certain calibration standard so that they
can be appropriately used in the same ID framework.

4. Affect recognition and user assistance

Given the parameterized dynamic ID framework, this
section focuses on the techniques for recognizing affective
states and determining user assistance.

4.1. Overview

Fig. 9 outlines the main steps in applying the dynamic ID
to affect recognition and user assistance. This is achieved
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Fig. 8. Some examples of CPTs. Note for different subjects, the CPTs may be different.
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through ID evaluation. ID evaluation starts from the
current user affect, which is influenced by three streams of
information: one from the previous user state estimate, one
from the available contextual information, and one from
the performed user assistance at the previous step. Then, an
active sensing strategy is employed to decide an optimal
sensor set S�t as well as whether the sensors in S�t are worth
activating or not. If the sensors in S�t will benefit the
decision-making on user assistance and affect recognition,
these sensors are activated and new evidence E�t are
collected. The collected evidence is then propagated to
update user affect and the posterior probabilities of user
stress pt is computed with the dynamic inference technique.
If no new sensors are activated, the user affect is updated
with only the temporal information from the affective
states at the previous time step. Based on the updated
estimate of user state, the system determines the optimal
assistance d�t that maximizes the overall expected utility.
After the assistance is performed, the user state may change
and new evidence may need to be collected. Thus the
system goes to the next step and repeats the ID evaluation
procedure. With this systematic procedure, our model is
capable of deliberately choosing optimal sensors and
avoiding unnecessary sensory actions, efficiently recogniz-
ing user affective states, and providing timely and
appropriate assistance.
The procedure of deciding optimal sensors and user

assistance is actually to find an optimal policy for the ID
model. A policy in the model is D ¼ ðs1; . . . ; sn; dÞ consist-
ing of one rule (value) for each decision node, where si is a
value for each sensory node Si, and d is a value for the
assistance node. An optimal policy D� is the one that can
maximize the overall expected utility EU:

D� ¼ argmax
d

EUD, (1)

EUD ¼
X
aff

PDðaffÞgusa
ðaff ; dÞ þ PDðdÞgua

ðdÞ

þ
X

i

PDðsiÞgui
ðsiÞ, ð2Þ

where aff indicates the affective state node, gua
, gusa

, gui

are the utility functions for the utility nodes associated
with the assistance node, both the affective state and
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assistance node, and the sensor nodes, respectively.
Considering the special structure of the ID model
and time precedence of the decision nodes, finding the
optimal policy is to decide the optimal sensory actions
first with the active sensing strategy, and then decide
the optimal decision for user assistance. Such an optimal
policy decides a timely and appropriate assistance using a
sensor set that has the best tradeoff between cost and
benefit.

4.2. Active sensor selection

Although a lot of sensors are available in the system, the
usage of more sensors incurs more cost for acquiring
information. For making a timely and efficient decision on
user assistance as well as efficiently recognizing user affect,
it is important to avoid unnecessary or unproductive
sensory actions. This is accomplished with active sensing.
By deliberately choosing sensors, active sensing attempts to
identify a set of sensors that achieve the optimal tradeoff
between the benefit and cost of the sensors. The benefit is
that the evidence collected by the sensors may provide
informative knowledge for decision-making on user assis-
tance and user affect recognition, e.g. it may change the
choice of optimal assistance, reduce the uncertainty of
user affect, etc. The cost includes both physical and
computational cost. Both the cost and benefit are
quantified by the utility functions in the ID model. Thus,
in what follows, we exploit utility theory to derive a
criterion for active sensing.
We use value-of-information (VOI) to guide the selection
of sensors. The VOI of a sensor set is defined as the
difference in the maximum expected utilities with
and without the information collected from this set. It
evaluates the valuableness of a sensor set by considering
both the benefit and cost of using the sensors. Let S be a
sensor set, the VOI of S, VOIðSÞ, for the specific ID, can be
defined as

VOIðSÞ ¼ EU ðS;CoÞ � EUðS̄Þ ð3Þ

¼ EU ðSÞ � Co� EU ðS̄Þ, ð4Þ

EUðSÞ ¼
X

E

PðEÞmax
d

X
aff

Pðaff jEÞgusa
ðaff ; dÞ þ gua

ðdÞ

" #
,

(5)

EUðS̄Þ ¼ max
d

X
aff

PðaffÞgusa
ðaff ; dÞ þ gua

ðdÞ

" #
, (6)

where Co ¼
P

Si2S gui
ðSi ¼ 1Þ is the total cost activating

the set of sensors and E is the evidence collected from the
sensor set S. EUðS;CoÞ denotes the expected utility to the
decision maker should the sensors in S be activated. We
assume the delta property holds. The delta property states
that an increase in value of all outcomes in a lottery by
an amount D increases the certain equivalent of that lottery
by D (Howard, 1967). Thus, EU ðS;CoÞ ¼ EUðSÞ � Co.
EUðSÞ denotes the expected utility to the decision
maker, with its cost set to zero. And EU ðS̄Þ denotes the
expected utility to the decision maker, without activating
the sensor set S. If the VOI of a sensor set is positive,
it means the expected benefit caused by the sensor set is
larger than the cost. Also, it means the information
collected by activating the sensors may change the choice
of optimal assistance. An optimal sensor set S� is the one
that has the maximum VOI. However, if the maximum
VOI is negative or zero, no sensors will be activated. The
benefit of such a criterion is that sensors are activated and
used only if they could benefit current decision-making on
user assistance, therefore avoiding unnecessary sensory
actions.
To get an optimal sensor set, we can enumerate all the

sensor combinations and compare their VOIs. However, it
is impractical to find the optimal set in this way since the
number of sensor combinations is increasing exponentially
as the number of sensors. In practice, we use a greedy
approach by ranking each individual sensor based on its
VOI and then pick the first m sensors, where m is
empirically decided. Our experiments show that the
selected sensor set with this approach is usually the one
with maximum VOI among all the sensor sets whose size is
not larger than m. We are working on developing more
sophisticated active sensing approaches in more general
case (Zhang and Ji, 2005b).
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4.3. Optimal user assistance

After deciding the optimal sensor set, the values of the
policy D ¼ ðs1; . . . ; sn; dÞ are fixed except the d part.
Deciding the optimal user assistance is to find d�t achieving
the optimal tradeoff between the cost and benefit of
the assistance given the evidence collected from the
optimal sensor set S�t . The cost of an assistance may
include operational cost, interruption cost, and the cost
of delaying or not providing the assistance. The benefit of
an assistance is characterized by its potential to return
the user to a productive affect state. Let e�t be the
evidence collected after activating the sensors in the
optimal sensor set, the optimal assistance d�t can be decided
as follows:

d�t ¼ argmax
d

EUdt
, (7)

EUdt
¼
X
aff t

Pðaff tje
�
t ; d
�
t�1Þgusa

ðaff t; dtÞ þ gua
ðdtÞ, (8)

where the sum is taken over every possible value aff of the
user state. The quantity EUdt

balances the benefit/cost of
taking appropriate/inappropriate assistance (the first
term), and the cost (the second term) of performing
assistance. The optimal assistance d�t is the one that
maximizes EUdt

among all available assistance. Please note
that one of alternatives of d is null assistance. Hence no
assistance will be provided if the null assistance alternative
has the maximum expected utility.

Once d�t is performed, it will alter user affect state unless
d�t ¼ Null; in this case, the user affective state will evolve
naturally. The steps repeat as shown in Fig. 9.
4.4. Affect recognition

Affect recognition is to estimate user affect from the
evidence collected from the selected sensor sets using the
dynamic inference technique. The system tries to estimate
the user affect at each time step t. We first introduce the
notations and then define the problem. We shall use the
first one or several characters of a node name to refer to the
node, i.e. w referring to workload, aff referring to affective

states. In addition, we subscript a variable by a step t to
refer to the variable at time t, i.e. aff t for affective states
node at time t. Under these notations, the ID model
specifies two probabilistic relationships: the user affect
transition model pðaff tjaff t�1;wt; ct; prot; gt; d

�
t�1Þ (d

�
t�1 de-

notes the assistance at time t� 1) and the evidence
generation model pðe�t jaff tÞ, where e�t is the set of evidence
observed at step t. The inference at step t is to calculate the
probability pðaff tje

�
1:t; d

�
t�1Þ. In case t ¼ 0, pðaff tje

�
1:t; d

�
t�1Þ

degenerates to the prior pðaff0Þ.
From a Bayesian point of view, the task is to compute

pðaff tje
�
1:t; d

�
t�1Þ from pðaff t�1je

�
1:t�1; d

�
t�2Þ recursively. The

task can be accomplished in two stages: prediction using
the predictive portion of the ID and correction using the
diagnostic portion. In the prediction stage, the prior
probability pðaff tje

�
1:t�1; d

�
t�1Þ of user affect at step t is

calculated as follows:

pðaff tje
�
1:t�1; d

�
t�1Þ ¼

X
aff t�1;wt;ct;prot;gt

fpðwtÞpðctÞpðprotÞpðgtÞ

�pðaff t�1je
�
1:t�1; d

�
t�2Þ

�pðaff tjaff t�1;wt; ct; prot; gt; d
�
t�1Þg ð9Þ

In the correction stage, the evidence set e�t is used to update
the prior pðaff tje

�
1:t�1; d

�
t�1Þ by Bayes’ rule:

pðaff tje
�
1:t; d

�
t�1Þ ¼

pðe�t jaff tÞpðaff tje
�
1:t�1; d

�
t�1Þ

pðe�t je
�
1:t�1; d

�
t�1Þ

¼
pðe�t jaff tÞpðaff tje

�
1:t�1; d

�
t�1ÞP

aff t
pðe�t jaff tÞpðaff tje

�
1:t�1; d

�
t�1Þ

. ð10Þ

5. Experiments with synthetic data

In order to validate the proposed framework, we have
built a simulation system. We first report experiments with
the focus on one affective state, and then extend it to the
multiple affective states case.

5.1. Simulation system

We develop a simulation system that simulates a so-
called truthful user, represented by a source model, and an
observed user, represented by a working model. Both
the working model and the source model have the
same structure and parameters as the ID model in Fig. 6,
while they perform different functions. The source
model produces evidence reflecting the true affective states
and accepts user assistance, whereas the working model
accepts the perturbed evidence, uses the evidence to
estimate user affect, and determines what assistance to
provide.
Fig. 10 illustrates how the simulator works. Initially, the

source model begins with a probability distribution for the
affective state representing true user affect. Next, the source
model generates a set of evidence through a top-down
inference. Based on the VOI criterion (Section 4.2), the
working model determines a set of sensors, collects a set of
perturbed evidence generated from the source model,
decides optimal user assistance d� (Section 4.3), and
estimates the observed user affect (Section 4.4). In the
meanwhile, the source model performs the user assistance
d� to update the true affective state. The simulation
procedure repeats at the next time step.
Actually, the relationship between the source model and

working model is similar to the relationship between a
patient and a doctor. A doctor (a working model) decides
what tests (sensors) to perform on a patient, makes a
diagnosis (estimates user affect), and treats the patient
(decides user assistance). A patient (a source model) shows
symptoms (evidence) because of some illness (true user
affect), and accepts treatment (receives user assistance).



ARTICLE IN PRESS

Produce Evidence E*

Perform d*

Collect Evidence E'*

Source Model Working Model

Decide Optimal Sensor Set S*
S*

Estimate User Affect

True User Affect

U
pdate U

ser A
ffect

Observed
User Affect

E*

d*
Decide Optimal d*

Fig. 10. A simulation system to validate the ID framework.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Appropriate assistances

Time steps

S
tr

es
s 

le
ve

l

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
No assistances

Time steps

S
tr

es
s 

le
ve

l

Source
Estimation
Assistance

Source
Estimation
Assistance

Fig. 11. Appropriate and timely user assistance vs. no assistance. In the left chart, the system provides timely and appropriate assistance. In the right, the

system does not perform any assistance and degenerates to a recognizer of affective states. Solid (dashed) curve indicates the true (estimated) stress level

from the source (working) model; triangle denotes assistance. The initial stress level in both the source model and working model is .5.

W. Liao et al. / Int. J. Human-Computer Studies 64 (2006) 847–873860
A good doctor should make correct diagnosis and treat a
patient correctly; thus a working model should estimate
user affect correctly and provide appropriate and timely
user assistance, which is also the criterion we will use to
evaluate our framework.
1We refer any stress level that is greater than .8 as high.
5.2. Simulation results

We have conducted experiments to show that the ID
framework is capable of providing accurate estimation of
affective states as well as offering timely and appropriate
assistance. The experiments were conducted with the ID
model shown in Fig. 6. First, the ‘‘affective states’’ node
only models one affective state as stress, and it will be
extended to the multiple affective states case later. We note
that the specific design of assistance may vary with the
applications. In the experiments, four types of assistance
are designed: null, warning, alleviating, and intervening.
Null means there is no assistance; warning is conveyed by
playing stirring music or displaying an exhilarating scene;
alleviating is to reduce workload on the user; and
intervening may entail removing the user from control.
5.2.1. Appropriate and timely user assistance

The goal of our system is to provide timely and
appropriate user assistance. Timely assistance means that
the assistance is provided at time that the user is in a
negative emotional state. Appropriate assistance optimizes
the tradeoff between the benefits of bringing the user to a
productive state and the cost of performing an assistance
and interrupting the user.
Fig. 11 compares changes in the user’s simulated

emotional state when no assistance vs. appropriate
assistance is provided. The left chart confirms that the
system provides assistance only when the stress level is
relatively high; at most times the system does not provide
assistance since the user can maintain a productive state.
Moreover, the performed assistance effectively reduces user
stress level. Consequently, over all steps, the user maintains
a reasonable stress level in the source model. Although we
have designed four kinds of assistance in the system, only
the first two (null, warning) are performed because the user
never has a chance to reach a high stress level1 due to the
timely and appropriate assistance.
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In contrast, as shown by the right chart in Fig. 11, the
user assistance system degenerates to an affect recognizer if
we set the costs of performing user assistance to be infinite.
In this case, the system will never provide any assistance.
Without any assistance, user stress level increases as time
goes on. However, as shown by the chart, the system can
still recognize user affect. Note that the estimated stress
level from the working model is quite close to the stress
level in the source model. The two curves track each other
very well.

5.2.2. Affective states recognition

This subsection shows that the working model can
recognize the affective states even without knowing the
initial state precisely. The results are demonstrated in
Fig. 12. The two charts show that the system is effective in
recognizing affective states when the working model has no
prior knowledge of the user affective states at all. The left
chart is the recognition results for the case in which the
source model starts with a highly stressed state, whereas the
right chart is the recognition results for the case in which
the source model starts with non-stressed state.

5.2.3. Active sensor selection

Fig. 13 shows how recognition performance varies with
different sensor selection strategies. The left chart demon-
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Fig. 13. Performance varies with dif
strates the performance using our active sensing strategy,
whereas the right chart shows the performance when
sensors are randomly selected. Obviously, the active
sensing leads to a better recognition performance. The
average recognition error of using active sensing strategy is
around 0.02, while the average error of random selection is
around 0.07.

5.2.4. Multiple affective states recognition and user

assistance

We also applied our methodologies to the case of
recognizing multiple affective states and providing user
assistance. We simulated three affective states—stress,
fatigue and frustration. The results are shown in Fig. 14.
From the top to the bottom, the results are shown,
respectively, for stress, fatigue and frustration. In each
chart, the solid curve denotes the truthful user affect, while
the dashed curve denotes their estimations. For each
affective state, it can be seen that the dashed curve is close
to the solid one. This indicates that the ID works well in
recognizing multiple affective states. In addition, the
assistance is generated only when the user is at a high
level of negative affective states; further, the user is
occasionally provided only with warning assistance,
which is the least intrusive assistance. Consequently, the
system can provide timely and appropriate assistance.
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Fig. 15. The human–computer interaction environment: (a) overall hardware set-up; (b) emotional mouse; (c) visual sensor.
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6. Human affect recognition validation with real data

6.1. System overview

We present our experimental results for recognition of
two affective states—stress and fatigue. We begin by
introducing our implemented system, the experimental
environments, as well as the protocol to validate our
framework. This is then followed by a report of our
analysis results.

The HCI environment is shown in Fig. 15. During
experiments, a user sits in front of a computer screen and
responds to the tasks presented in the screen. A visual sensor
suite, which is shown in Fig. 15(c), is used to monitor the
user in real-time. It consists of three cameras: one wide-angle
camera focusing on the face and two narrow-angle cameras
focusing on the eyes. In addition, an emotional mouse (see
Fig. 15(b)), which is built from a regular tracking-ball mouse
by equipping it with physiological sensors, is used to collect
physiological and behavioral data. Furthermore, a log file is
created in the computer to record the user’s performance
data on the tasks that the user is working on. Under such a
system set-up, various user state measurements characteriz-
ing the user can be extracted simultaneously and non-
intrusively in real-time.
Fig. 16 gives an overview of the user affect monitoring

system. It consists of three conceptual components. First,
visual, physiological, behavioral and performance mea-
sures are extracted from corresponding sensors. Second,
two statistical methods—correlation analysis and analysis
of variance (ANOVA), are used to select the most
discriminative features regarding user affect. Third, a
dynamic influence diagram (DID) is constructed to infer
user affect, which consists of a parameterization procedure
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to customize the DID to individual users with machine
learning techniques, an active sensing strategy to select an
optimal set of features for purposive and sufficing
information integration, and a dynamic inference techni-
que for efficient user affect recognition.

6.2. Feature extraction

6.2.1. Physical appearance features

We have developed a set of non-intrusive computer
vision techniques for monitoring eyelid movement, eye
gaze, head movement and facial expression in real-time
(Gu et al., 2002; Ji, 2002; Zhu et al., 2002; Ji et al., 2004;
Zhu and Ji, 2004, 2005). A number of visual features that
can characterize a person’s affective states are extracted.
Our visual measurements consist of 10 features extracted
from the real-time video: Blinking Frequency (BF),
Average Eye Closure Speed (AECS), Percentage of
Saccadic Eye Movement (PerSac), Gaze Spatial Distribu-
tion (GazeDis), Percentage of Large Pupil Dilation
(PerLPD), Pupil Ratio Variation (PRV), Head Movement
(HeadMove), Tilting Frequency (TiltFreq), Yawning Fre-
quency (YawnFreq), and Mouth Openness (MouthOpen).
The entire extraction procedure is divided into four
relatively separate components—eye detection and track-
ing (extracting BF and AECS), gaze estimation (extracting
PerSac, GazeDis, PerLPD and PRV), facial feature
tracking (extracting Mouth Openness, Yawning Fre-
quency) and face-pose estimation (extracting Head Move-
ment and Tilting Frequency).

Visual feature extraction starts with eye detection and
tracking, which serves as the basis for subsequent eyelid
movement monitoring, gaze determination, face orienta-
tion estimation and facial expression analysis. A robust eye
detection and tracking approach is developed via the
combination of the appearance-based mean-shift tracking
technique and bright-pupil effect under infrared light
illumination (Zhu et al., 2002). Thanks to this combina-
tion, the eyes can be tracked under various face orienta-
tions and variable lighting conditions. Even though the
eyes are completely closed or partially occluded due to the
oblique face orientations, our eye tracker can still track
them accurately. After tracking the eyes successfully, the
eyelid movement can be subsequently monitored and the
relevant eyelid movement parameters can be computed
accurately.
In order to estimate the eye gaze under natural head

movement and minimize the personal calibration, a
computational dynamic head compensation model is
developed (Zhang and Ji, 2005). The model can auto-
matically update the gaze mapping function to accommo-
date the 3D head position changes when the head moves.
Consequently, the gaze tracking technique allows free head
movements in front of the camera but still achieves high
gaze accuracy; meanwhile, the technique reduces the
number of gaze calibration procedure to one time for each
user. After estimating the eye gaze successfully, the gaze
movement can be monitored and the relevant gaze
parameters can be computed accurately.
To analyse the facial expressions, 28 facial features

around eyes and mouth are selected for tracking (Zhang
and Ji, 2005a). Each facial feature is represented by a set of
multi scale and multi orientation Gabor wavelet. At each
frame, based on the possible region for each facial feature
as constrained by the detected pupils, the initial positions
of each facial feature can be located via Gabor wavelet
matching. In order to achieve a robust and accurate
detection, the initial feature positions are then refined by a
flexible global shape model based on active shape model
(ASM) that constrains the spatial relationships between the
detected facial features. To account for face poses, the
global face shape model, which is learned under frontal
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Fig. 17. A sample screen showing the measured physiological signals.
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faces, is dynamically deformed via the previously estimated
face-pose parameters to accommodate the face geometry
changes. Thus, the correct global spatial constraints can
always be imposed over the facial features so that they can
be still tracked robustly under varying face orientations.
Moreover, we also introduce a multi state face shape model
in order to handle different facial expressions. Finally, a
confidence verification procedure is carried out as a
post-processing to handle cases of mis-tracking or self-
occlusion. As a result, our technique is robust and
insensitive to the variations in lighting, head motion, and
facial expression.

Given the tracked facial features, the 3D non-rigid facial
motion caused by the facial expression is estimated using a
proposed motion extraction method. It will automatically
eliminate the 3D head motion from the tracked facial
features, therefore, the 3D non-rigid facial motion caused
by the facial expression can be extracted under arbitrary
face orientations. Then based on the extracted 3D non-
rigid facial motion, a probabilistic framework is utilized to
recognize the facial expressions by integrating the DBNs
with the facial action units (AUs) from psychological view.
Because of the successful modeling of the spatial and
temporal behaviors of the facial expression via the
proposed framework, the facial expressions can be
recognized robustly and accurately under various face
orientations. Six standard facial expressions can be
recognized in the system (Zhang and Ji, 2005a).

In the face-pose estimation, we developed a technique
that automatically estimates the 3D face pose based on the
discovered facial features (Zhu and Ji, 2004). First, in order
to minimize the effect of the facial expressions, our
approach only chooses a set of rigid facial features that
will not move, or move slightly, under various facial
expressions for the face-pose estimation. Second, these
rigid facial features are used to build a face shape model,
whose 3D information is first initialized from a 3D generic
face model. With the use of a frontal face image, the
generic 3D face shape model is individualized automati-
cally for each person. Third, based on the personalized 3D
face shape model and its corresponding tracked facial
features, our approach exploits a robust random sample
consensus (RANSAC)-based method to estimate the face-
pose parameters. Since this method automatically removes
the inaccurate facial features, face-pose parameters can be
always estimated from a set of facial features that are
accurately detected in the face image.

6.2.2. Physiological, behavioral and performance evidence

To collect physiological features, an emotional mouse
was built from a regular tracking-ball mouse by equipping
it with physiological sensors. The emotional mouse
measures heart rate, skin temperature, GSR and finger
pressure. The mouse is designed to be non-intrusive. One
sample measuring screen is shown in Fig. 17.
For behavioral evidence, we monitor a user’s interac-

tions with the computer, e.g. the mouse pressure from the
finger (MousePre) each time when the user clicks the
emotional mouse. Performance data is extracted from a log
file that keeps track of user’s response to the tasks, e.g. for
the tasks in stress recognition, math/audio error rate
(MathError, AudioError) and math/audio response time
(MathRes, AudioRes) are extracted; for the tasks in fatigue
recognition, response time, omission errors, and commis-
sion errors are extracted.

6.3. Stress recognition

6.3.1. Experiment design

Although the system is flexible enough to recognize
multiple affective states, currently, we use the system to
recognize only stress and fatigue. One fundamental
difficulty in validating a stress monitoring system is the
absence of ground-truth stress data. Some experiments
have shown that even user self-reports are erroneous
and unreliable. Fortunately, the existing results from
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psychological studies show that occupational stress is
affected by two job characteristics: demand and control
(Karasek, 1979; Searle et al., 1999). Demand refers to the
amount of attention and effort required for a user to carry
out a job. We will interchangeably use demand and
workload. Control primarily refers to the decision-making
freedom presented in a job. It is predicted and confirmed
that a user becomes more stressed when workload is high
or when control is low (Searle et al., 1999).

In our study, we work on designing the experiments that
are able to manipulate a subject’s stress level by deliber-
ately varying the task workload while fixing the control
during the task trials. While task workload causes stress,
they are not the same. To model their relationships and to
infer stress from workload, we construct a BN as shown in
Fig. 18. The directed links in the BN represent the casual
relationships between the connected nodes. Specifically, for
the stress study, the subject performs math and audio tasks.
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Fig. 18. A Bayesian network model for inferring the ground-truth stress

from the task workload.
Varying the pace of the two tasks causes a change in
workload, which, in turn, causes a change in subject’s
stress. After parameterizing the model with training data,
the subject stress can then be inferred from the task levels.
Since each person relates stress and workload differently,
the model can be individualized to each subject.
During the experiments, the user is required to perform

two different tasks: a math task that requires the addition
or subtraction of two two-digit integers, and an audio task
in which single letters of the alphabet are presented. For
the math task, the user has to decide whether the answer
presented on the screen is correct or not; for the audio task,
the user has to either indicate whether the current letter
precedes or follows the prior letter in the alphabet, or,
determines whether the current letter ðtÞ is equal to or
different from the letter that was two back ðt� 2Þ. Two
types of task trials are arranged: single-task trial, where
user performs only math or audio task; and dual-task trial,
where user performs both math and audio tasks simulta-
neously. Each experiment session consists of approximately
eight 10-min blocks. For the single-task trial, each block
consists of eight intervals of 72 s (seconds) and the tasks are
presented at the speed of 1, 2, 4, or 6 s. While for the dual-
task trial, each block consists of 16 intervals of 36 s and the
tasks are presented at the speed of 2, 4, or 6 s in each block.

6.3.2. Stress modeling

The structure of the dynamic ID for user stress is
presented in Fig. 19. We set the cost of performing user
assistance to be extremely high. Under this setting, the
model degenerates to a stress monitor.
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, we skip the sensory nodes and utility nodes that are associated with the
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6.3.3. Results

Multiple subjects of different ages, genders and races
have been tested in the system. Each subject attends one
experiment session (eight blocks, around 80min). For each
subject, the data from five blocks are used for learning with
the EM learning algorithm (Lauritzen, 1995), while the
data from other three blocks are used for testing. In the
following, we only report the results from six subjects,
where three of them (A, B, C) perform the single-task trial,
and the other three (D, E, F) perform the dual-task trial.

6.3.3.1. Stress vs. individual features. To demonstrate the
relationship between each individual feature and stress, we
carried out three types of statistical analysis—cumulative
analysis, correlation analysis, and ANOVA test, where
cumulative and correlation analysis are performed on the
dual-task trial, and the ANOVA test is performed on
the single-task trial. These analysis will help parameterize
the DBN model.

In the cumulative analysis, we try to analyse the
sensitivity and robustness of each feature to stress in
average. The stress is divided into three levels and the
feature values are grouped by each stress level. Then, the
mean and standard deviation of individual feature in each
group are computed. If a feature is sensitive to stress, the
mean values vary with different stress levels; and if a
feature is robust to stress changes, the standard deviations
are small. Fig. 20 illustrates the results of 11 features for
three subjects in the dual-task trial. It demonstrates that
most features are sensitive and robust to the stress. As
stress increases, a participant blinks less frequently, closes
the eyes faster, dilates the pupils more often, focuses the
eye gaze more on the screen, moves the head and opens the
mouth less frequently, and clicks the mouse button harder.
In the meantime, the heart rate increases, and GSR
decreases. However, for different subjects, the same feature
may have different levels of sensitivity to stress. For
example, blinking frequency is a very good feature for
subject D and F, while its mean values for subject E vary
little as stress level changes. Thus, it is necessary to train
the DID model for each subject.

In the correlation analysis, we study how feature values
change as the stress changes over time. Fig. 21 illustrates
the correlation curve between stress and three features in
the dual-task trial for subject E. For charts (a) and (b), as
stress level increases, the subject’s pupil dilation is larger
and his gaze focuses more on the central region of the
computer screen where the math tasks are displayed. By
contrast, chart (c) represents a negatively correlated
relationship between AECS and stress: as stress level
increases, the subject’s average eye closure speed becomes
slower. These observations are consistent with those in the
cumulative analysis.

However, in real-time, individual features are not always
reliable. Let us take the coefficients between stress and
PerLPD as an example (Fig. 21(a)). Although it is
approximately positively correlated to stress, negative
coefficients occur in a time period; in addition, at some
time steps, the coefficients fall below .3, thereby indicating
that the correlation between stress and PerLPD is some-
how weak. However, by combining the individual features
with the DBN model, the inferred stress level has a very
high correlation with the ground-truth stress, as will be
shown later.
ANOVA is another statistical analysis to quantitatively

determine the sensitivity of each feature to user stress.
Table 1 displays the ANOVA test results for subjects A, B
and C in the single-task trial. The data in each cell indicates
the p-value. If the p-value is less than 0.05, it is believed the
test result is statistically significant, which means the
feature is sensitive to stress. The table shows most features
are sensitive to stress. Similar to cumulative analysis,
it shows that, for different subjects, the same feature
may have different degrees of sensitivity to stress.
For example, AECS is sensitive to stress for subjects
A and B, while it is insensitive for subject C. Also, some
features, e.g. AudioError, are almost not sensitive for all
the subjects.

6.3.3.2. Stress inference with single-modality features vs.

multiple-modality features. Our system has extracted
four-modality features for stress recognition. One question
is whether all these features are necessary or not. The
experimental results demonstrate that single-modality
features are not sufficiently precise for stress recognition,
while multiple-modality features integrated by the DID
model are very helpful for accurate stress inference.
Fig. 22 shows the results for the single-task trial. The x-

coordinate indicates the ground-truth stress level from 1 to
4, and the y-coordinate indicates the means (the median
points of the bars) and standard deviations (the heights of
the bars) of the inferred stress levels. Ideally, the mean
values should be very close to 1, 2, 3, and 4; the standard
deviation should be quite small. However, as shown in Fig.
22(a)–(c), the results are not good enough when only using
single-modality features. The mean values are not very
close to 1, 2, 3, 4, and the standard deviation is not small.
The inference result from the performance-modality
feature is the worst. One possible explanation is that user
may make more efforts to maintain his performance when
stress level increases. Thus, the performance does not
correlate well with stress. The inference result from the
physiological features is better. However, sometimes the
physiological signals may not be accurate enough since
the user may move his hand irregularly while using the
emotional mouse. Compared to other single-modality
features, the visual features bring better inference result,
which is contributed by our robust computer vision
techniques in the system.
In summary, single modality alone cannot infer the stress

reliably because it cannot provide enough features to infer
the stress. Therefore, we tried to combine all these four
modalities together to infer the stress. Fig. 22(d) displays
the inferred stress results with multiple-modality features
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Fig. 20. The relationship between individual features and stress in the dual-task trial: (a) PupDiff; (b) PerLPD; (c) BF; (d) AECS; (e) PerSac; (f) GazeDis;

(g) HeadMove; (h) MouthOpen; (i) heart rate; (j) GSR; (k) finger pressure. Vertical bar denotes standard deviation, and the median point denotes mean

value. Each chart plots individual data for three subjects (subject D—solid line, subject E—dashed line, and subject F—dotted line) for the dual-task trial.

All the feature values are normalized to zero mean and unit standard deviation. GSR feature for subject E was not available.
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Fig. 21. The correlation curve (running average correlation coefficients) between individual visual features and stress for subject E in the dual-task trial:

(a) PerLPD vs. stress; (b) GazeDis vs. stress; (c) AECS vs. stress. In the x-coordinate, the time unit is second.

Table 1

Summary of sensitivity results with ANOVA test in the single-task trial

Features Subject A Subject B Subject C

HeartRate .0001 .0026 .0040

GSR .0019 .2289a .0324

FingerPressure .0000 .0013 .0009

AECS .0062 .0001 .0557a

BF .0000 .0000 .0070

GazeDis .0000 .0036 .0723a

PerSac .0000 .0002 .0318

PerLPD .0000 .0204 .0747a

PupDiff .0002 .0001 .0510a

MouthOpen .0036 .0163 .1440a

HeadMove .0000 .0094 .1841a

MathError .0004 .0009 .0377

MathRes .0000 .0000 .0141

AudioError .0846a .0918a .3285a

AudioRes .1684a .1979a .0000

The data denote the p-values.
aThe values denote that the feature is not sensitive to stress changes for

the corresponding subject.
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using the DID model. The mean values of the stress indexes
are close to the desired values. Quantitatively speaking, the
average mean values for the three subjects are 1.18, 2, 2.98,
and 3.93, which are much more closer to the desired values
compared to charts (a)–(c) in Fig. 22. The standard
deviations are also smaller (.08, .08, .1, .06), which means
the inferred results from multi modality evidence are more
consistent, accurate, and robust than those from single-
modality evidence.

6.3.3.3. Stress recognition. Since single-modality features
are not capable of recognizing user affect very well, our
system integrates the multi modality features and performs
efficient stress inference with the active sensing strategy
proposed in Section 4.2. The experiments prove that our
system can successfully monitor human stress in an
efficient and timely manner. We show the inference results
for the dual-task trial as an example.
The results for subject D are shown in the top two charts
in Fig. 23. For each chart, the solid curve denotes the
ground-truth stress and the dashed curve denotes the
inferred stress levels. The top-left chart shows inferred
stress based on six types of evidence. The top-right shows
inferred stress based on 10 types of evidence. In both cases,
the evidence selected is dynamically determined by the
active sensing strategy. We see that inferred stress curves
roughly trace the stress curves. In addition, we see that at
most time steps the stress inferred from 10 pieces of
evidence is more correlated to the actual stress than that
inferred from six pieces of evidence.

6.3.3.4. Active sensing. The remaining charts in Fig. 23
demonstrate that the active sensing approach outperforms
a passive (random selection) approach. The middle two
charts show the inference performances for the random
selection strategy, where the left selects six features and the
right selects 10 features. To quantitatively show how much
the active sensing approach outperforms, we conducted
statistic correlation analysis. In both charts, the solid
(dashed) curve denotes the correlation coefficients along
time steps between ground-truth and inferred stress with
the active (passive) sensing approach. In general, the solid
curve lies above the dashed curve. This implies that the
inferred stress is more correlated to ground-truth in the
active sensing case. Consequently, the active sensing
approach is effective in improving the inference perfor-
mance in efficiently estimating stress.

6.4. Fatigue recognition

In addition to stress recognition, the system has also
been tested in fatigue recognition on human subjects. The
study includes a total of eight subjects. Two test bouts are
performed for each subject. The first test is done when they
first arrive in the lab at 9 p.m. and are fully alert. The
second test is performed early around 7 p.m. in the
following day, after the subjects have been deprived of
sleep for a total of 25 h. During the study, the subjects are
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asked to perform a test of variables of attention (TOVA)
test. The TOVA test consists of a 20-min psychomotot test,
which requires the subject to sustain attention and respond
to a randomly appearing light on a computer screen by
pressing a button. The TOVA test keeps record of several
measures related to the subject’s behavior: the person’s
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response time when clicking the button, whether the person
correctly responds to the symbols, and if not, what kind of
mistakes the person makes. The response time is selected as
a metric to quantify a person’s performance so as to reflect
the ground-truth fatigue (Dinges et al., 1998).

6.4.1. Fatigue modeling

The structure of the dynamic ID for user fatigue is
presented in Fig. 24. We set the cost of performing user
assistance to be extremely high. Under this setting, the
model degenerates to a fatigue monitor.

6.4.2. Results

We have collected data from eight subjects of different
ages, genders and races. For each subject, part of the data
is used for learning with the EM algorithm (Lauritzen,
1995), while part of the data is used to validate the model.
Fig. 25 plots the estimated fatigue level vs. the actual
fatigue over time for three subjects. In each chart, it is clear
that the two curves’ fluctuation match well, qualitatively
proving their correlation and co-variation. The correlation
coefficients of the two curves for the three subjects are 0.89,
0.91 and 0.88, respectively, therefore quantitatively proving
the good performance of the fatigue monitoring system.

7. Conclusions and future work

This paper presents a dynamic decision framework based
on IDA for simultaneously modeling affective state
recognition and user assistance. The technical issues
involve user affect recognition, active sensing and user
assistance determination. The proposed framework can be



ARTICLE IN PRESS
W. Liao et al. / Int. J. Human-Computer Studies 64 (2006) 847–873 871
used to unify the three tasks: (1) user affect recognition by
probabilistic inference from the dynamically generated
evidence of different modalities, (2) active sensor selection
by selectively combining the most effective sensor measure-
ments for efficient and timely user state recognition, and (3)
automated user assistance by balancing the benefits of
improving user productivity in affective states and the costs
of performing possible user assistance. To validate the
proposed framework, we design a simulation system to
emulate user behavior in order to validate the model
correctness and effectiveness. The simulation results show
that the framework successfully realizes the two central
functions in intelligent user assistance systems. Further-
more, a non-invasive real-world human affect monitoring
system is built to demonstrate the user affect recognition
capability on real human subjects. Such a system
non-intrusively collects the four-modality evidence includ-
ing physical appearance, physiological, behavioral, and
performance measures. To our knowledge, this integration
from four-modality evidence, together with the probabil-
istic approach, is unique in user affect research.

Several directions deserve further investigations in the
future. First, although the proposed decision-theoretic
work has been validated in a simulation system, the
current real-time system does not fully integrate the
assistance function yet. We would like to work on it in
the future. Second, it would be interesting to integrate
more contextual information and observable evidence in
affect recognition. The contextual information such as
user’s age, physical fitness, and user’s skill level can further
improve the recognition accuracy and robustness. In
addition, the evidence from other modalities may
also embody user affect. For example, user acoustic
features have proven useful as reported in linguistic
research work (Ball and Breeze, 2000). The contextual
information and additional evidence can be integrated into
the proposed framework and further improve the accuracy
of user affect recognition. Third, our study reveals that a
simple model cannot be generalized well to each individual
since different persons may have different symptoms
even under the same affect. Instead, under the same
framework, an individual model should be constructed
for each person. One possible future research is to improve
the model learning algorithms so that the framework
can be better individualized. Finally, it would be interesting
and also necessary to integrate a computational
affect model with a cognitive user model in order to
identify the causes for certain user states and to provide
appropriate assistance. Our current work mainly focuses
on recognizing human affect from the external symptoms
and providing user assistance accordingly. Like other user
assistance systems, the user assistance is only superficial
since the current system does not really understand the
causes of the user affect. For example, the affective state
could be stressed; the cognitive steps that lead to user’s
stress may be numerous. The probabilistic user model
cannot figure out why the user is stressed. Understanding
the cause for user’s affect is crucial to offering correct
augmentation and appropriate assistance. In this regard,
we are investigating the integration of a cognitive model
based on ACT-R (Anderson and Lebiere, 1998) into the
loop so that it is feasible to analyse the sub symbolic
parameters in cognitive side and explain the identified user
affect. The ongoing research in this lab is pursuing in this
direction.
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