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Abstract
Modern sensors for health surveillance generate high volumes and rates of data that currently overwhelm operational
decision-makers. These data are collected with the intention of enabling front-line clinicians to make effective clinical judg-
ments. Ironically, prior human–systems integration (HSI) studies show that the flood of data degrades rather than aids
decision-making performance. Health surveillance operations can focus on aggregate changes to population health or on
the status of individual people. In the case of clinical monitoring, medical device alarms currently create an information
overload situation for front-line clinical workers, such as hospital nurses. Consequently, alarms are often missed or
ignored, and an impending patient adverse event may not be recognized in time to prevent crisis. One innovation used to
improve decision making in areas of data-rich environments is the Human Alerting and Interruption Logistics (HAIL) tech-
nology, which was originally sponsored by the US Office of Naval Research. HAIL delivers metacognitive HSI services that
empower end-users to quickly triage interruptions and dynamically manage their multitasking. HAIL informed our develop-
ment of an experimental prototype that provides a set of context-enabled alarm notification services (without automated
alarm filtering) to support users’ metacognition for information triage. This application is called HAIL Clinical Alarm Triage
(HAIL-CAT) and was designed and implemented on a smartwatch to support the mobile multitasking of hospital nurses.
An empirical study was conducted in a 20-bed virtual hospital with high-fidelity patient simulators. Four teams of four reg-
istered nurses (16 in total) participated in a 180-minute simulated patient care scenario. Each nurse was assigned responsi-
bility to care for five simulated patients and high rates of simulated health surveillance data were available from patient
monitors, infusion pumps, and a call light system. Thirty alarms per nurse were generated in each 90-minute segment of
the data collection sessions, only three of which were clinically important alarms. The within-subjects experimental design
included a treatment condition where the nurses used HAIL-CATon a smartwatch to triage and manage alarms and a con-
trol condition without the smartwatch. The results show that, when using the smartwatch, nurses responded three times
faster to clinically important and actionable alarms. An analysis of nurse performance also shows no negative effects on
their other duties. Subjective results show favorable opinions about utility, usability, training requirement, and adoptability.
These positive findings suggest the potential for the HAIL HSI system to be transferrable to the domain of health surveil-
lance to achieve the currently unrealized potential utility of high-volume data.
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1. Background and problem

Field experience shows that developing human–systems

integration (HSI) solutions for health surveillance opera-

tions is an extremely difficult problem. This challenge is at

the intersection of high-stakes decision making, complex

high-volume high-rate data, and complex human operator

roles. Front-line operators are responsible for performing

three very different types of multitasks simultaneously.

They must: (1) track the progress of activities, people, or

groups previously marked as ‘‘interesting’’; (2) scan high-

volume multi-source data for new things of interest; and

(3) manage the dynamic allocation of limited surveillance

resources, including the operator’s own cognitive attention.

High-volume and high-rate data may describe a complex

and rapidly changing situation, therefore a surveillance

operator must maintain his/her focus of attention on what

is ‘‘important’’, as this changes over time. The things that

seem ‘‘important’’ now can change. In addition, some

things that are currently unimportant may become ‘‘inter-

esting.’’ Operators have human cognitive limitations for

attention, and it is easy for them to become overwhelmed

with the track + scan + manage triple activity of surveil-

lance operations.

1.1 Generalizing human–systems integration
innovations from other surveillance domains

Examples of domains that require track + scan + man-

age surveillance by human operators include the follow-

ing: commercial aviation control; commercial aviation

cockpit control; nuclear power plant control; military intel-

ligence operations; cyber defense operations; insider threat

monitoring; maritime domain awareness; military anti-air

warfare (AA); etc. In each of these domains, operators

must organize their own cognitive multitask balancing to

accomplish their track + scan + manage responsibilities.

The data and knowledge requirements are different across

domains, but the metacognitive work of balancing limited

cognitive attention resources is similar.

Despite early enthusiasm for the potential to use fully

automated methods to pre-process large internet-derived

data sets for health surveillance, the problem is somewhat

difficult, due in large part to noisy input data.1 A review

of studies that exploited internet use and search trends to

monitor influenza and dengue shows that internet-based

surveillance systems have not demonstrated the capacity

to replace traditional surveillance systems and are best

viewed as an extension to traditional systems.2 These

results suggest that a useful health surveillance system will

likely need to integrate with healthcare providers and their

existing tools.

Scientific literature highlights successful HSI technical

innovations that have improved performance in

surveillance operations for other (non-health) domains.

HSI improvements that support operators’ track + scan

+ manage multitask workflow could potentially be gener-

alizable to health surveillance operations. The US Navy’s

Human Alerting and Interruption Logistics (HAIL) tech-

nology is a candidate for useful generalization to health

surveillance. The HAIL project started as domain-agnostic

basic research on metacognitive aiding to support interrup-

tion of operators with alarms/alerts during human–

computer interaction (HCI).

Supporting operator metacognition for triaging interrup-

tions was recognized as a technology shortfall for military

surveillance operations such as AA.3–5 The HAIL basic

research produced a foundational interdisciplinary theory

of human interruption that describes the metacognitive

processes of human interruption during surveillance opera-

tions.6 Laboratory research with human subjects discov-

ered a breakthrough technology for metacognitive aiding

called ‘‘negotiation-based coordination.’’7–9 HAIL was first

produced as a mature domain-independent technology inno-

vation, and then applied to AA surveillance operations to

improve operator performance under frequent alarm/alert

interruptions. This AA application of HAIL was transitioned

into the US Navy’s Aegis Weapon System (HAIL-AEGIS)

and is now supporting surveillance operations on the major-

ity of US Navy cruisers and destroyers.10,11

Many cognitive activities are similar for operators

between healthcare surveillance and AA surveillance oper-

ations. Operators from both domains must maintain situa-

tion awareness (SA) while performing rapid life-critical

multitasking in dense information environments with fre-

quent interruptions. Hospital clinicians performing health

surveillance for individual patients have some differences

to AA operations. The complexity of multitasking is some-

what higher in health surveillance, while the rate of inter-

ruption is somewhat higher in AA surveillance. Another

key difference is that, unlike AA operators who mostly

work seated at fixed consoles, hospital clinicians’ work is

highly mobile. A design effort was conducted to address

these differences and expand a HAIL application for

healthcare surveillance.

1.1.1 ‘‘Track-while-scan’’. Automation can support the track

+ scan + manage HSI workflow. For example, military

radar sensors support AA surveillance operations by auto-

matically balancing the use of limited radar resources to

collect data for both scan and track. This radar mode,

called ‘‘track-while-scan,’’ facilitates collecting data about

both known aircraft (‘‘track’’) and discovering new aircraft

(‘‘scan’’).12 A dynamic resource allocation algorithm runs

as a separate third process (the management, or ‘‘while’’

work). It considers the changing priorities and changing
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situation and re-plans a scheduled use of the shared

resource. Performance of the management (or ‘‘while’’)

function is especially important to mission success. Poor

management of limited radar assets for ‘‘track-while-scan’’

can result in loss of previously seen objects and/or failure to

detect new objects.

This automated ‘‘track-while-scan’’ function for data

collection is the same pattern as the human track + scan

+ manage workflow for using the data. Both provide a

dynamically balanced use of a limited resource (radar

energy or human cognitive attention) for accomplishing

multiple simultaneous activities. Both can usefully be

called ‘‘track-while-scan’’. In human military command

and control (C2) team workflow, inadequate management

of cognitive attention resources in human ‘‘track-while-

scan’’ activities can result in failed human performance of

scheduled tasks and/or failure to notice and respond to

important change. In this terminology usage, HAIL pro-

vides a set of ‘‘track-while-scan’’ HSI metacognition aid-

ing services that improve human operators’ multitask

balancing performance. Like radar automation, HAIL

helps human surveillance operators ‘‘track,’’‘‘scan,’’ and

manage (‘‘while’’).

Field studies from many domains report that workers’

attentional resources during ‘‘track-while-scan’’ activities

can be easily overwhelmed.5 For example, answering a cell

phone call while driving can overcommit drivers’ cogni-

tive attentional resources and negatively impact their per-

formance on ‘‘track-while-scan’’ responsibilities. Drivers

can make ‘‘track’’ errors (e.g., miss a turn) and/or ‘‘scan’’

errors (e.g., fail to notice the car in front stop unexpect-

edly). In field studies, practitioners from multiple different

domains complain about alarm designs that indiscrimi-

nately grab users’ attention resources to make her/him

attend to an alarm (the ‘‘scan’’ function). This ‘‘grab users’

attention’’ design approach would only be appropriate in

the rare case where the occurrence of a detected event is

obviously more important than anything else the human

practitioner may be doing. In hospital nursing, this could

perhaps be a valid ‘‘code’’ (a confirmed life-threatening

patient crisis). In the military C2 example, this might be a

confirmed launch of an inbound enemy missile.

1.1.2 Leveraging HAIL theory and analysis methods. The

‘‘track-while-scan’’ HSI analogy can be used as a frame-

work to analyze HSI problems for health surveillance

operations. The HAIL theory base frames surveillance

operations HSI problems in terms of the many different

multitasks that human operators have to manage concur-

rently. It also highlights the importance and complexity of

the operators’ meta-level task of continuously revising

their cognitive multitask plan. Only through constant effort

are people able to maintain their focus of attention on what

is important as this changes. In addition, this meta-level

work itself consumes a portion of the person’s available

cognitive attention resources. An analysis of the HSI

design challenge for surveillance operation from this per-

spective emphasizes the complexities of dynamic resource

allocation of human cognitive resources. The design must

also consider the scope of individual differences and learn-

ing effects for cognitive multitasking skills across the user

population.

HAIL methods for analysis of a HSI problem enable

researchers to build a model of the operators’ cognitive

and metacognitive workload and workflows. For example,

the occurrence of a new automatically generated alert may

not at first glance seem like a complicated HSI problem.

A naive device-centric HSI perspective may mistakenly

put requirements on the user to change his/her workflow

when receiving alerts –‘‘The operator needs to immedi-

ately respond to the alert and investigate.’’ In practice,

however, this situation can be extremely complex and sim-

plistic approaches to delivery of alerts often fail.5 A better

approach is to specify requirements of the system design

to support operators’‘‘track-while-scan’’ responsibilities.

Analysis of fieldwork has shown that a model of opera-

tors’ mental state at the time of an alert can reveal that

people’s cognition is fully engaged. At any point in time,

operators are likely involved in a complex multitask that is

taxing their cognitive limits for tracking, scanning, and

meta-level managing. Their cognitive working memories

would be stretched to capacity trying to remember the

details of each of the many multitasks on their cognitive

stack as they work sequentially through a multitask plan.

Within the context of the user’s current cognitive resource

allocation, a new alert is received as an interruption. It

breaks into this complex cognitive situation and demands

use of the person’s cognitive attention resources. He/she

may have only a tiny amount of this resource that is not

already committed. From the operator’s point of view, he/

she needs to accomplish a quick triage of the alert using

minimal cognitive attention resources. He/she needs to

judge the alert’s importance relative to everything else he/

she is cognitively holding onto, and then decide how/

whether to fit it into his/her multitasking plan. It’s almost

never a simple prospect for an operator to instantly drop

everything else and focus 100% of his/her attention on the

topic of the alert.

The HAIL interdisciplinary theory base shows that

operators use their metacognitive resources to perform

interruption triage. Some interruptions signal important

change that must be addressed. The majority, however, are

typically not actionable and do not merit any change in

multitask scheduling. HAIL delivers metacognitive HSI

services that empower users to quickly triage interruptions

and dynamically manage their multitasking. This helps

teams remain flexible to unexpected changes while
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protecting their primary multitask performance from possi-

ble distraction and error. HAIL is founded on basic HSI

research that models how human operators use metacogni-

tion to triage cognitive multitasking. HAIL services aid

operator metacognition in the following ways: (1) mini-

mizing the cost (effort, time, risk) of triaging interruptions

(alarms/alerts, etc.) as they happen; and (2) maximizing

the potential value of alerts with flexible alarm generation

automation.

An analysis of these costs and values of the data avail-

able for surveillance operations can reveal problems that

negatively affect operators’ ability to manage their atten-

tion resources. The costs of using data may be overwhel-

mingly high, and/or low average value of data streams

(including alerts) may be unusably low. Together with a

model of operators’ cognitive resource allocation for their

‘‘track-while-scan’’ workflow, an analysis of the value/

cost ratio of data can inform the design of HSI solutions

and HCI decision aids.

1.1.3 Leveraging HAIL technologies. The HAIL negotiation-

based coordination technology is a set of interactive HCI

services that support surveillance operators’‘‘track-while-

scan’’ HSI needs. A person’s internal dynamic resource

allocation of their cognitive attention resources must con-

sider the domain situation changes represented in the data

stream. The HAIL basic research discovered a break-

through that operators have the cognitive capacity and

valid need to be involved in triaging change.

Artificial intelligence (AI) algorithms have shown pro-

ficiency in pattern-matching for known patterns of inter-

est. They have also been applied successfully to recognize

novel situations. In practice, however, there is usually a

very high occurrence of ‘‘strange’’ situations that were not

foreseen when the AI was developed, and only a tiny frac-

tion of these are actually important to the surveillance mis-

sion. In contrast, people have much superior capabilities

for assigning the meaning of previously unknown

‘‘strange’’ patterns and determining which are of interest.

This capability allows people to deliver superior prioritiza-

tion of multitask handling of changing situations compared

to full automation. Existing HSI designs often do not real-

ize this potential because either (1) AI pattern-matching is

not exploited well and people are overwhelmed with

responsibilities to process high-volume raw data that could

better be done by automation or (2) AI is inappropriately

engaged as full automation to apply meaning and prioriti-

zation to the host of unexpected ‘‘strange’’ occurrences

that happen during operations.

Negotiation-based coordination supports users’ needs

to participate in the triage of change and prioritize their

multitask plan. Designing a computer-based aid to deliver

negotiation-based coordination is challenging because

users must work within a highly dynamic environment

with constantly changing task loading. HAIL provides ser-

vices for the following: (a) announcing alerts with context

packaging; (b) flexible control of AI pattern-matching

according to known policy; (c) user-controlled triage of

alerts and other interruptions; and (d) multitask context

recovery.

1.1.4 Leveraging HAIL evaluation methods. The HAIL focus

on operators’ metacognitive dynamic attention allocation

is useful for identifying the key evaluation metrics. HSI

metrics need to be at a systems level and not focused on

niche concerns about individual components.13 However,

since human cognition and metacognition are impractically

difficult to measure directly, it is important to find a key

observable external behavior for measuring performance.

If an operator is performing well on their ‘‘track-while-

scan’’ responsibilities, they will quickly notice ‘‘impor-

tant’’ changes in the situation and environment and thus

can prioritize their response. Under realistic heavy work-

load and complex high-volume data with wildly mixed

relevancy, operators should still be able to quickly recog-

nize ‘‘important’’ changes and respond. An ineffective HSI

system will not shelter users from becoming overwhelmed

by a high percentage of irrelevant data. HSI system design

must result in a favorable ‘‘value/cost’’ ratio, where the

value of data is improved through preprocessing, and the

cost of triaging is minimized.

1.2 Health surveillance operations by hospital nurses

Health surveillance operations focus on individual patients

in hospital and attempt to track their health status over

time. Hospital nurses working in acute care settings (e.g.,

medical, surgical, orthopedic, cardiac, and other non-

intensive care unit areas) are responsible for maintaining

global SA while attending to the needs of multiple

patients.14 SA is the activity of maintaining a continual

cognitive awareness of all dynamically changing aspects

of the work environment that are relevant to making prog-

ress toward work objectives. In the USA, acute care nurses

typically care for between four and six patients during the

course of an eight or 12-hour shift, with the panel chang-

ing as patients are discharged and admitted to the unit or

ward. Nurses perform mobile work and multitask among

the different patient rooms and other work areas, although

physically attending to only one patient at a time.15–18

Ebright and colleagues19 identify this organizational work

strategy as ‘‘stacking,’’ whereby nurses may leave one

task incomplete due to an interruption or other interference

(e.g., waiting for missing information) and move on to the

next one in order to optimize time and to increase the like-

lihood of completing other tasks during the shift.
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The cognitive work of the nurse is demanding and often

unpredictable.19–22 At the start of a shift, nurses may plan

the sequence of care for their patients. However, in prac-

tice there are a myriad of unplanned events and interrup-

tions that must be attended to and incorporated into their

multitasking. Most critical are acute changes in a patient’s

status, including physiological deterioration that can lead

to the onset of life-threatening crises. Therefore, as nurses

execute their planned work with individual patients or per-

form focused tasks such as medication administration, they

must also stay aware and apprised of all clinically ‘‘impor-

tant’’ changes in patient status (i.e., continuously tracking-

while-scanning) and be ready to dynamically revise their

multitask scheduling across all patients (i.e., manage their

surveillance resources).19,23 Because of the ubiquitous

nature of nursing work, interruptions, and the sheer num-

ber of short-duration nursing tasks, nursing workflow is

rarely a liner process.24 A nurse must be able to perform a

sequence of non-sequential mobile tasks and maintain vig-

ilance while simultaneously performing the meta-level

work of dynamically revising their multitasking schedule –

a ‘‘track-while-scan’’ workflow.

1.3 The alarm safety problem for healthcare

Many types of medical devices, including physiological

monitors and infusion pumps, are designed to generate

alarms that purposefully ‘‘require’’ immediate nurse

awareness and/or intervention at the device’s bedside loca-

tion.25,26 These clinical alarms, which primarily involve an

audible signal, are important for detecting acute changes

in physiological state (e.g., hypoxemia detected by pulse

oximetry), but can be a source of interruptions to nurses’

workflow.25–27 The rate of alarm signals in a hospital

(including all medical devices) is, on average, 350 alarms

per patient per day – equivalent to one alarm approxi-

mately every 4 minutes per patient.27,28 At this rate, a

nurse with four patients will experience an alarm approxi-

mately every minute. This interferes with their multitask-

ing workflow, breaks SA, and can cause harmful adverse

events for patients.29,30 Healthcare workers (and research-

ers) call this problem ‘‘alarm fatigue.’’31

1.3.1 Information overload due to alarms. Information over-

load due to the high frequency of clinical alarms is com-

pounded by the fact that only about 5–15% are clinically

significant.25,31–33 The other 85–95% of alarms are false

signals, signal noise, and artifact, or are clinically unim-

portant. The nurse must first hear the alarm (which means

they must be in the vicinity), enter the patient room, and

then because many alarms are not self-correcting, silence

or turn off the alarm. At this point they are required to

spend time in the room acquiring information to determine

whether it was clinically important. If the vast majority of

alarms are not important or clinically significant, then the

nurse must either expend considerable time going to the

patient’s bedside to determine whether or not each alarm

is actionable, or as several observational studies have

shown, may end up ignoring most alarms, some of which

may be signaling a life-threatening event, such as respira-

tory depression or hypotension. Due to the lack of auditory

differentiation among different devices and patients, a

nurse in the hallway or at the nursing station often cannot

tell what alarm is sounding,34 or whether an alarm is for

one of their patients or not, and may bet on the probability

that it is not theirs. Between 2005 and 2010 the Food &

Drug Administration (FDA) Manufacturer and User

Facility Device Experience (MAUDE) database identified

216 deaths related to medical alarms, one third of which

were related to nursing staff either not hearing the alarm,

inappropriately silencing or turning off the alarm, or not

responding for other reasons.35

The time and effort needed to check on a new alarm

leads to slower task performance36 and increases cognitive

disruption, which is associated with an increase in the rate

of medication errors.37,38 The constant distraction and

interruption of nursing workflow by alarms reduces the

amount of focused time nurses need for critical thinking

work (e.g., identifying subtle changes in patient vital signs

and laboratory results, then concluding that a patient is

developing sepsis).24 The cost of checking individual

alarms with high frequency makes it near impossible for

nurses to use audible alarm signals as a basis for clinical

decision making and task prioritization. This situation con-

spires to make the current value/cost ratio for alarms unu-

sably low.

In addition to interrupting workflow, alarms generate

auditory sounds (beeps) emanating from the device at the

bedside where the patient and family members are forced

to listen. In many instances, the nurse is not immediately

in a location to hear it. As a result, patients and family

members may be bothered and/or distressed by the beep-

ing, although there is little research to quantify this nega-

tive effects of alarms39,40

1.3.2 Solutions to reduce information overload due to
alarms. A range of solutions to the problem of information

overload due to clinical alarms have been proposed by the

Association for the Advancement of Medical

Instrumentation (AAMI), including improving device stan-

dards, institutional policies, and the national regulatory

environment.27 System-level solutions for improving

alarm management include efforts to decrease the overall

frequency of alarms (especially false alarms), the develop-

ment of ‘‘smart alarms’’ that have delayed audible signals

and self-correcting abilities so that the audible signal is
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silenced when the patient state returns to normal, and tai-

loring alarm threshold values not customized for the

patient.27,41 An additional and complimentary solution

involves developing a remote surveillance system where

relevant alarm signals are delivered directly to the nurse

using a mobile device (pager, wireless phone, mobile

phones, tablet, or smartwatch) so that the nurse: (1) is

aware that an alarm in another location is sounding; (2)

knows which device is alarming; and (3) does not have to

expend the cognitive, physical, or time costs of going to

the patient’s room if the alarm is non-actionable. In order

for this system to work optimally, several functions must

be in place, including providing enough contextual data so

that the nurse can triage alarms correctly (i.e., differentiate

between clinically important and clinically unimportant or

false signals) and the ability for the nurse to silence or

reset the alarm from the mobile device.

2. Aim and hypothesis

The goal of this research was to determine if HAIL meth-

ods, theory, and technologies could be used to improve

operator performance in health surveillance operations,

especially under high volumes of data and high rates of

alert interruption. HAIL services aid operator metacogni-

tion by (1) minimizing the cost (effort, time, risk) of tria-

ging interruptions (alerts and notifications) as they happen

and (2) maximizing the potential value of alerts with flex-

ible alarm generation automation. This study investigates

whether this HSI innovation could be leveraged for ana-

lyzing and explaining the HSI challenges for operators’

‘‘track-while-scan’’ workflow, developing interactive ser-

vices to support operator multitasking and articulating key

evaluation metrics.

A wearable prototype was designed and created as an

experimental platform that delivers HSI services to nurses.

This prototype leverages HAIL methods and is called the

‘‘HAIL Clinical Alarm Triage’’ application (HAIL-CAT).

It enables tracking the status of between four and six

patients simultaneously, as well as triaging clinical patient

alarms (and other alerts) with the contextual information

required to recognize important change amid a high vol-

ume of non-actionable data. The hypothesis was that the

introduction of this HAIL-inspired wearable metacognitive

aid for health surveillance would increase nurse perfor-

mance on their ‘‘scanning’’ responsibilities, while not

negatively impacting nurse performance on their ‘‘track-

ing’’ multitasking responsibilities. This hypothesis focuses

experimental design primarily on the central ‘‘scanning’’

concerns for defeating alarm fatigue and improving health

surveillance. It is possible that the HAIL-CAT prototype

could also improve nurses’ performance on their critically

important ‘‘tracking’’ responsibilities. However, a single

focus for this study was selected to maximize internal

validity and the statistical power of the results and to sim-

plify the experiment design. More detailed exploration of

the HAIL-CAT effects on ‘‘tracking’’ performance is indi-

cated for a future study.

An empirical investigation was conducted on 20–21

January 2015 to assess the potential for leveraging the

HAIL HSI innovation to improve nurse performance for

health surveillance operations under heavy workload con-

ditions. The newly designed HAIL-CAT wearable proto-

type (informed by HAIL theory, methods, and technology)

delivered a set of mobile, context-enabled alarm notifica-

tion services to support nurses’ metacognition for clinical

alarm triage.

3. Design of the Human Alerting and
Interruption Logistics Clinical Alarm
Triage user interface

The goal for the design of the user interface (UI) for the

HAIL-CAT was to present each nurse end-user with two

types of interactive services relative to each patient: (1) an

alerting service for delivery of integrated alarms from bed-

side monitors, infusion pumps (including a pump for

patient-controlled analgesia), and call light system events;

and (2) contextual information about the patient.

Additional literature shows the potential for intelligent

mobile routing of alerts to reduce the costs of checking42

and integrated context information in the display to

improve nurse awareness of patients’ changing status.15,43

Following a human-centered design protocol, the inter-

disciplinary research team utilized a design and develop-

ment process to develop and evaluate a new interface for

clinical alarms presented on a mobile and optimally wear-

able device. This five-step process, which is described in

more detail below, consisted of the following: (1) systema-

tic research to gain insight into the problem of information

overload due to the high volume and rate of clinical

alarms; (2) development of ideas to map interface compo-

nents with results of these insights; (3) refinement of these

concepts based on upon direct input from end-users; (4)

implementation of concepts into a workable prototype;

and (5) a rigorous evaluation with end-users.

Firstly, the team conducted a systematic literature

review to understand the past and current work being con-

ducted in wearable technology development and the cur-

rent literature on workflow for nurses and alarm

management strategies in a hospital environment. In addi-

tion, the team conducted semi-structured interviews with

three nurses at a large urban hospital to understand their

wants and needs, and the workflow of nurses surrounding

response to clinical alarms. It was during this part of the

design process that the newly available smartwatch was
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chosen as the platform for the alarm triage system, since

the majority of nurses interviewed said that a smartphone

in their pocket would be difficult to check with gloves on

and that attaching a smartphone to their forearm would be

heavy and not visible when wearing a medical gown.

Information from the literature review and interviews

was used to develop a series of interface design options

that could deliver alarm information on the small screen of

a smartwatch, and would be intuitive and useful for nurses.

Four graphic concepts were developed and then shown on

a computer screen to five different clinical experts. These

experts provided feedback about the utility and desirability

of these concepts and gave input on what additional fea-

tures would be needed. This information was then com-

piled and utilized to guide the next step of refinement.

This user feedback and our expert understanding of UI

requirements informed selection and refinement of one of

the design concept options. A process of iterative design

with rapid user feedback was used to refine this final con-

cept and develop a design prototype. In this process, the

prototype was presented on paper to nurses for feedback.

Based on this input, the various screen prototypes went

through another round of revision. In each revision, the

screen prototypes were shown to two or three experts. This

prototype was revised four times until the design feedback

reached convergence.

The focus of the design work was on creating a research

prototype to investigate nurse ‘‘scanning’’ performance,

not to develop a fully deployable commercial product. The

iterative design process dealt with multiple important prac-

tical issues related to patient safety and the technical feasi-

bility of deploying a reliable solution. One safety topic of

special concern for the design was the need to avoid

spreading infection between patients. The form factor of a

wrist watch raised the question of potential infection con-

trol issues. Iterative design cycles and pilot testing with

registered nurses (RNs), however, confirmed that most

nurses currently wear watches. Introducing a smartwatch

platform for use by nurses in most types of hospital units

was judged to probably not introduce any additional safety

risk to infection control.

The final design for the smartwatch-based HAIL-CAT

(Figure 1) presents alarm information in four screens that

are easily navigable by nurses. If there are no active alarms,

the nurse is presented with a home screen with a list of that

shift’s patients. In our experiment, nurses were given five

patients. From this home screen nurses can select a patient

and be presented with a list of alarms and other notifica-

tions that are current for that particular patient. Selecting

one alarm presents the nurse with the details of that particu-

lar alarm and contextual vital sign information about the

patient. This provides nurses with relevant information

about the broader context of the alarm in order to help

prioritize their attention and efforts. If one or more alarms

are active, the home screen becomes a list of alarms (for all

patients) that the nurse can quickly click on and review

with the aforementioned contextual information.

The design of the UI allows nurses to attend to their

planned multitasking (i.e., assessing patients, administer-

ing medications, coordinating care, etc.) while efficiently

triaging alarms and mitigating the potentially negative

effects of the alarm’s ‘‘interruption.’’ When an alarm

occurs, the nurse is alerted via a short, non-obtrusive vibra-

tion on their wrist. The nurses are able to see which patient

and which alarm is activated, the patient’s room, and vital

signs, including heart rate (HR), systolic blood pressure

Figure 1. Final user interface design of the Human Alerting and Interruption Logistics – Clinical Alarm Triage (HAIL-CAT) for a
smartwatch: (a) ‘‘All Alarms List’’; (b) ‘‘Home – Patient List’’; (c) ‘‘Individual-Patient-List’’; (d) ‘‘Individual-Alarm.’’
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(SBP), diastolic blood pressure (DBP), respiratory rate

(RR), and SpO2 (oxygen saturation of hemoglobin mea-

sured by pulse oximetry). The nurse is also presented with

the option to silence the alarm for a short period of time or

dismiss the alarm.

4. Research methods
4.1 Research design

This investigation uses a variant of a ‘‘clinical trial’’ eva-

luation design in which an experimentally controlled inter-

vention is introduced into a clinical work setting with a

clinician participant, but does not expose human patients

to any risk. The method is a ‘‘clinical trial in patient simu-

lation.’’ Participating clinicians perform highly realistic

multitasking within a full-scale simulated clinical unit, but

with patient mannequins instead of real people. The

experiment for this study was conducted in a 20-bed

patient simulation laboratory with teams of RN volunteers.

This ‘‘clinical trial in patient simulation’’ method provides

the benefits of experimental control and external validity

like in a traditional clinical trial. It allows within-subjects

repeated measures experimental designs that are extremely

useful for clinical study because there is a very great

diversity of workflow pattern and experience among

nurses. Also, like an observational study, it has the addi-

tional benefit of not exposing human patients to risk.

Further, it has the benefit of controlled repeatability that

dramatically increases the statistical power of the analyses

of results – something that neither a traditional clinical

trial method nor observational study support.

A within-subjects clinical trial in patient simulation

experiment was conducted in a 20-bed simulation labora-

tory that is a replica of an acute care unit or ward in a

modern hospital. Four teams of four nurses each (16 total

nurse participants) were enrolled in this experiment. Each

nurse was assigned responsibility to care for five simulated

patients located at random across the 20 beds in the simu-

lated hospital unit.

There were two treatment conditions: an experimental

treatment that included participants wearing and using the

HAIL-CAT on a smartwatch and a control condition with

no wearable aid. The four nurses within each session team

received conditions in the same order, but the order of

conditions across teams was randomized and balanced.

The 180-minute clinical patient care scenario used to eval-

uate the effects of the new HAIL-CAT prototype on nurse

performance had two 90-minute sessions to simulate two

sections of a single day. The first part of the scenario

simulated the start of a traditional nursing day shift (clock

time 8–9:30 a.m.). The second part of the scenario simu-

lated these same 20 patients toward the end of the shift on

the same day (4:30–6 p.m.).

4.2 Participants

Sixteen licensed RNs (15 female, 1 male) actively working

at one of seven hospitals within the Salt Lake City region

of Utah, USA, participated in the study. All nurse partici-

pants reported currently working in acute care, critical

care, or emergency department settings, and had experi-

ence caring for between four and six patients. The median

years of experience working as a RN in a hospital setting

was 6.5 years (range from 0.75 to 16 years). All 16 RNs

reported their attitude toward technology as either ‘‘posi-

tive’’ or ‘‘very positive.’’

4.3 Outcomes and measures

The ‘‘scan’’ metric of nurse performance was ‘‘how well

nurses could dynamically use the information streams to

recognize and respond to important change in their

patients’ statuses.’’ This was operationalized for the

experiment as the response time for nurses to arrive in the

affected patient’s room after an auto-generated alert/alarm

about an important change in the patient’s status. For the

purposes of this experiment, the nurse had to go to the

bedside in order to cancel the alarm (rather than having

the ability to remotely dismiss the alarm), so that the

response time for important and non-important alarms

could be compared.

The ‘‘track’’ metric of nurse performance was ‘‘how

well nurses performed their heavy assignment of pre-

planned shift tasks.’’ This was operationalized by observa-

tion from the two conditions of the overall time that nurse

participants took to complete their assigned tasks (assess-

ment, medication administration, clinical procedures, and

healthcare coordination) and noise level from active

alarms. The experiment tests whether use of the HAIL-

CAT prototype improves nurse ‘‘scan’’ performance with-

out negatively impacting their ‘‘track’’ performance.

4.4 Design of the simulation scenario for the
experiment

A two-part 180-minute scenario was designed with realis-

tic patient characteristics and simulated clinical data. As

described previously, nurses cared for their assigned

patients during the first 90 minutes of the simulation,

which represented 8–9:30 a.m., then paused and switched

experimental conditions (HAIL-CAT versus control) and

continued care for their same assignment patients, although

the timeframe moved ahead to 4–6:30 p.m. The morning

session involved administering morning medications and a

predefined set of nurse tasks and the afternoon session

included a late afternoon set of medications and another

predefined set of nurse tasks.
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Each of the four nurses was assigned responsibility for the

care of five patients, which represented a realistic yet heavy

nursing shift assignment. So that each nurse was exposed to

similar types and acuity of patients, we developed five differ-

ent patient archetypes (Table 1) and replicated them in four

sets, one set for each nurse on a team. Patients (mannequins

with simulated vital signs and device behavior) had different

names and were randomly distributed across the 20 beds in

the simulation laboratory. The vital signs for every patient

were individually generated using a custom autoregressive–

moving-average (ARMA) time series algorithm that was

parameterized using a validated model (based on actual clini-

cal data previously recorded) of the five different types of

patients. As a result, no two patients had the same vital sign

trajectory. Patients of the same type, however, had vital sign

simulations with the same median values for each vital sign

type. Subjective observations during the experiment showed

that nurses were unaware that their teammates were caring

for sets of patients that were similar to their own.

Before the start of the scenario, nurses received a

change of shift report consisting of paper medical chart

documentation summaries of each patient’s diagnosis, his-

tory, and orders for medical and nursing care. A list with

pre-scheduled tasks was also provided for every patient

and included the following:

• full standard assessment of each patient;
• charting all observations and care delivery;

• administer multiple prescribed medications for each

patient;
• perform prescribed procedures and treatments;
• carry out infection control precautions, including

full personal protective equipment (PPE) whenever

visiting the contagious patient (one of five for each

nurse);
• involve nursing leadership for anything serious;
• coordinate patients’ care with multiple other hospi-

tal workers.

Nurses were also asked to use their normal clinical judg-

ment in deciding how and when to respond to alarms and

call button events. This task loading was designed with

variation in workload over time to maximize realism.

Nurses were heavily loaded with pre-assigned multitasking

responsibilities for the first 60 minutes of both of the 90-

minute sessions. The remaining 30 minutes of each session

were loaded more lightly with pre-assigned tasks. The

PPE used to care for the infectious patient was a translu-

cent blue plastic, and allowed nurses to read the watch

through the PPE gown sleeve. High rates of health surveil-

lance data were available from patient monitors and infu-

sion pumps. Thirty alarms per nurse were generated in

each 90-minute segment of the data collection sessions;

only three were clinically important alarms. This repre-

sents the average rate (as reported in the literature) of rele-

vant and non-relevant alarms (i.e., false alarms, noise,

Table 1. Five simulated patient archetypes with types of actionable and non-actionable alarms.

Patient summary and simulated risk Simulated actionable changes trigger
alarms

Simulated non-actionable changes
trigger alarms

Contagious disease and recent surgery
(clinically inferable risk of sepsis
infection)

Simulated onset of sepsis causes
multiple physiological changes,
including triggering alarm for low
blood pressure

Unimportant status changes to infusion
pump device, and others

Heart disease (clinically inferable risk
of heart failure)

None Unimportant alarms related to
recurring low blood pressure, and
others

Recent surgery; patient-controlled
delivery of pain narcotic (clinically
inferable risk of respiratory
depression)

Simulated onset of respiratory
depression causes multiple
physiological changes, including
triggering alarm for low respiration
rate; Simulated occlusion of infusion
pump for pain narcotic

Unimportant status changes to infusion
pump device, and others

Blood clot in leg (clinically inferable
risk of pulmonary embolism)

Simulated occlusion of infusion pump
of anti-clotting drug; Simulated onset
of pulmonary embolism causing
multiple physiological changes,
including triggering alarm for low
SpO2 (blood oxygenation)

Unimportant status changes to infusion
pump device, and others

Pneumonia (clinically inferable risk of
respiratory distress)

Simulated onset of unknown distress
causing multiple physiological changes,
including alarm for low heart rate

Unimportant alarms related to
recurring low SpO2, and others
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and/or clinically unimportant).27 A call light system gener-

ated five additional notifications per nurse.

The vital signs for every patient were individually gen-

erated using a custom ARMA time series algorithm that

was parameterized using a model of the five different types

of patients (Equation (1)). Each scenario session (a.m. and

p.m.) included a set of changes from the normal simulation

baselines for each patient.

Equation (1) shows the ARMA time series used to gen-

erate simulated patient vital signs:

Xt = c+ εt +
Xp

i= 1

ui Xt�i +
Xq

i= 1

θi εt�i

4.5 Simulation facility

The 20-bed Intermountain Healthcare Simulation Learning

Center at the University of Utah College of Nursing (Salt

Lake City, UT) replicates a full-scale acute care hospital

unit or ward. Architecturally, it is a rectangular space with

a central nursing station in the middle and 10 hospital

beds on each side. Figure 2 shows one five-bed area with

the curtains opened. For the experiment, the curtains were

closed except for a door-sized opening in each. A call

light indicator is located near the ceiling in front of each

patient ‘‘room.’’ The patient mannequins used in this study

were SimMan� Essential patient simulators (Laerdal,

Wappinger Falls, NY, USA) situated in Hill-Rom–1000

hospital beds. The simulators reproduce breathing, heart

sounds, and peripheral pulses, and have realistic skin and

surface tissues with veins to receive intravenous (IV)

catheters and injections. Each patient ‘‘room’’ also con-

tained a full complement of hospital furniture, standard

gas interfaces (oxygen, medical air, Medivac suction),

pulse oximetry, communications systems (phone, call light

control, code button, and bathroom call button), a bedside

computer for documentation, a sphygmomanometer, and a

sharps disposal container. Every patient ‘‘room’’ was also

equipped with an android tablet that simulated an inte-

grated bedside monitor and up to two infusion pumps.

Figure 2. Simulation laboratory facility showing five patient ‘‘rooms’’ divided by curtains.

Figure 3. Patient simulator with identification and allergy bracelet, nasal cannula for oxygen delivery, peripheral intravenous
catheter, and pulse oximeter probe on a finger.
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Figure 3 shows one of the mannequins and its right arm

with patient ID bracelet, IV catheter, and pulse oximeter

finger probe.

At the central nursing station were two medication pre-

paration areas, each with an automated medication dispen-

sing unit (Omnicell, Mountain View, CA, USA; Figure 4).

Nurses in the study had to retrieve all medications from

these dispensing units and used medication preparation

supplies stocked in this central area. The central nursing

station also included two wall phones that nurses used to

call and speak with other hospital areas (e.g., pharmacy)

and the patients’ physicians to coordinate care.

4.6 Development of the alarm delivery system for the
experiment

HAIL informed the development of the HAIL-CAT

experimental platform to support a clinical trial in patient

simulation. Components for the alarm delivery system are

illustrated in Figure 4. The prototype is implemented on

Samsung Gear 2 watches using Java software technologies

and common-off-the-shelf (COTS) WiFi networking. It

provides a set of wearable context-enabled alarm

notification services to support users’ metacognition for

interruption triage. The smartwatch function was sup-

ported by a server-side integrated data environment and

analytics engine. A central experimental simulation server

provided patient vital simulation updates every second and

simulated scenario changes or ‘‘deviations’’ from patients’

normal statuses and it integrated all data, generated

alarms, supported integrated metacognitive-aiding alarm

mediation, and delivery services and delivered user-

directed information query services.

A scenario is defined by a set of patient vitals for the

duration of the experiment and a file that contains vital

sign deviations for the patients at various times throughout

the simulation. The patient vitals files represent the nom-

inal vital signs for the patient given that there is no health

event taking place. Vital information is sent to the respon-

sible nurse, where they are displayed on the watch and also

sent to the patient’s assigned bedside tablet. The deviations

file defines time when the vitals for a patient should devi-

ate from the normal behavior into a new mode. These

deviations have the potential to trigger alarms that are acti-

vated when vital signs cross specified thresholds. If an

alarm is triggered, an alert message is sent to the nurse and

to the patient’s bedside tablet. On the tablet, the alarm

Figure 4. Components for the alarm delivery platform include an administrator with control software wireless connected to an
android tablet at each patient bedside (only 12 of the 20 are shown), plus an android phone and smartwatch for each nurse (only
one of four are shown).
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information is displayed and an audible alarm begins to

transmit from the tablet. Along with the alert information,

the tablet also has buttons that can be used to temporarily

silence the alarm or to mark the alert as resolved. The alert

message is also sent to the nurse’s watch, where the infor-

mation is displayed as well as buttons to silence the alert

for either five or 15 minutes. The nurses are also able to

use the smart watch to view a list of all their patients, the

active and silenced alarms for their patients, and the cur-

rent vital signs of their patients.

4.6.1 Experiment software architecture. The software proto-

type was developed as a set of integrated programs and

applications on Android operating system (OS) mobile

COTS hardware and a Linux server on a PC laptop. The

solution consisted of the following: android tablets at each

patient bedside to simulate bedside monitors, infusion

pumps, and patient-controlled analgesia (PCA); paired

android smartphones (Samsung Galaxy 5) and Samsung

Gear 2 smartwatch for each nurse; and central control soft-

ware to manage wireless connections and execute the

simulation scenario for the experiment. Figure 5 shows the

HAIL-CAT platform components and their wireless

communications.

The system architecture design manages most process-

ing functions on the server side. This minimizes the

amount of mobile distributed code that has to be main-

tained and simplifies system operation. A Simulation

Controller reads the configuration files and distributes a

time-step message that indicates the progression of time

throughout the simulation. It also starts and stops all simu-

lations. A software component called the Nurse Manager

manages connections to the four nurse Android phones. It

also manages patient-to-nurse assignment mapping. It uses

this information to listen to messages coming across the

common message bus to determine which messages

need to be routed to which nurses. Another software com-

ponent, the Bedside Tablet Manager, maintains wireless

network data connections to the bedside tablets. It also

maintains the mapping of patient-to-bed assignment so

that messages can be routed accordingly. The Nurse

Manager and Beside Tablet Manager also receive mes-

sages for their wireless clients and forward messages onto

the common message bus so that they can be received by

other components of the software. The Patient Manager

software component simulates patient status. It sends out

current simulated vitals, monitors for alarm conditions,

and generates alarms according to a configuration policy.

A Data Logger listens to all the messages being sent over

the message bus and logs all the information necessary for

analysis.

4.7 Execution of the simulated scenarios in the
simulation laboratory

The study was approved by the University of Utah’s

Institutional Review Board and determined to pose ‘‘less

Figure 5. Human Alerting and Interruption Logistics – Clinical Alarm Triage architecture, including the integration of software components.
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than minimal risk’’ to nurse participants. Nurses were

compensated for participating. Instructions emphasized

that they were free to stop participation at any time.

After the nurse participants arrived at the simulation

laboratory, they read and signed a consent form, and

received orientation to the study procedures. This orienta-

tion consisted of an explanation of their responsibilities in

caring for five patients and an introduction to the facility

and training on the patient simulators. They received 10

minutes of training on the experimental platform that

included an orientation to the HAIL-CAT on the smart-

watch and smart phone and bedside tablets. (This training

was conducted prior to the start of the afternoon session if

nurses were using the smartwatch for that session.) Prior

to starting the morning session, nurses reviewed a printed

change-of-shift summary report and abbreviated medical/

nursing charts for their five patients, which including diag-

nosis, history, and medical orders.

During the entire scenario, each nurse was shadowed

by an observer wearing a hat-mounted video-camera for

hands-free high-definition (HD) recording. The observer

recorded the times (on paper with clipboards) that nurses

entered and exited each patient room and noted field

observations with unstructured text. Nurses were also fol-

lowed by a confederate ‘‘family member’’ (role played by

a research assistant) who used a script to support simulated

conversations between the nurse and patients and their vis-

itors. Whenever a nurse would approach a patient’s room,

this ‘‘family member’’ would quickly enter the room and

sit down on a chair near the patient. The ‘‘family mem-

ber’’ would open a magazine with the concealed script

inside in order to respond to all questions as if continually

present in the room, speaking with the patient frequently.

The ‘‘family member’’ would also respond verbally to any

question the nurse asked directly to the patient providing

information that would otherwise be accessible to the

nurse in a real hospital. ‘‘Family member’’ confederates

were well practiced in this process, and nurses were able

to have rapid realistically natural conversations with every

simulated patient and/or their family. Other confederates

in the scenario included two nurse practitioners who have

primary responsibility for the 20 patients and could answer

nurses’ queries, two certified nursing assistants who

assisted with patient care and activation of the call light

system, and an individual in a remote room answering the

phone and assuming the role of individuals in other hospi-

tal areas (for example, pharmacy, radiology, etc.) or the

patient’s primary physician. Observation and exit inter-

views confirm that nurses felt that the interactions with the

confederates were highly realistic.

After both parts of the scenario were completed,

nurses were asked to complete a survey that included

questions about demographics and work experience.

They also completed a 17-question usability survey

about the smartwatch-based HAIL-CAT and a series of

nine questions that compared using the HAIL-CAT on

the smartwatch to the control (i.e., not using the smart-

watch). Lastly, nurses participated in a semi-structured

interview conducted by the nurse’s observer experimen-

ter that focused on strengths of and issues with the

HAIL-CAT.

4.8 Data collection procedures

The server for the experimental platform collected four

types of comprehensive data logs. The first log type was a

second-by-second log of the vital values for every one of

the 20 simulated patients. These were the vital signs data

that were available to the nurses (HR, SBP/DBP, RR,

SpO2) and were included as part of the contextual informa-

tion provided with the alarms on the bedside tablets, and

on the smartwatches and smart phones under the treatment

condition. The second type of log was an alarm event log

that recorded state change events for every alarm. Each

alarm had a unique ID, and the alarm log captured the

from-state and the to-state. For example, when an alarm

was generated (because of a deviation above or below

threshold), the log shows it transitioning from its sched-

uled state to its active state.

The third type of log was a deviation log that recorded

simulation events related to device status deviation from

patients’ normal. Onset and change in deviation event

states were hidden from both observers and nurse partici-

pants (double blind). A deviation could drive a specified

patient’s vital sign either above or below the alarm thresh-

old. The system alarm generation mechanism would then

recognize this as an alarm state and initiate an alarm sig-

nal. Some deviations were designed not to cause alarms,

but to show some planned physiological change in associ-

ation with other deviations that would cause alarms. The

final type of log was a recording of screen transitions UI

events for use of the smartwatch. These were all of the

actions taken by nurse participants using the smartwatch

during the treatment condition of the experiment.

5. Results

The HAIL-CAT wearable prototype delivers HSI services

to support nurses’ complex ‘‘track-while-scan’’ workflow.

The experiment tests the hypothesis that this novel wear-

able prototype system will improve operators’‘‘scan’’ per-

formance while not negatively affecting their ‘‘track’’

performance. HSI support services for ‘‘track’’ multitask-

ing includes a mobile HCI function to enable a nurse to

check at-will on all of the patients’ statuses anytime and

anywhere. Nurses’‘‘scan" multitask responsibilities are
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supported by mobile HCI with hands-free alerting with

context information to minimize the cost to nurses’ cogni-

tive resources for triaging alert interruptions. The results

described here are organized by observations related to

support of nurses ‘‘scan’’ and ‘‘track’’ multitasks.

The HAIL-CAT also delivers HCI services to support

nurses’ meta-level responsibility to manage the dynamic

allocation of their own cognitive attention resources.

Observing this directly, however, is not practicable.

Instead, experimental effects of aiding nurse internal meta-

cognition performance are inferred through objective

observations of nurses’ external behavior on ‘‘track’’ and

‘‘scan’’ multitasks. A subjective exit questionnaire also

reports nurse participants’ opinions about the services and

comparison with baseline.

5.1 Effect on operator ‘‘scan’’ performance

The primary metric for vigilance or ‘‘scan’’ performance

was, ‘‘How quickly did a patient’s nurse arrive at the

patient’s bedside after a ‘clinically important’ (i.e., action-

able) alarm condition occurred (amid high ‘track’ multi-

task workload and high-volume high-rate non-actionable

information)?’’ The data are time delays until nurse

response (in seconds) for each of three important events

per nurse for each of the two conditions (a total of six).

When using the HAIL-CAT on the smartwatch, nurses

arrived at the patient’s bedside three times faster (median

time) when responding to an actionable alarm condition

(Figure 6).

These results support an assertion that HAIL-inspired

HAIL-CAT improves operator ‘‘scan’’ performance in

health surveillance operations. Times are truncated by the

end of the 90-minute scenario parts; therefore, any alarm

not responded to before the end is marked as completed at

that time. Considering this limitation and the fact that the

smartwatch only provides information delivery services

(no filtering), the three-fold observed improvement in

response time represents a very large and positive impact

on nurse clinical performance. The HAIL-CAT approach

shows strong potential to dramatically improve nurse team

performance with real patients.

Although the HAIL-CAT condition showed a striking

improvement in response time (median, standard devia-

tion, and max), nurse performance on the ‘‘scanning’’ task

was not perfect. Two outliers were observed with response

times of approximately 1500 seconds. This suggests the

importance of future work to further explore the limits of

optimizing nurse ‘‘scanning’’ performance. Observations

showed that nurses typically looked at each screen for only

a second or two. They also frequently shifted through two

or three screens rapidly in less than a second while navi-

gating the UI. Total accumulated UI interaction time for

nurses equaled only a few minutes.

5.2 Effect on operator ‘‘track’’ performance

The overall time that nurse participants took to complete

their assigned tasks (assessment, medication administra-

tion, clinical procedures, and healthcare coordination)

Figure 6. Nurse time to respond to clinically important alarms
(seconds).

Figure 7. Distribution of the number of active sounding
alarms.
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was equivalent with and without the smartwatch (t = 0.28,

p = .78). This finding demonstrates that use of the smart-

watch did not interfere with the normal nursing workflow.

The count of active sounding alarms in the simulation

laboratory was also recorded. The smartwatch allowed

nurses to silence alarm bed-side audio at will from the

wearable prototype. The overall audio noise level for the

20-bed simulation laboratory from active, sounding alarms

was much lower under the experimental smartwatch con-

dition (see Figure 7). This is not a negative impact on the

unit’s work environment for nurses performing ‘‘track’’

tasks and therefore supports the hypothesis.

5.3 Observations and subjective evaluations of the
HAIL-CAT prototype delivered to the smartwatch

During the experiment we observed the nurses utilizing the

watch frequently to prioritize their tasks and triage patient

alarms. In addition, we observed nurses using the watch to

check vital signs of patients at will. The qualitative find-

ings from the post-simulation interview indicate that nurses

perceived this technology as valuable, useful, and easy to

learn. The utility and usability of the smartwatch prototype

compared very favorably relative to baseline (no wear-

able). Nurses also responded favorably about the utility,

usability, and adoption of the prototype wearable services

(Figure 8). All nurses said they would use the HAIL-CAT

prototype for real work. Only one nurse indicated some

indifference. All 16 participants stated that the 10-minute

training session was adequate.

Exit interviews did not discover any concern for infec-

tion control issues for use of a wrist watch form factor.

Nurses said that the smartwatch would need to be able to

not take damage from being rubbed with hand sanitizer

after leaving each patient. Note that the smartwatch plat-

form adopted for this experimental prototype did not sup-

port being rubbed with hand sanitizer. To conduct a future

clinical trial with real patients would require a more clini-

cally mature prototype that could deliver on all patient

safety and device reliability concerns, including easy

sanitization.

6. Discussion and future work

The results indicate the potential value of future research

to explore whether HAIL-CAT can positively affect

nurses’ performance on ‘‘tracking’’ activities during heavy

multitasking and frequent interruptions. It would be worth-

while to explore the limits of utility of HAIL-CAT for

increasingly more intense situations and/or spikes of high

workload, information overload, and frequency of inter-

ruption of health surveillance operators. A high degree of

individual differences was observed for nurses. It would

be useful to explore the diversity of strategies adopted

for managing multitasking during interruption. The type

and amount of contextual information included in

Figure 8. Feedback regarding usability of Human Alerting and Interruption Logistics Clinical Alarm Triage for the smartwatch
platform on a Likert scale of 1 (strongly disagree) to 7 (strongly agree).
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announcements could be explored to try to optimize per-

formance. Future work could also explore the benefits of

noise reduction across the unit on patient and clinician

experience.

This article focuses on the HAIL metacognition meth-

ods and technology and their leverage to address health

surveillance for hospital acute care patients. Modeling

operator metacognition for interruption triage events

informs useful aiding services. Design and implementation

of the prototype are discussed in some detail. Technical

pragmatics of running the simulation experiment and data

collection are also included. Clinical description about the

scenario, experimental procedures, and results is summar-

ized at a high level to aid accessibility for a broad defense

science audience. Additional highly clinical details are

reported separately in a medical journal – interested medi-

cal professionals are invited to contact the authors directly

for more information.

7. Conclusions

Information overload is a debilitating problem that nega-

tively affects the performance of human operators working

health surveillance operations. Modern sensors for health

surveillance generate high volumes and rates of data that

currently overwhelm operational decision-makers. These

data are collected with the intention of enabling health

operations decision-makers to achieve SA and make effec-

tive decisions amid a changing health situation. Ironically,

HSI analysis shows that the flood of data instead causes

information overload in operators and actually degrades

their effectiveness. Information overload from clinical

alarms can blind nurses to important changes in patients’

statuses and hence delay their response to crises.

Results from this clinical trial in patient simulation

show that the US Navy’s HAIL HSI innovation from com-

bat systems can be leveraged to improve nurse perfor-

mance in hospital health surveillance operations. No

automated filtering was introduced. Instead, nurses were

provided with a wearable metacognition aid in the form of

the HAIL-CAT delivered to the nurse on a smartwatch to

support their need to prioritize their own cognitive atten-

tion resources. Nurses responded to clinically important,

actionable alarms three times faster on average when they

were using the HAIL-inspired wearable prototype. This is

a dramatic increase in nurse performance on their ‘‘scan’’

multitask responsibility to recognize important change in

patients’ statuses. No negative consequences were

observed affecting nurse performance on their pre-

scheduled multitasks – their ‘‘track’’ responsibilities.

Empirical observation, together with the domain-

independent foundation of the HAIL basic research, sug-

gests that the HAIL HSI theory, methods, and technologies

could generalize. It may be possible to create HSI solu-

tions that defeat data overload across multiple different

types of health surveillance operations.
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