
An Implicit Dialogue Injection System
for Interruption Management

Tomoki Shibata
Tufts University

Medford, MA, USA
tshibata@cs.tufts.edu

Alena Borisenko
Tufts University

Medford, MA, USA
alena.borisenko@tufts.edu

Anzu Hakone
Tufts University

Medford, MA, USA
anzu.hakone@tufts.edu

Tal August
University of Washington

Seattle, WA, USA
taugust@cs.washington.edu

Leonidas Deligiannidis
Wentworth Institute of Technology

Boston, MA, USA
deligiannidisl@wit.edu

Chen-Hsiang Yu
Wentworth Institute of Technology

Boston, MA, USA
yuj6@wit.edu

Matthew Russell
Tufts University

Medford, MA, USA
mrussell@cs.tufts.edu

Alex Olwal
Google Inc.

Mountain View, CA, USA
olwal@google.com

Robert J.K. Jacob
Tufts University

Medford, MA, USA
jacob@cs.tufts.edu

ABSTRACT
This paper presents our efforts in redesigning the conventional
on/off interruption management tactic (a.k.a. “Do Not Disturb
Mode”) for situations where interruptions are inevitable. We intro-
duce an implicit dialogue injection system, in which the computer
implicitly observes the user’s state of busyness from passive mea-
surement of the prefrontal cortex to determine how to interrupt the
user. We use functional Near-Infrared Spectroscopy (fNIRS), a non-
invasive brain-sensing technique. In this paper, we describe our
system architecture and report results of our proof-of-concept study,
in which we compared two contrasting interruption strategies; the
computer either forcibly interrupts the user with a secondary task
or requests the user’s participation before presenting it. The latter
yielded improved user experience (e.g. lower reported annoyance),
in addition to showing a potential improvement in task performance
(i.e. retaining context information) when the user was busier. We
conclude that tailoring the presentation of interruptions based on
real-time user state provides a step toward making computers more
considerate of their users.

CCS CONCEPTS
• Human-centered computing → Interaction techniques.

KEYWORDS
Interruption, functional Near-Infrared Spectroscopy (fNIRS), Im-
plicit User Interfaces, implicit interactions, implicit dialogue injec-
tion, HumanSketch
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1 INTRODUCTION
Improvements in smart computer technologies seem also to be
forcing users to live with constant interruptions. Emails, texts,
and even software update notifications interrupt and draw users’
attention away from their tasks.

Some systems already provide a Do Not Disturb Mode feature to
fight against indiscriminate computer notifications. Yet, the feature
may not be appropriate when some notifications must be received
and acted upon in a timely manner. The “Do Not Disturb Challenge”
points out that “notifications may affect people negatively, but they
are essential” [31].

Some current smartphones and other devices could automatically
toggle the feature by taking environmental context, such as time and
location, into account. However, most such options still only control
when the computer can interrupt the user. In this paper, we propose
an alternative that modifies how the computer should interrupt
the user by taking the user’s internal, physiological context into
account in cases when the interruptions are unavoidable.

Consider a simple scenario where you want to ask a question
to your team member at work. She is in a room next door and the
door is half open. Before speaking to her, you almost unconsciously
leverage your perception to determine how busy she is. If you figure
she is in the middle of doing something, you could knock on the
door first to check her availability; otherwise, you might speak to
her immediately.

While this scenario is feasible for humans, it has heretofore been
impossible for a computer due to its inability to recognize a user’s
state of busyness in an implicit way. To address this, we introduce
an implicit dialogue injection system that permits the computer to
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exploit measurement of the user’s momentary state to modify its
behavior. The system introduces two key concepts: (1) HumanS-
ketch, a conceptual human model exposing the user’s “busyness” in
a form that the computer can understand, and (2) implicit dialogue,
the method for the computer to perceive information exposed by
HumanSketch. We deployed the system as an interruption man-
agement technique, in which the computer implicitly obtains the
user’s momentary busyness right before triggering an interruption;
it can thus select its interruption strategy accordingly.

In order to determine busyness, our design calls for using func-
tional Near-Infrared Spectroscopy (fNIRS) to measure changes of tis-
sue oxygenation in the prefrontal cortex (PFC) and Support Vector
Machine (SVM) to encode these changes into degrees of busyness.

As a proof-of-concept, our user study simulated a collaborative
environment, in which the user works on an on-screen, memory
intensive primary task, while the computer works in parallel on a
different task. During the user’s primary task, the computer, pre-
sumably in need of assistance, interrupts the user to introduce a
secondary (interruption) task. When triggering an interruption, the
computer selects one of two interruption strategies: one forces the
user to immediately perform the interruption task, and the other
allows the user to start handling of the interruption at the time of
their choosing.

To estimate the maximum potential of our approach within a
single user study, we simulated and used a perfect human model,
in which the difficulty level of the user’s assigned task at the mo-
ment was treated as a proxy measure of the user’s busyness at that
moment. At the same time, our system encoded its fNIRS measure-
ments of the user’s brain into degrees of busyness in real time and
logged them as the performance of the actual HumanSketch model,
which we used for later analyses.

We measured user performance of both the primary memory
task and the interruption task, including interruption and resump-
tion lags. We also collected subjective ratings of annoyance and
respect [1] in terms of the computer’s strategies, in addition to, task
workloads assessed with NASA-TLX [12].

The main contributions of this paper are: (1) creation of a proto-
type system that leverages the user’s momentary busyness to select
one of two interruption strategies; (2) a user study measuring its
best case performance with perfect measurement of user state; and
(3) an experimental evaluation of our ability to approximate such
measurements on actual tasks in real time.

2 RELATEDWORK
Past work has explored the effects that interruptions have on a
user’s ability to complete tasks, and developed context-aware inter-
ruption systems to deliver interruptions at opportune times.

Effects of Interruptions. McFarlane and Latorella [25] identi-
fied the importance of interfaces handling interruptions effectively
as a key challenge in HCI, arguing that as human-computer inter-
faces shift towards delegation and supervision, designing system
to intelligently interrupt a user will become increasingly important.
Brumby et al. [7] showed that interruptions can have a detrimen-
tal effect on a user’s performance; after being interrupted, users
tended to make more errors on their resumed task. However, they
showed that this effect was mitigated by a forced time lag after the

interruption; users resumed the task slowly and therefore were less
error-prone post-interruption. Users also tend to be slower to com-
plete interrupted tasks, especially cognitively complex ones [6, 8].

Kushlev et al. [22] showed that high levels of smartphone notifi-
cations correlated with self-reported hyperactivity and attention
deficit, suggesting that interruptions can spread a user’s attention
too thin. Iqbal and Horvitz [19] found in a field-study with a system
having only on/off interruptions that users with no interruptions
(off) self-interrupted in order to seek out new emails or view notifi-
cations.

Past work suggests that interruptions can be damaging to a user’s
work flow, yet are also important for the user to feel aware of what
is going on around them. We expand this work by presenting a re-
designed interruption management system that is aware of a user’s
busyness level, allowing interruptions in appropriate manners.

Context-Aware Notification System. Some researchers have
developed interruption systems that intelligently use context infor-
mation to balance notifications with other tasks. InterruptMe [30] is
a mobile application that leverages a user’s context, such as location,
time of day, and activity to deliver notifications at the least disrup-
tive time. Users reported higher satisfaction and faster response
times compared to a context unaware system. Interruption systems
that interrupt the user at identified breakpoints in a workflow are
also more effective at reducing user frustration [1, 18].

Bounded deferrals [13] provide another example of a context-
aware interruption system, where users can defer incoming no-
tifications for a specified amount of time, allowing for minimal
distraction to handle notifications and specify it for a less busy time.
Another system, PRIORITIES [14], balances contextual cost of inter-
ruption and criticality of email. The system determines these costs
via analysis of user activity and content of messages. Automatic
email delivery mediation systems [21] aimed at notifying users at
times of lower workload, resulting in email being less disruptive to
users when using the system. BusyBody [15] is another example of
a system that can predict a user’s interruptibility during a certain
task.

Yuan et al. [37] argued that interruption systems should have
more gradations than just interruptible or not and introduced an
interruption model for smart phone users using personality traits
in their user model (but not measured user state) to predict how
busy–and therefore how interruptible–a user was.

Many of the above systems rely on information not intrinsic
to the user’s cognitive load and attention, but instead focus on
task information. Systems could be more aware of the user using
sensing technologies. For example, PAUI [10] uses physiological
sensors (EEG, HRV) to measure user’s mental load to modulate
interruptions. Our work extends these context-aware interruption
systems by showing the viability of brain sensing technology as an
input modality for determining how a computer interrupts its user.

Brain sensing technology in HCI research. Brain sensing
technology has improved to the point where it can be used in man-
aging interruptions. While several techniques, particularly EEG can
be used, we focus on functional Near-Infrared Spectroscopy (fNIRS)
in this paper. For example, Solovey et al. [33] built an interface that
detected and adapted to a user’s mental state of multi-tasking using
fNIRS, showing that these mental states could not be measured
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by conventional means such as response time or keystrokes. CAR-
SON [28] used both brain measurement and the importance of a
message to find the best timing for its delivery. Additionally, Phyl-
ter [2, 32] demonstrates the use of fNIRS to deliver interruptions in
an auxiliary display.

Brain sensing has been demonstrated successfully in a variety of
other experimental real-time HCI settings as well, such as dynami-
cally adjusting task difficulty [3], on-screen target expansion [4],
anger detection [5], and learning [38]. fNIRS has also been used
for evaluating a visualization interface [29] and for studying the
effects of web form layout [23].

We expand this work by focusing on a user’s busyness level in-
ferred frommeasurements of fNIRS, making it a potentially effective
input modality for intelligent interruption systems.

3 IMPLICIT DIALOGUE INJECTION SYSTEM
We learn from anecdotal experiences that people often use the five
senses to coordinate their actions when communicating with others.
Therefore, we consider a key to making a computer well-behaved
is to give the computer the ability to sense its user. It will become
increasingly crucial to find appropriate behaviors of computers
as we approach an era in which humans work with AI and more
intelligent computers.

3.1 System Architecture
To begin working towards coordinating computers’ behaviors, we
developed the implicit dialogue injection system, in which the com-
puter is granted access to measurements of the user’s momentary
state; therefore, it now can select its behavior accordingly.

Figure 1 illustrates the workflow of the implicit dialogue injec-
tion system. The system consists of two key concepts: (1) HumanS-
ketch, a conceptual human model that captures a user’s momen-
tary state inferred from physiological measurements of the user,
and (2) implicit dialogue, a form of query-response message ex-
changes between the frontend computer, serving a human-facing

Figure 1: The workflow of the implicit dialogue injection
system: The backend computer keeps taking in brain signals
and (1) updating HumanSketch. When the frontend com-
puter needs to interrupt the user, the computer injects an im-
plicit dialogue which (2) queries and (3) obtains a response
from HumanSketch. Lastly, considering the response (busy-
ness), the frontend computer (4) selects its interruption
strategy (Force or Negotiate; See also Apparatus).

program, and the HumanSketch. The system architecture follows
the Command-Query Separation principle (CQS) [26], in which a
command updates a HumanSketch and a query, issued to the Hu-
manSketch via an implicit dialogue, allows the frontend computer
to perceive the state of the user, used to coordinate its behavior.

Unlike conventional explicit dialogue conversations (e.g. a com-
puter responds to user’s mouse clicks), an injection of the implicit
dialogue conversation can take place at any moment without the
user explicitly getting involved in the process. We thus claim that
our system is a realization of “implicit interactions” [20] specialized
for the case of a computer communicating with a human user.

3.2 Implementation
We use our implicit dialogue injection system as the foundation
upon which to implement an interruption management technique.
Our implementation involved two separate software applications,
frontend and backend, each of which corresponds to one of the
two computers shown in Figure 1. The frontend application, using
HTML and JavaScript, served as the human-facing program (See
Apparatus). The backend application, written in Java, contained
a HumanSketch model and was responsible for updating it with
measurements.

We used functional Near-Infrared Spectroscopy (fNIRS), measur-
ing changes of tissue oxygenation in the prefrontal cortex (PFC),
and combined with a Support Vector Machine (SVM) to encode
the changes into the degree of busyness. The encoding was our
attempt to create a mapping from a state of probed region relating
to cerebral activities [11, 16] to busyness (busy or not).

3.2.1 Updating HumanSketch. The bottom part of Figure 1 shows
the signal processing pipeline to update the HumanSketch. The
fNIRS device (Imagent from ISS Inc., Champaign, IL) and its ac-
companying software (Boxy) measured changes in oxygenated and
deoxygenated hemoglobin concentration, HbO and Hb (in µM) re-
spectively, at the probed region (PFC), and sent them to our backend
application.

We used two custom forehead probes, each of which arranged the
four light sources and one detector. The source-detector distances
were 0.8 (cm) for one pair and 3.0 for the other three. At each
source, two light wavelengths, 690 and 830 (nm), were emitted. A
low-pass filter of 0.5 (Hz) was applied to remove high frequency
noises mainly due to motion artifacts. The total 16 data channels
(i.e. 8 per HbO and Hb) were sampled at 17.36 (Hz); we used the 12
channels corresponding to the 3 cm source-distance pairs.

A baseline correction was applied to each channel to find relative
changes from the baseline mean. Using a 30-sec moving window
frame, chosen to accommodate the relatively slow changes in fNIRS
measurement, the feature extraction process was performed approx-
imately twice per second. Within the process, the mean and linear
regression slope of the second half of the window frame per channel
were calculated, and were treated as the features of an instance for a
machine learning classifier. This process was our attempt to capture
trend changes in the time series data. Feature normalization, using
the Min-Max scaler, was applied to each feature, whereas the scale
range was determined at the calibration phase (see Procedure). The
normalized instances were fed to a model (LIBSVM, version 3.21 [9]
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with the linear kernel), and the classification result, busy or not
busy, was used to update the HumanSketch.

In training the SVM model at the calibration phase, the grid
search [17] was performed to find the hyperparameter (C) for the
SVM. For each search, 5-fold cross validation was performed 5 times
and its average was used to mitigate effects on randomly selecting
training and validation dataset within this process. The SVM model
was trained per participant; the computation to train a model took
a couple of minutes beyond the actual training data collection.

3.2.2 QueryingHumanSketch. We followed the server-clientmodel.
Our frontend application initiated a connection and queried our
backend. Upon receiving a query, the backend application responded
with a string message “busy” or “not busy” in the JSON format. The
message exchanges were performed over the TCP/IP protocol.

4 METHOD
The main objective of the user study was twofold: (1) find effects of
modulating a computer’s strategy in making interruptions based on
a user’s busyness; and (2) evaluate our ability to infer the busyness
in real time from brain measurements. To understand the maximum
potential of our approach, we used a simulation of a perfect human
model in our deployed system, in which the ‘known’ difficulty of
the primary task was considered as the user’s busyness. Meanwhile,
the deployed system kept updating the actual HumanSketch model
in real time and logged the inferred user’s busyness every time the
computer needed to interrupt the user.

As a proof-of-concept, we created a stripped down scenario
where a user and computer collaborate to achieve a shared goal. The
computer sometimes needed assistance from the user to complete
its task, which resulted in an interruption on the user-assigned task.
We used an on-screen, memory-intensive card matching task as
the user’s primary task. The task is a proxy for a range of common
computer usage in a real world setting, but provides us sufficient
control for the user study. We introduced two task difficulty levels,
Easy and Hard, to modulate the user’s busyness, and chose to
examine two types of interruption strategies, Force and Negotiate.

In our experiment, each session consisted of two phases: the cal-
ibration phase for training the supervised machine learning model,
followed by the experiment phase in which the main scenario de-
scribed above took place.

4.1 Participants
We ran our experiment on 10 participants (4 female) aged between
18 and 35 (mean 23.2, SD 5.0). All participants were recruited via
flyers posted on a university campus, were right-handed, had nor-
mal or corrected-to-normal vision and spoke English at a native
level. All were paid US $10 per hour of the experiment duration in
addition to a potential performance bonus of US $5. All the experi-
ments were conducted in a quiet laboratory space, and each took
approximately 90 minutes.

4.2 Apparatus
A stationary desktop computer and 20-inch widescreen monitor
were used, and the participants performed tasks using a regular
mouse and keyboard.

4.2.1 Memory Task. Figure 2 shows the interface of the memory
task, which is an engaging cardmatching game, similar to Tasse et al.
[34]’s work. The initial board state was a 4×5 grid of cards placed
face down. On card click, the selected card was flipped to reveal an
English alphabet letter. On click of another card, that card was also
flipped to reveal its letter. If the two letters were the same, the two
flipped cards were removed from the board, indicating success. If
not, the cards were flipped back over after a brief constant delay.
The task window also contained a timer showing remaining time
for a given trial above the interactive game board.

Difficulty: We designed two versions of the memory task to vary
difficulty. In Easy version (Figure 2a), there were guides to indicate
a matching pair (no alphabet letter was shown), so the user simply
had to flip the highlighted cards to obtain a guaranteed match. In
Hard version (Figure 2b), there were no guides, so the user had to
memorize and recall previously revealed letters to find a match.

The interruption task, presented in the middle of each memory
task trial, consisted of a request to enter the solution to a distorted
math problem in CAPTCHA [35] form (Figure 2c). This emulated a
type of problem which is much more efficiently tackled by humans
than computers. The difficulty level of math problems (i.e. adding
two 3-digit numbers) was kept the same across all conditions. This
interruption task is of type IRC 110 [24], because it highly interrupts
the memory task, requires a rapid and accurate response, and is
completely separated from the memory task.

Interruption Strategy: We implemented two types of interrup-
tion strategies. In Force strategy (Figure 2c), the interruption task
window popped up and completely occluded the entire memory
task window, so the user was forced to complete the interruption
task before returning to the memory task. Conversely, in Negotiate
strategy (Figure 2d), a small pop-up window appeared next to the
game board to notify the user that the computer required assistance;
the user could thus still work on the memory task and start the
interruption task at their convenience by accepting the notification
prompt.

4.2.2 N-Back Task. In the calibration phase, the user performed
the n-back task, and measurements of the user’s brain (fNIRS data)
were used to train the SVM model. The n-back task, well-studied in
psychology [27], consists of identifying whether a given stimulus
matches the n-th stimulus back; increases in n correlate with in-
creases in workload. The task has been successfully used in previous
studies to classify workload using fNIRS data [3, 29].

We used a visuospatial 2-back and 0-back in the present study.
The task window frame presented a 3×3 square grid with ‘yes’ and
‘no’ buttons in the center grid. Every couple of seconds, one of the
8 grids flashed to black, and in 2-back, the user clicked ‘yes’ if the
location of the black grid matched the black grid from 2 flashes
before and ‘no’ otherwise. In 0-back, the user simply observed the
grids flashing black and clicked ‘yes’ each time. The point was to
let the computer learn whether the user is in a busy state (with
2-back) or in a not busy state (with 0-back).

4.3 Procedure
Upon arriving, each participant filled out a consent form and a set
of demographic questions. Participants were provided with detailed
task instructions and practiced using tutorial versions of both the4
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Figure 2: Memory task board states. (a) Easy difficulty with guides highlighting a guaranteed pair match. (b) Hard difficulty,
no guides, the user has just flipped over the “I”. (c) Force strategy obscures the board until CAPTCHA problem is answered. (d)
Negotiate strategy presents a pop-up next to the board asking the user for permission to display the CAPTCHA problem.

n-back and memory tasks to ensure there was no confusion over the
tasks’ objectives or interface. After a short break, the fNIRS probes
were placed on the participant’s forehead using cotton headbands,
and the room lights were turned off, with only ambient lighting
left on to reduce interference with the probe detectors. During the
experiment, participants were instructed to limit head movements
to avoid disrupting the data recording.

In the calibration phase, the n-back task began with a 3-minute
baseline in which participants were instructed to close their eyes
and clear their mind. After the baseline, a total of 30 trials (15 per
2- and 0-back) was presented in randomized order. Each trial lasted
30 seconds, and there was a 30-second break before each trial.

In the experiment phase, the memory task also began with a
3-minute baseline, followed by a total of 4 trials (one per condition;
See Design). Each trial was preceded by a 30-second break and
succeeded by the NASA-TLX post-questionnaire. Each trial lasted
60 seconds in total. The duration from the beginning of the memory
task trial to themoment when the computer triggers an interruption
was designed to be identical to the duration of the n-back trial, 30
sec. The timer paused during the interruption task. Participants
were instructed to find as many matching card pairs, as quickly and
accurately as possible within the allotted time. To mitigate learning
effects across conditions, the trial orders were predetermined, and
each order was assigned to at least one and at most two participants.

4.4 Design
The study used a within-subjects design with two independent
factors, each of which had two levels: difficulty (Easy and Hard)
and strategy (Force and Negotiate), resulting in 4 (2×2) conditions.

The dependent variables were: (a) Participant responses to six
NASA-TLX categories, evaluating overall experience of the task.
(b) Participant ratings of whether they felt annoyed at or respected
by the computer’s strategy in making the interruption. The terms
annoyance and respect were modeled after measurements by Adam-
czyk and Bailey [1] and referred to the question, “how (annoyed
| respected) were you by the interruption in accomplishing what
you were asked to do?” (c) Performance measurements from the
interruption task, including time completion, interruption lag and
resumption lag (measured in milliseconds). The interruption lag
was defined as the time it took the participant to start the interrup-
tion task after it was introduced. The resumption lag was defined
as time from completing the interruption task to the next card se-
lection of the memory task. (d) Performance measurements from

the memory task, including the number of correct matching card
pairs and time taken to find the first correct pair after interruption
(ms).

In addition, we recorded the response from the actual HumanS-
ketch model, estimating the participant’s busyness in real time,
each time when an interruption was triggered.

5 RESULTS
We report analysis on 40 data points collected (i.e., 10 participants ×
2 difficulties× 2 strategies).We applied the Aligned Rank Transform
(ART) [36] to nonparametric data to test statistical significances
using ANOVA. We used the Wilcoxon signed rank test for post-hoc
cross-factor pairwise comparisons, unless otherwise specified. For
space the condition names are sometimes abbreviated: E = Easy, H
= Hard, F = Force, and N = Negotiate.

5.1 (a) Task Workload
Table 1 shows participant responses to the six NASA-TLX [12] cate-
gories. The grand mean for the mental demand was 7.35. Noticeably,
Hard difficulty (mean 11.6) was more mentally demanding than
Easy (mean 3.15). On the other hand, there was a modest difference
between the two strategies within each difficulty. Using an ANOVA
on the aligned rank transformed data, the main effect of difficulty
was statistically significant (F1,9 = 58.718, p < .001). Post-hoc
tests using Holm correction showed significant differences between
Easy-Force and Hard-Force as well as between Easy-Negotiate and
Hard-Negotiate. As expected, no significant difference was found
between Easy-Force and Easy-Negotiate as well as between Hard-
Force and Hard-Negotiate.

The grand mean for the physical demand was 2.85. As Table 1
shows, there were modest differences among the four conditions.
An ANOVA with ART reported that the main effect of difficulty on
physical demand was not statistically significant.

Table 1 also shows statistical analysis for the other categories. In
short, no significant difference on strategy or interaction was found
for the categories. In addition, no significant difference between
the two strategies within each difficulty in the other categories was
found.

Thus, our analysis of the participants’ overall experiences sug-
gest that our experiment control succeeded in creating an environ-
ment in which mental demand varied based on the difficulty, while
physical demand was kept consistent across all conditions.5
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Table 1: Mean responses of task workload index

Easy Hard Effect F-val. (p)

Category F N F N Difficulty Strategy

Mental Demand 3.4 2.9 11.8 11.3 58.7 (<.001) 1.12 (.32)
Physical Demand 2.5 2.3 3.1 3.5 2.93 (.12) 0.11 (.75)
Temporal Demand 7.0 5.4 12.1 11.1 14.4 (.004) 5.04 (.051)
Performance 17.5 19.0 14.2 13.5 15.7 (.003) 0.13 (.72)
Effort 6.7 6.8 11.9 11.6 6.04 (.036) 0.07 (.79)
Frustration 5.2 3.7 9.3 8.9 7.31 (.024) 0.95 (.36)
Note: F = Force, N = Negotiate, Response range: 1-21, lower is less.

Figure 3: Ratings of annoyance and respect. The thick line
in each boxplot represents the median value.

5.2 (b) Annoyance and Respect
Figure 3 shows the ratings of whether the participants felt annoyed
at or respected by the interruption. Recall that the two items were
chosen to specifically understand effects of the computer’s strategy
in making an interruption. A 21-point scale of range 1(very low) -
21(very high) was used for annoyance and 1(failure) - 21(perfect)
for respect. We consider lower values for annoyance and higher
values for respect to indicate that the computer’s strategy was more
considerate of the participants.

The grand mean for annoyance was 8.08. Hard-Force (12.8) was
the most annoying, followed by Easy-Force (8.7), Hard-Negotiate
(7.2) and Easy-Negotiate (3.6). In fact, 19 out of the 20 total pair data
points showed Force strategy was more annoying than Negotiate.
An ANOVAwith ART revealed a significant effect of the strategy on
annoyance data (F1,9 = 20.697, p < .01). Post hoc tests using Holm
correction reported significant differences between Easy-Force and
Easy-Negotiate as well as between Hard-Force and Hard-Negotiate.
The effect of the difficulty (F1,9 = 4.3837, p > .05) and interaction
(F1,9 = 0.42509,ns) were not significant.

The grand mean for respect was 14.08. As Figure 3 depicts, Ne-
gotiate strategy (mean 17.2) was rated as more respectful than
Force (mean 11.0). An ANOVA with ART showed that the main
effects of difficulty (F1,9 = 12.703, p < .01) and of strategy (F1,9 =
45.312, p < .001) were statistically significant, while the interac-
tion (F1,9 = 0.0027,ns) was not. Post-hoc tests using Holm cor-
rection reported significant differences between Easy-Force and
Easy-Negotiate as well as between Hard-Force and Hard-Negotiate.

When designing our system, we hypothesized that the interrup-
tion could be less annoying while the user is being less mentally
taxed. However, the participant ratings seem to highlight a fact
that Negotiate strategy tends to be less annoying and appear more
respectful than Force strategy in both difficulties.

Table 2: Average time of the interruption task

Easy Hard Effect F-val. (p)

Metrics (sec) F N F N Difficulty Strategy

Time completion 19.2 17.4 17.9 14.6 0.46 (.51) 3.35 (.10)
Interruption lag 0.01 2.20 0.01 3.84 3.67 (.09) 28.2 (<.001)
Resumption lag 0.98 0.92 1.12 1.10 9.45 (.01) 0.78 (.40)

Note: F = Force, N = Negotiate

5.3 (c) Measurements from Interruption Task
Table 2 summarizes the three measurements from the interruption
task, used to understand impacts of interruption. Note that the
participants correctly solved all the math problems presented as
the interruption task.

The completion time in Hard-Negotiate condition seems to be
shorter than the others; however, using an ANOVA, the main effect
of difficulty and of strategy were not statistically significant. The
average interruption lag of Negotiate condition was longer than of
Force condition in each difficulty, reflecting a part of our experi-
mental controls. Unsurprisingly, an ANOVA reported that the effect
of the strategy was statistically significant, as shown in Table 2.
Post-hoc tests, cross-factor pairwise comparisons using paired t-
test with Holm correction, showed that the differences between
Easy-Force and Easy-Negotiate as well as between Hard-Force and
Hard-Negotiate are significant. The average resumption lag time
of each condition, shown in Table 2, was in a narrow range. An
ANOVA reported that the main effect of the difficulty was statisti-
cally significant; however, post-hoc comparisons did not find any
significant difference, likely because of the small sample size (see
Discussion). Finally, none of the interaction effects were found to
be significant.

5.4 (d) Measurements from Memory Task
For space we focus on reporting post-interruption measurements
and effects of the strategy (Force vs. Negotiate) within each difficulty
(Easy or Hard).

Figure 4 (Left) represents the average time taken to find the first
card match pair after the interruption. Contrary to the resumption
lag, there exists a measurable difference between Easy (mean 1.46
sec) and Hard (mean 6.22 sec) difficulty. Using an ANOVA, we
found that the main effect of difficulty (F1,9 = 42.97, p < .001)
was statistically significant. Post-hoc tests, cross-factor pairwise
comparisons using paired t-test with Holm correction, showed that
differences between Easy-Force and Hard-Force as well as between

Figure 4: Measurements of the memory task after the inter-
ruption. The error bars represent standard errors.
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Easy-Negotiate and Hard-Negotiate were statistically significant.
The main effect of strategy (F1,9 = 4.33, p > .05) (although p =
.0672) and interaction (F1,9 = 3.779, p > .05) (p = .0838) was not
statistically significant at α = .05 level. However, on average within
Hard difficulty the participants took longer time to find the first
correct matching card pair after interruption with Force strategy
(mean 7.58 sec) than with Negotiate strategy (mean 4.87 sec).

As such, we further investigated our logs by introducing an
additional pair count category - recalled correct pairs, which cor-
responded to the number of correct pairs that were selected by
recalling cards that had been revealed before the interruption. As
a result, in Hard-Negotiate condition, 9 out of the 10 participants
recalled a card previously revealed before the interruption in their
first correct card matching pair since the interruption. On the other
hand, in Hard-Force condition, only 3 out of the 10 did the same.
We think this explains why the participants were able to find the
first card matching pair faster in Hard-Negotiate condition than in
Hard-Force condition.

Figure 4 (Middle and Right) shows the number of correct pairs
and recalled correct pairs out of the total correct pairs found after
the interruption. Note that with our task design, the concept of
recall is only applicable to the conditions involving Hard difficulty.
On average, the participants were able to recall more in Hard-
Negotiate condition (2.2 card pairs) than in Hard-Force condition
(0.8 card pairs). With Shapiro-Wilk test, the normality of the data
was not assumed. AWilcoxon signed rank test showed that there is a
significant effect of strategy (W = 0,Z = −2.563, p < .05, r = .573).

Altogether, it appears that Negotiate strategy affected the partic-
ipants’ tactics on finding matching pairs. The participants utilized
their memory from before the interruption in order to find match-
ing pairs after the interruption. The results indicate that Negotiate
strategy increased recall memory performance.

5.5 Performance of HumanSketch Model
We lastly report measurements of our ability to infer the user’s
state of busyness in real time with brain measurements. Our system
used machine learning (See System Architecture); thus, we report
its classification accuracy as the performance of HumanSketch, i.e.,
how well our system measured the user’s busyness. Note that a
machine learning model was trained per participant.

Figure 5 (Left) represents the average cross validation accuracy
(%) of the n-back (calibration) task and the average real time classifi-
cation accuracy (%) of thememory task using the trainedmodel. The
true class labels of the calibration task were 2-back (more memory
intensive) and 0-back (less memory intensive). Thus, we assumed
that the trained model is applicable to classify the instances of the
memory task, in which the difficulty levels, Hard and Easy, serve
as true class label.

As noticed, the accuracy for the calibration task (mean 83.3%,
median 83.3%) was higher than that for the memory task (mean
62.5%, median 75.0%). We expect this is due to levels of control we
were able to give to each task. The calibration task was a standard
experimental task known to modulate memory usage, while the
memory task was a stripped down version of a potential real world
task. Nevertheless, Figure 5 (Right) shows the breakdown, and an
encouraging fact is that accuracy for the memory task for 6 of the
10 subjects was equal to or higher than 75%. (See also Discussion).

Figure 5: (Left) Classification accuracy of the n-back and
memory task. The error bar represents standard error.
(Right) Histogram showing the distribution of the classifi-
cation accuracy of the memory task.

6 DISCUSSION AND FUTUREWORK
Design Guideline. Using our interpolation of the data, we discuss
design choices for a computer’s behavior in interrupting its user.
Our observations were as follows. Unsurprisingly, if the context
of the interruption task requires the user’s immediate attention,
then the computer had better choose Force interruption strategy
than Negotiate. (Table 2, Interruption lag) On the other hand, Force
strategy appeared to be more annoying and less respectful than
Negotiate. Therefore, if we aim to maximize user experience, then
the computer had better choose Negotiate over Force. (Figure 3)
In addition, within Hard difficulty, Negotiate strategy resulted in
more recalled correct pairs than Force, so Force affected the user’s
memory more than Negotiate. Therefore, if we aim to maximize for
user’s performance while the user is busier, then the computer had
better choose Negotiate over Force. (Figure 4, Right)

Altogether, we suggest that when the system recognizes that a
user is busier, it should choose a negotiated interruption, which
provides an appropriate compromise between user experience and
performance. On the other hand, when it recognizes that a user
is not busy, it may choose a forced interruption to avoid the user
actions for switching tasks (e.g. one less mouse click per interrup-
tion), though at a cost of increased annoyance, giving designers a
trade-off for efficiency.

Limitations. We list limitations in our user study, which pro-
vide directions for future work. (1) Our sample size is relatively
small (N = 10); increasing it using an expanded participant pool
will help to increase the internal validity of our study. (2) Our ex-
periment was conducted in a controlled laboratory environment
and tested only the on-screen visual interruption in the memory
task. Exploring other interruption modalities (e.g. audio, haptic,
or even a combination of them) in real world scenarios will help
to provide more extensive design guidelines. (3) It would also be
helpful to measure user acceptance of the fNIRS technology in order
to assess the ecological validity of the study. (4) Our approach used
supervised machine learning. While it still remains challenging to
collect a sufficient number of quality training data within a reason-
able experiment duration, a larger training dataset is expected to
increase robustness and to help to understand user’s states more
precisely. (5) Although we focused on using our human model to
design the computer’s behaviors, integrating the human model and
with a task model based on the user’s explicit interactions would
yield a larger pool of possible computer behaviors.7
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Implications of Implicit Dialogue Injection System. This
paper focused only on a state of busyness and interruption strategy.
We now point to the extensibility of our system architecture, which
incorporates a human model into interaction designs by providing
a clear separation between how to understand a user’s state and
how to leverage such understandings. In concept, a ‘perfect’ Hu-
manSketch model is an oracle that has perfect awareness of any
potential facet of the user. Although a creation of such an oracle
may be not yet possible in practice, introducing and combining
different kinds of physiological sensors could help us to create more
robust, sophisticated HumanSketch models, exposing a variety of
complex human states in a form that computers can perceive. To
close, we bring up an open-ended question to interaction designers:
If you have access to such a perfect HumanSketch model (oracle),
what kinds of “implicit interactions” [20] would you design?

7 CONCLUSION
It is unlikely to be possible to return to an era of fewer interrup-
tions as computer technologies keep growing. To accommodate
the inevitability of interruptions that computers generate, we have
introduced the implicit dialogue injection system. It envisions a
way to enable a computer to recognize its user so it can act in
a more human-like fashion. Our proof-of-concept study, testing
the two types of interruption strategies with a consideration of
the user’s busyness level, demonstrated that the presentation of
interruptions affects both the user’s performance and experience.
From this, we formed a design guideline for computer behavior
in making interruptions based on the user’s state. Finally, we dis-
cussed the state-of-the-art of our system on estimating user’s state
as well as extensions for future work. We hope the architecture
and concepts in our proposed system can contribute to improving
future human-computer collaborations by making the computer
more considerate of its user without sacrificing performance.
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