
1TU Dortmund University, Dortmund, Germany

Corresponding Author: 
Manuel Wiesche, TU Dortmund University, Dortmund, Germany.
Email: ​manuel.​wiesche@​tu-​dortmund.​de

Project Management Journal
Vol. 00(0) 1–13

© 2021 Project Management Institute, Inc.

Article reuse guidelines:
​sagepub.​com/​journals-​permissions
​DOI: ​10.​1177/​8756​9728​21991365

​journals.​sagepub.​com/​home/​pmx

Interruptions in Agile Software 
Development Teams

Manuel Wiesche1

Abstract
Agile approaches help software development project teams to better meet user needs and ensure flexibility in uncertain 
environments. But using agile approaches invites changes to the project and increases interactions between team members, 
which both cause interruptions in the workplace. While interruptions can help in task completion and increase process 
flexibility, they can also hinder employee productivity. We conducted an exploratory study of four agile software develop-
ment teams. Our analysis identified (1) programming-related work impediments, (2) interaction-related interruptions, and 
(3) interruptions imposed by the external environment, which were managed by improved information retrieval and re-
duced team dependencies.

Keywords
agile information systems development, agile software development, interruptions, IT project management, teams

Article

Introduction
Working in uncertain environments fundamentally changes 
how we organize work (Rigby et al., 2016). Handling uncer-
tainty requires continuous adaption and coping with change. 
Therefore, organizations need to balance flexibility and stabil-
ity (Bazigos et  al., 2015). In software development projects, 
agile approaches to project management are used to continu-
ously recorrect by enforcing steady interaction with external 
and internal stakeholders (Rigby et al., 2016; Slaughter et al., 
2006). Preplanned tasks are revised in an iterative manner and 
agile practices such as daily standups, planning sessions, and 
burndown charts foster continuous feedback and refinement. 
Informal knowledge exchange and problem solving are encour-
aged, and collaborative workplaces are created as colocated or 
digitally connected work environments (Dery et al., 2017; Lee 
& Xia, 2010; Maruping et al., 2009).

Thereby, agile software development projects increase col-
laboration with different stakeholders in software development 
project teams (Kudaravalli et al., 2017; Majchrzak et al., 2005; 
Pflügler et al., 2018). This collaboration has many benefits for 
the agile team, as it ensures that customer needs are met (Recker 
et al., 2017; Rigby et al., 2016; Vidgen & Wang, 2009), it fos-
ters knowledge sharing (Ghobadi & Mathiassen, 2017; 
Kudaravalli et al., 2017), and it increases employee motivation 
(Tripp et al., 2016).

However, the openness toward change and the high degree 
of collaboration also cause interruptions for the software devel-
opment team (Conboy, 2009; Drury et al., 2012; Fægri et al., 

2010; Moe et al., 2010; Tanner & Mackinnon, 2015; Tregubov 
et al., 2017). We understand interruptions as events that impede 
or delay organizational members during work tasks (Jett & 
George, 2003). Examples include software developers inter-
rupting their team members when asking for help or feedback, 
as well as impediments, when software developers wait for 
input or requirements are changed during the development pro-
cess (Drury et al., 2012; Moe et al., 2012; Power & Conboy, 
2015; Wiklund et  al., 2013). The current body of knowledge 
suggests that recovering from interruptions is a central problem 
among software development teams (LaToza et  al., 2006; 
Stjerne et al., 2019).

Agile practices are designed to cope with the uncertainty of 
high customer involvement, fast responses to change, and for-
malized elements to support collaboration and coordination 
(Conboy, 2009; Recker et  al., 2017; Vidgen & Wang, 2009). 
However, the way in which agile approaches help software 
development teams in coping with interruptions that are caused 
by this mindset is unclear (Drury et al., 2012; Tregubov et al., 
2017). More specifically, literature remains silent on how inter-
ruptions are handled in agile software development contexts. 
Therefore, the following research question guides our study: 

mailto:manuel.wiesche@tu-dortmund.de
https://journals.sagepub.com/home/pmx
http://crossmark.crossref.org/dialog/?doi=10.1177%2F8756972821991365&domain=pdf&date_stamp=2021-03-01


Project Management Journal 00(0)2

Which interruptions occur in agile software development teams 
and how do teams respond to these interruptions?

We conduct an exploratory case analysis of four agile soft-
ware development teams and use grounded theory methodol-
ogy analytic procedures to understand interruptions in our 
context (Wiesche et  al., 2017). Our analysis identified (1) 
programming-related work impediments, such as changed 
requirements, errors, and developers waiting for information; 
(2) interaction-related interruptions, such as customer requests 
and formalized meetings; and (3) interruptions imposed by the 
external environment, such as technology-induced interrup-
tions and interruptions caused by the work environment. Our 
analysis suggests that software development teams use prac-
tices embedded in the agile mindset to improve information 
retrieval and reduce dependencies. These help to exploit the 
positive aspects of interruptions and find ways to reduce nega-
tive ones.

Background

The Concept of Interruptions
Software engineering research and information systems 
research distinguish two fundamentally different concepts of 
interruptions: Software engineering research conceptualizes 
interruptions as a form of impediment, that is, something that 
delays individual work processes, such as handovers, extra pro-
cesses, or unnecessary motion (Power & Conboy, 2015). 
Information systems research, especially in the context of 
technology-induced interruptions, conceptualizes interruptions 
as nonpredictable events caused by external sources that inter-
fere with a primary task, such as incoming emails, calls, or 
coworkers requesting information (Addas & Pinsonneault, 
2015; Grandhi & Jones, 2010; Perlow, 1999). These diverging 
perspectives highlight the complex nature of interruptions in 
the workplace with the perspective of interruptions as a distrac-
tion in getting a task done and the perspective of interruptions 
as intrusions necessary to complete a task.

In order to include both perspectives, we use a broad under-
standing of interruptions as events that impede or delay organi-
zational members during work tasks (Jett & George, 2003). 
This includes events in the work environment that interrupt 
individual software development team members (such as dis-
tractions by colleagues), but also impediments for tasks that 
hinder individual software developers to complete a task (such 
as missing information; Jett & George, 2003). This broad per-
spective allows us to understand a variety of sources and con-
sequences of interruptions. Following this line of thought, it is 
important to understand the interrupted task, the interruption 
content, the timing and quantity, the interrupting individual as 
well as the consequences of an interruption (Galluch et  al., 
2015; Grandhi & Jones, 2010; Jett & George, 2003).

Interruptions have negative consequences, such as increased 
time pressure for the task that was interrupted, procrastination, 
and mediocre performance (Grandhi & Jones, 2010; Jett & 

George, 2003). However, interruptions are considered to have 
positive consequences as well, including being helpful for 
informal feedback and information sharing, individualizing 
work pace, enhancing performance, and mindful information 
processing (Bechky & Okhuysen, 2011; Chua et al., 2012; Jett 
& George, 2003). Interruptions are associated with increased 
creativity, as they prompt attention shifts toward different per-
spectives, increase knowledge transfer, increase team learning 
through interactions, and invoke a wake-up call on routine 
work to conscious information processing (Watson-Manheim 
et al., 2012; Zellmer-Bruhn, 2003). Further, unexpected breaks 
are associated with increased performance if they allow 
employees to uphold attention to the primary task (Pendem 
et al., 2016).

Interruptions in Agile Software 
Development Teams
Agile software development teams are groups of software devel-
opers who jointly work on the development of new or modifica-
tions of existing software systems (Matook & Maruping, 2014; 
Tripp et al., 2016). Agile software development teams use agile 
approaches such as Scrum, eXtreme Programming (XP), or 
Kanban, with Scrum being the most common agile approach 
applied in practice (Bazigos et al., 2015; Rigby et al., 2016). In 
Scrum, there are three dedicated roles: the development team, 
consisting of developers who implement product functionalities; 
the product owner, who represents the customer and is responsi-
ble for the team delivering business value; and the scrum master, 
who is accountable for removing work impediments to the soft-
ware development team (Lee & Xia, 2010; Maruping et al., 2009; 
Moe et al., 2012; Rigby et al., 2016).

Two agile characteristics suggest that interruptions occur in 
agile software development teams. First, high involvement with 
customers and fast responses to change interrupt agile software 
development teams during planning and in iterations (Moe et al., 
2010). Second, agile approaches emphasize individuals and direct 
interactions, which requires coordination, and involving other 
team members, which causes interruptions of processes by others 
(Conboy, 2009; Matook & Vidgen, 2014).

The high uncertainty involved in agile software development 
projects imposes interruptions on the team when gathering and 
validating requirements as well as during development decisions 
(Drury et  al., 2012; Moe et  al., 2010). Agile developers report 
excessive interruptions by customers who ask for updates or pro-
vide additional requirements (Fægri et  al., 2010; Tanner & 
Mackinnon, 2015). Further, agile software development teams 
are interrupted by new information that causes them to fundamen-
tally change their plans (Moe et al., 2012). Agile software devel-
opment teams use a high number of meetings, including daily 
standups, planning sessions, and burndown charts (Przybilla 
et al., 2018; Stray et al., 2016; Tripp et al., 2016). These impose 
breaks on software development team members, and the distrib-
uted decision-making causes discrepancies and additional work 
(Hoda et al., 2011; Stray et al., 2016).



Wiesche 3

The close collaboration in agile software development teams 
causes interruptions when team members ask for help or when bot-
tlenecks occur (Stjerne et al., 2019). While agile software develop-
ment teams benefit from knowledge sharing and a shared mindset 
within the team, the amount of direct communication is high and 
causes interruptions (Ghobadi & Mathiassen, 2017; Hummel et al., 
2013; Kudaravalli et al., 2017; Przybilla et al., 2018; Recker et al., 
2017, Rigby et al., 2016; Vidgen & Wang, 2009). Agile software 
development teams rely on informal control mechanisms, such as 
clan control, that establish group norms and shared beliefs (Chua 
et al., 2012; Wiedemann & Wiesche, 2018).

Agile practices, such as daily standups and pair programming, 
create additional interruptions (Conboy, 2009). Daily standup 
meetings are used to obtain an overview of project progress and to 
discuss problems, but developers sometimes describe these as inef-
ficient and focusing too much on status reporting (Stray et  al., 
2016). During pair programming, developers are interrupted by 
peers during joint activities, instantly correcting code written by 
the developer (Balijepally et al., 2009). In addition to these very 
low-level interruptions, today’s work practices in software devel-
opment teams involve developers simultaneously working in mul-
tiple teams (Cameron & Webster, 2013; Przybilla et al., 2020). This 
interrupts the developer, whose tasks fundamentally mix even 
throughout a workday, but also interrupts the software develop-
ment team, as a missing team member can cause a delay in 
decision-making, quality assurance, or other path dependencies 
(Power & Conboy, 2015).

While extant literature illustrates a plethora of interruptions in 
agile software development teams, an integrated perspective 
remains elusive. The perspectives of information impediments 
(Power & Conboy, 2015) and procedural interruptions (Grandhi & 
Jones, 2010) are not well integrated. This research seeks to develop 
an integrated account of events that impede or delay software 
development team members during work tasks (Jett & George, 
2003). This integrated view will help to develop an understanding 
of how teams make use of agile approaches to develop individual 
reactions, tactics, and responses to cope with interruptions. 
Whereas studies report on individual practices of managing inter-
ruptions, how software development teams deal with a broad set of 
parallel interruptions, both positive and negative, remains unclear 
(Dingsøyr et al., 2018).

Methods
We conducted an exploratory analysis of four software develop-
ment teams to answer our research question. We find a qualitative 
approach useful to understand the phenomenon of interruptions in 
its natural context, including individual perceptions and experi-
ences (Miles & Huberman, 1994). We particularly chose four agile 
software development cases, as our phenomenon of interruptions 
has not been examined in the particular context of agile software 
development projects. We found a case-based approach useful, as it 
allowed us to empirically understand the entangled unfolding of the 
phenomenon between the level of individuals and the team (Yin, 
2009). Simultaneously, it allowed us to use procedures of grounded 

theory methodology to include extant literature in software engi-
neering, management, and information systems (Urquhart, 2012). 
While we were interested in how agile approaches help software 
development teams to manage interruptions, we did not limit our 
analysis to the team level. We found it particularly important to 
understand interruptions on the individual level and the correspond-
ing reaction by the team members. We interviewed 19 agile team 
members and asked about interruptions they experience in their 
daily work. We asked about their current project and how agile tech-
niques were used. We asked several questions about interruptions, 
including causes, involved actors, process, consequences, and the 
relationship to the agile approaches to project management. We 
explored these interruptions and particularly focused on under-
standing how agile approaches helped team members cope with 
interruptions. In Table 1, we describe the four teams we studied.

Data Analysis
For our analysis, we used procedures from grounded theory 
methodology to analyze our cases (Glaser, 1978; Urquhart, 
2012). We applied theoretical sampling, as we selected inter-
viewees and cases based on the analysis of previously collected 
data (Wiesche et  al., 2017). For example, we sampled team 
MONITOR to gain a better understanding if the mechanisms 
we identified in Scrum hold for other agile approaches, such as 
Kanban. We constantly compared our data with extant litera-
ture, as well as other data points collected before.

We followed Glaser’s guidance in applying open coding and 
selective coding (Glaser, 1978). We used open coding to broadly 
identify the interruptions, their effect on the individual and the soft-
ware development team, and the mechanisms of how they coped 
with the interruption. We applied selective coding to link interrup-
tions and develop an understanding of how agile practices help 
software development teams handle interruptions. The Appendix 
provides an illustration of episodes of observed interruptions and 
our open and selective codes, which serve as the basis for our anal-
ysis. We used memoing to (1) summarize key insights of inter-
views, and (2) develop our conceptual understanding of how agile 
software development teams handle interruptions. The author fol-
lowed the concept of constant comparison by conducting the cod-
ing in parallel to data collection (on average after every fourth 
interview) to ensure that initial insights were reflected against 
extant literature and deepened in the following interviews and 
across cases (abductive logic; Glaser, 1978; Urquhart, 2012). We 
further validated our results by presenting them at conferences 
(Wiesche, 2018) and discussing them with practitioners.

Results
Our analysis identified three categories of interruptions across all 
four teams (Table  2). Interruptions were related to the task of 
developing software (programming-related), the collaborative 
nature of agile work (interaction-imposed), and to context vari-
ables (imposed by environment). In the following, we document 



Project Management Journal 00(0)4

T
ab

le
 1

. 
C

as
e 

O
ve

rv
ie

w

T
ea

m
 A

cr
on

ym
C

A
R

FL
EE

T
M

O
N

IT
O

R
R

EA
L 

ES
T

A
T

E

A
gi

le
 a

pp
ro

ac
h

Sc
ru

m
Sc

ru
m

K
an

ba
n

Sc
ru

m
In

du
st

ry
A

ut
om

ot
iv

e
A

ut
om

ot
iv

e
In

su
ra

nc
e

Ba
nk

in
g

So
ft

w
ar

e 
pr

od
uc

t
C

us
to

m
iz

ab
le

 o
nl

in
e 

st
or

e 
fo

r 
 

ca
r 

co
nfi

gu
ra

tio
n

W
eb

si
te

 t
o 

su
pp

or
t 

co
m

pa
ny

 fl
ee

t 
m

an
ag

em
en

t
A

ut
om

at
io

n,
 a

dm
in

is
tr

at
io

n,
 

an
d 

m
on

ito
ri

ng
 o

f i
ns

ur
an

ce
 

so
ft

w
ar

e

In
fo

rm
at

io
n 

sy
st

em
 t

o 
su

pp
or

t 
re

al
 

es
ta

te
 fi

na
nc

in
g 

co
ns

ul
tin

g

C
h

ar
ac

te
ri

st
ic

s
C

ol
oc

at
ed

Y
es

Y
es

Y
es

Y
es

It
er

at
io

n 
le

ng
th

2 
w

ee
ks

Fl
ex

ib
le

 (
be

tw
ee

n 
2 

an
d 

5 
w

ee
ks

)
Fl

ex
ib

le
 (

be
tw

ee
n 

2 
an

d 
6 

w
ee

ks
)

3 
w

ee
ks

A
dd

iti
on

al
 c

ha
ra

ct
er

is
tic

s
-

H
ig

h 
co

m
pl

ex
ity

 t
hr

ou
gh

 n
um

be
r 

of
 

us
er

s 
an

d 
H

R
 s

ys
te

m
 c

on
ne

ct
io

n
Fo

cu
s 

on
 o

pe
ra

tin
g 

la
nd

sc
ap

e 
of

 
di

ffe
re

nt
 in

su
ra

nc
e 

so
ft

w
ar

e 
sy

st
em

s

Fo
rm

al
 r

el
ea

se
 p

la
nn

in
g

A
gi

le
 P

ra
ct

ic
es

A
ut

om
at

ed
 u

ni
t 

te
st

in
g

Y
es

Y
es

N
o

Y
es

C
on

tin
uo

us
 in

te
gr

at
io

n
N

o
Y

es
N

o
N

o
Ba

ck
lo

g
Y

es
N

o
Y

es
N

o
Sp

ri
nt

 p
la

nn
in

g
Y

es
 (

bi
w

ee
kl

y)
Y

es
 (

bi
w

ee
kl

y)
Y

es
 (

w
ee

kl
y)

Y
es

 (
ev

er
y 

th
ir

d 
w

ee
k)

D
efi

ni
tio

n 
of

 d
on

e
Y

es
N

o
N

o
Y

es
D

ai
ly

 s
ta

nd
up

s
Y

es
N

o
Y

es
N

o
D

ai
ly

 c
us

to
m

er
 in

vo
lv

em
en

t
N

o
Y

es
N

o
N

o
C

od
in

g 
st

an
da

rd
s

Y
es

N
o

N
o

Y
es

Bu
rn

do
w

n 
ch

ar
ts

Y
es

Y
es

N
o

Y
es

R
et

ro
sp

ec
tiv

e
Y

es
Y

es
Y

es
Y

es
K

an
ba

n 
bo

ar
d

N
o

N
o

Y
es

N
o

T
ic

ke
tin

g 
sy

st
em

N
o

N
o

Y
es

N
o

T
ea

m
 R

o
le

s 
(N

o
. o

f 
te

am
 m

em
b

er
s)

T
ea

m
 m

em
be

rs
4

8
4

9
Sc

ru
m

 m
as

te
r

1
1

-
1

Pr
od

uc
t 

ow
ne

r
1

2
-

2
D

ev
el

op
er

2
4

3
4

T
es

te
r

-
-

-
2

U
X

 e
xp

er
t

-
1

-
-

Pr
oj

ec
t 

le
ad

-
-

1
-

In
te

rv
ie

w
ee

s
3

6
4

6



Wiesche 5

each category by describing the interruptions, their consequences, 
and how the software development project team managed them.

Interruptions Caused by Programming-
Related Work Impediments
The first category of interruptions we identified was caused by 
programming-related work impediments such as missing infor-
mation, errors, or changes in plans. Examples of programming-
related work impediments are malfunctioning code, poorly 
specified requirements, or backlog changes. We group these 
interruptions in three subcategories: requirement reconfigura-
tion, missing information, and other information impediments.

Requirement-based interruptions occur when management 
reprioritizes requirements, customers struggle to fully specify 
requirements, or when the customer changes requirements. In 
project FLEET, the customer changed a requirement during an 
iteration. The team was working on a user story and the product 
owner identified changed text in a user story in their issue-
tracking software Jira. The change was so fundamental, that 
certain features of the software product had to be changed. The 
developer described that:

“the customer restated the user story. This slacked our pace. 
Totally different goal, resulting in different task for us … For 
the birds … We had to do another sprint planning and needed 
new code.” (Project FLEET, developer 2)

Interruptions around the existing code occurred frequently 
when the developed software was not developed as a stand-
alone solution but integrated into an existing application envi-
ronment. When describing their regular work during each 
iteration, developers often noted that there were additional 
tasks occurring during the sprint. A developer described that:

“in the hot phase, the [back end] was down for several days. 
And we had to do other stuff. The [back end] cannot be simu-
lated. We needed to stop developing. Jump to other tasks like 
preparing unit tests or developing a shot in the dark.” (Project 
CAR, developer 1)

Across all teams, interviewees highlighted the importance 
of the interruptions in solving problems and guiding the proj-
ect. Especially the customer perspective was highlighted as 
fundamental to understand in which direction the project should 
go:

“The customer is very important to give feedback on the prog-
ress and direction of the project … Of course, it is interrupting 
if that comes like this, but we try to prepare for this. There are 
regular project review meetings where we gather feedback from 
our management and customers … This helps us in identifying 
dead ends, problems, and new developments which we were 
not aware of.” (Project REAL ESTATE, developer 3)

Agile software development project team members 
responded by channeling interruptions to the relevant col-
league. All teams reported that the customer often did not fol-
low agile practices exactly and interrupted different team 
members at different points in time, rather than postponing 
issues until the next formal team meeting. The teams developed 
mechanisms to channel these interruptions to the responsible 
colleague and ensure that they would take care of this issue 
later during the project phase. Usually, every developer knows 
what the others are working on and has a brief understanding of 
the feature that was commented on by the customer. They used 
digital tools like Slack or Jira to document the issue and 
assigned the correct team member. Thereby, the new detail was 

Table 2.  Categories of Identified Interruptions

Category Examples Description

Programming-related work 
impediments

Malfunctioning code These interruptions are caused by programming-related work 
impediments, i.e., when the software development task is 
interrupted due to missing information, errors, or changes in 
plans. Other programming-related interruptions are the need for 
information provided by others that caused software development 
team members to postpone work until the information is provided.

Poorly specified requirements
Backlog changes

Interaction-related interruptions New customer insights These interruptions are caused by the collaborative nature of the 
work in the software development team. The nature of agile 
approaches welcomes changes, and its different practices frequently 
require changing tasks and priorities. Tools and practices that 
foster collaboration (such as pair programming or standups) create 
interruptions for software development team members.

Formal meetings
Training team members
Quality assurance

Interruptions imposed by the 
external environment

Telephone calls Such interruptions are caused by the external work environment. 
Examples include physical environment, such as the office setup, 
and the daily work practices, such as breaks and modes of 
communication. In addition, team members working in multiple 
teams are interrupted by the duality of their tasks.

Breaks
Multiteam membership



Project Management Journal 00(0)6

neither lost nor did it interrupt the colleague directly. Team 
REAL ESTATE’s tester 1 reported that he:

“tr[ies] to capsulate [these interruptions]. I ask the customer for 
details, provide a first evaluation in terms of feasibility and time 
horizon, and then put it in the system. If I consider it urgent, I 
will raise the issue in the next daily meeting; otherwise, it will 
sit in the system, waiting for [developer 1] to resolve.”

The teams FLEET, MONITOR, and REAL ESTATE reported 
that they scheduled “quiet time,” where developers could concen-
trate on their work without being interrupted. The scrum master in 
team FLEET explained that in his team, developers showed up as 
early as 7:00 a.m. to get work done until 9:00 a.m. He estimated 
that during this quiet time, developers got 80% of their work done. 
After 9:00 a.m., work was interrupted by meetings such as stand-
ups, personal breaks, and socializing.

Interruptions Related to Team Interactions
The second category of interruptions was caused by team 
interactions. Due to the collaborative nature of agile software 
development, team members and external stakeholders fre-
quently interrupted work processes within the team. These 
collaboration-imposed interruptions include new customer 
insights, formal meetings, training, and quality assurance. 
We grouped these interruptions in the encapsulating interrup-
tions in agile practices, the usage of tools to track tasks, and 
the interaction with the customer.

Across all four cases, we observed that the teams formalized 
many unplanned interruptions in agile procedures. Especially 
the scrum master helped the team to encapsulate problems, 
issues, and discussions in continuously occurring Scrum meet-
ings. Team members collected less urgent issues that needed 
discussion with fellow team members for the next regular 
Scrum meeting. Developers learned that if the consequences 
would not cause a long delay, they would decide to wait for the 
next, for example, daily standup meeting, rather than interrupt-
ing fellow team members. The scrum master explained that he 
decided on this way of managing the interruption, as he thought 
that it was more important to have a certain result ready that 
could be changed rather than a sudden stop in the coding.

One strength of agile practices is to put the customer at the 
core of the process. Many practices target updating, simulating, 
or integrating the customer and their needs. On the one hand, 
this is helpful in calibrating the solution, prioritizing, and plan-
ning the next steps, but it also interrupts the development pro-
cess. Asked about how customers interrupt daily activities, one 
developer described:

“They usually send emails. And they are the customer, so you 
have to drop all other work and respond … Stop your current 
task, understand the problem, solve the problem, and update 
[the] customer about the solution … You want to give a good 
impression, provide a great service and high-quality code. He is 

the one who pays the bill [;] that is why we do not bother about 
customer interruptions … they increase at the end of releases, I 
guess [,] because then, the customer “wakes up,” but also, it is 
easier to criticize a working solution rather than imagining po-
tential functionalities.” (Project REAL ESTATE, developer 2)

In team MONITOR, developers reported that customers 
usually used an email-based ticketing system to report and 
track incidents. Only on particularly urgent issues were cus-
tomers asked to approach the team via phone. However, devel-
oper 1 reported that some customers interpreted every issue as 
urgent and called immediately. If the call was not answered, 
they would come to the team’s office, which was located in the 
basement of the headquarter building and interrupt the team. 
He explained:

“It really is annoying. And takes you out of whatever you are 
doing. But we have a great work environment here, so you do 
not send them to heck but agree to help and ask for the matter. 
If it is something that takes less than 10 minutes, like rebooting 
a system, you just fix it immediately, just to get rid of the guy. If 
not, you just open another ticket and signal that you understood 
the urgency and importance.” (Project MONITOR, developer 
1)

Agile practices helped software development teams buffer 
interruptions in formal meetings. The sprint and the daily 
standups are the most important agile practices to reduce the 
number of unplanned interruptions related to development 
work within the team. Every morning, developers have the 
chance to raise issues where they need help. The sprint is an 
important vehicle to encapsulate the team from external inter-
ruptions to concentrate on development tasks. Across all cases, 
the scrum master tried to protect the team from unnecessary 
interruptions. One scrum master described that they:

“try to keep all further interruptions from the team if possible 
… I consider a sprint successful when the developers can spend 
more than 80% of their time on tasks that we agreed on during 
sprint planning. So, I will do everything to protect my team 
from interruptions.” (Team REAL ESTATE, scrum master).

Similarly, the customer is involved in sprint planning, where 
they can prioritize tasks to develop a focus and sprint review 
meetings to correct directions and demand changes to the cur-
rent increment.

In teams FLEET and CAR, the project team scheduled addi-
tional meetings, which they referred to as refinement meetings. 
These meetings were scheduled in the middle of each sprint to 
formalize the continuous refinement process. One developer 
explained that he sees these meetings:

“as artificial interruptions in an ongoing process. But the for-
malizing [in an official meeting] helps in updating the back-
log and tracking progress. This opens up the view on the next 



Wiesche 7

iteration that starts a week from now. You can do slight adap-
tions with an eye [on] what will come next week.” (Project 
FLEET, developer 2)

Interruptions Imposed by the External 
Environment
The third category of interruptions relates to the work environ-
ment external to the software development team’s task itself. 
Examples include telephone calls and work breaks. Here, the 
office setup, the daily schedule including breaks, and the way 
the teams worked together imposed positive and negative inter-
ruptions. In addition, team members who had other obligations 
due to multiteam membership caused interruptions as well.

One  developer explained that he did not make use of the 
company’s home-office policy very often. He described that 
this limited his ability to solve problems by reflection:

“I sit at home and work on a topic for four hours, so I need 
to set an alarm to get lunch … and continue afterwards. This 
is when you write a heck lot of code. But it cannot help you 
on thinking problems. When you need to reflect. Chances are 
high that you get on the wrong track with your solution. And 
then you are stuck. Here in the office, I can join the guys for a 
cigarette and I either share my current ideas or just by getting 
back to the screen after 5 minutes helps me think ‘shoot, that 
can’t possibly work this way.’ I would call these breaks organic 
breaks.” (Project CAR, developer 1)

Across our cases, we found instances where agile software 
development team members were not solely working on one 
single project at a time. We found that developers worked in 
different teams in parallel for several reasons: First, due to 
resource constraints, developers had to work on different client 
projects. Second, given their expertise with a particular topic, 
some team members supported other teams for particular tasks 
that required this particular expertise. Third, some teams did 
not require full-time work all the time, allowing developers to 
work on different projects in parallel. All these team members 
who worked in more than one team at a time caused interrup-
tions when other team members required their input or when 
urgent issues overlapped:

“There are situations when you work in different projects in 
parallel. This causes interruptions as well. If you have two dif-
ferent strategies to follow. I had this once, kind of a firefighter 
job. I was working on [project A] and had to help out at [project 
B]. Right the next day. You don’t question senior management 
decisions here, but of course, this is hard to plan. And to cope 
with.” (Project FLEET, developer 1)

Across all teams, team members report interruptions related 
to nonwork-related incidents as well. These interruptions 
occurred on different channels, including telephone, email, and 

private surfing. The most dominant interruption was the 
smartphone.

“It takes time to get back to what you are doing. This is not 
helpful. And … you catch yourself once in a while doing stuff 
that is not work related. That is interrupting. Checking your 
phone, your newsfeed, social media. And there is a video that is 
more interesting or a link to something.” (Project FLEET, UX 
designer)

In project MONITOR, the developers used a chat tool to 
post questions as soon as they occur. Several team members 
described that they used this chat tool permanently for small 
questions among each other. So, there were ongoing interrup-
tions that even popped up on the developers’ screens as soon as 
someone asked something. However, these were perceived as 
positive:

“[spontaneous things], I find these positive. It might not be 
sorted or queued, but there are these things of informal, loyal 
forms of collaboration that involves asking and helping, that 
I think [have] more advantages than disadvantages.” (Project 
MONITOR, developer 1)

In addition, interruptions also helped team members take 
breaks and get their heads free. Several team members regu-
larly went outside to smoke and used the break to think about 
the problem. Some team members described that the smoking 
break helped them to develop a different perspective or just to 
wait for another idea. One team member even described that 
she joined breaks for smoking, although she did not smoke:

“Usually, you get a coffee and discuss. But sometimes, I really 
need a break … And I do not smoke. And I love joining the 
smokers outside.” (Project FLEET, UX designer)

All project teams used digital tools to reduce external inter-
ruptions related to information requirements. In every team, the 
developers used automation to reduce the number of interrup-
tions related to software development tasks. Automatic deploy-
ment solutions reduced additional efforts from fellow team 
members during deployment and automated testing, such as 
unit tests, which reduced interruptions due to error detection 
and functional testing.

The teams regularly updated and shared their status docu-
ments, such as product backlog, sprint backlog, and burndown 
charts with external stakeholders to increase transparency in 
the development process. The team thereby reduced interrup-
tions related to status reports, as external stakeholders, includ-
ing management and customers, could access these systems to 
get a status overview of the project.

Within the team, developers created an informal hierarchy 
of tools for communicating an understanding of the urgency of 
the interruption. For example, in team FLEET, the developers 
used a chat tool for internal communication, a ticket system to 



Project Management Journal 00(0)8

structure their work, and email to communicate with external 
stakeholders. Developer 2 explained that:

“I immediately respond to requests via [chat tool]. Because we 
all know that the person asking benefits from a quick feedback. 
If not, he would have asked via [ticketing system] or sent an 
email. For these topics [ticketing system and email], I block 
some time in the afternoon and analyze and prioritize. So, this 
turns into a planned interruption.”

Similarly, in team CAR, fellow team members understood 
the sense of urgency by the medium of communication. 
One developer explained that a person rushing in the office is 
looking for urgent help. These colleagues are willing to pull 
someone out of their tasks to solve their problem. So, such 
problems are considered important enough to interrupt col-
leagues, as otherwise, these developers would be on halt with 
their work.

Discussion

Causes and Consequences of Interruptions 
in Agile Software Development Teams
Across the four cases, we identified interruptions in three cate-
gories. While some of these interruptions also occur in nonagile 
software development projects, our analysis revealed that the 
two agile characteristics—user involvement and close team 
collaboration—intensify the number of interruptions in agile 
software development teams. For example, changing customer 
ideas can lead to interrupting changes in the backlog or the 
reprioritization of requirements. Similarly, the constant interac-
tion within the agile team increases interruptions by helping 
behavior, scheduled meetings, and malfunctioning code.

Across the three categories, we found interruptions where 
team members could not complete their tasks, because they 
were missing information. These interruptions are in line with 
the idea of interruptions as work impediments (Power & 
Conboy, 2015) and include missing information from fellow 
team members waiting for customer input and poorly specified 
requirements. Such impediments could be overcome by early 
integration and tight alignment with customers and operations 
departments (Maruping & Matook, 2020; Wiedemann et  al., 
2020). These interruptions were also caused by team configura-
tion, such as restaffing, onboarding, or training team members, 
and assigning team members to multiple teams in parallel. In 
addition to these interventions, team members were actively 
interrupted by other team members and stakeholders requesting 
help, clarification, status updates, or progress reports. In line 
with the concept of interruptions as nonpredictable events 
caused by external sources that interfere with a primary task 
(Addas & Pinsonneault, 2015; Grandhi & Jones, 2010; Perlow, 
1999), we found the collaborative environment causing many 
different interruptions for team members. Other nonpredictable 

events include telephone calls and voluntary breaks (e. g., for 
lunch or smoking).

Our analysis points to the need for a more thorough under-
standing of the agile idea of user involvement and close team 
collaboration by considering how the interplay of agile prac-
tices affects team dynamics such as dealing with interruptions 
(Moe et al., 2010). Our results highlight the importance of fol-
lowing all procedures in the agile approach to equip software 
development teams with tools to protect their work environ-
ment and avoid interruption overload (Tripp et  al., 2016). If 
software development teams fail to balance the number of 
interruptions, they might not be able to achieve their project 
goal. Not being able to manage interruptions might explain the 
high percentage of the dysfunctionality of agile teams 
(Sutherland & Jacobson, 2020).

Our results further highlight the importance of the roles in 
agile software development teams. The scrum master needs to 
possess the resources and power to protect the team from too 
many interruptions. Further, the product owner needs to chan-
nel interruptions during the software development process to 
help agile software development teams cope with interruptions 
(Maruping & Matook, 2020). Our cases confirm the importance 
of meeting customer demands and therefore welcoming and 
even inviting customer interruptions (Grandhi & Jones, 2010). 
However, our analysis also suggests that team members need to 
educate customers in prioritizing requests and corresponding 
interruptions. The identified management approaches for inter-
ruptions could serve as valuable additions to nonagile teams 
and can be combined with existing interruption-information 
gathering solutions (Grandhi & Jones, 2015).

Across all these interruptions, we found positive and nega-
tive consequences on the team and individual levels. Positive 
individual level consequences include an increase in productiv-
ity and independence. These are accompanied by the negative 
individual-level consequences of discontent and stress. As 
studies already started examining stressors and strains in agile 
work environments (Huck-Fries et al., 2019), it might be worth-
while to examine which role interruptions play on socio-
relational competencies in agile software development teams 
(Matook & Maruping, 2014). Team-level positive conse-
quences include clarity and understanding of requirements, 
new ideas and perspectives on problems, efficiency, better flow 
of information, and ultimately better work results. Negative 
team-level consequences include delay, distraction, and reduced 
quality.

Understanding How Agile Approaches Help 
Teams Manage Interruptions: Improved 
Information Retrieval and Reduction of 
Dependencies
In our study, we found two mechanisms of how agile approaches 
help software development teams manage interruptions. First, 
our results suggest that agile approaches help teams develop 



Wiesche 9

practices to improve information retrieval. Teams used various 
agile practices to structure information exchange (e.g., daily in 
standup meetings or when using the project backlog). Also, for 
each iteration, sprint planning and review meetings provide 
structure in communication.

In order to balance these information-retrieving requests, 
teams structured timeboxing, for example, through signaled 
focus time where developers used agreed-upon mechanisms to 
signal that they needed to concentrate to finish a task. Some 
teams used automation to reduce the number of interruptions 
related to software development tasks. Team members devel-
oped an informal hierarchy of tools for communicating an 
understanding of the urgency of the interruption. Finally, the 
agile team invited feedback on different stages of the project. 
Especially the product owner and scrum master roles balanced 
these feedback instances. The product owner gathered and 
channeled feedback during the project. External stakeholders 
like the customer are invited early and continuously to project 
meetings, allowing them to provide feedback and correct the 
direction of the project. The scrum master focused on protect-
ing the iteration from additional interruptions and helped the 
team resolve inefficiencies in their development process.

Second, agile approaches offer software development teams 
various practices to reduce dependencies among team members 
and even external stakeholders. On the one hand, ex ante mea-
sures, such as self-organizing teams and release planning, were 
used to ensure a flexible plan that allowed developers degrees 
of freedom to make decisions. Similarly, practices such as pair 
or mob programming1 and a Definition of Done were used to 
increase product quality and thereby reduce interruptions for 
error correction and other path dependencies. Finally, the back-
log and issue-tracking software were used to increase transpar-
ency and thereby avoid interruptions due to reduced requests 
for status reports.

In summary, these two mechanisms—support information 
retrieval and reduce dependencies—are implemented in the 
strategies that both individual software developers and the proj-
ect team as a group use to manage interruptions. On the team 
level, agile approaches help software development teams 
increase transparency to avoid unnecessary interruptions. 
Similarly, agile approaches invite interruptions from stakehold-
ers, including the customer, yet buffer these in formal meetings. 
Thereby, the software development team gets regular feedback, 
but interruptions occur only at predefined points in the process. 
Finally, agile approaches help the software development team 
build resilience through procedural and technological support 
to cope with changes.

On the individual level, agile approaches help software 
developers gain a mindset of a helping culture, which increases 
openness for questions and avoids wait time for developers 
requesting help. Agile approaches further help individual soft-
ware developers to prioritize interruptions. A symptomatic 
illustration is that across all cases, interruptions by the cus-
tomer were seen as urgent and important events that require ad 
hoc reactions. Similarly, developers established routines and 

used tools to signal urgency. This helped in prioritizing inter-
ruptions based on sender, content, and channel. All teams 
implemented timeboxing to create noninterrupted time slots for 
software developers. Therefore, software developers withdrew 
from interruptions by signaling quiet time or even changed 
their working habits so they gained quiet time in the early 
morning or in home-office arrangements. This timeboxing cre-
ated temporal brackets for work rather than long-term sub-
groups that affect team coherence and project performance 
(Carton & Cummings, 2012; Pflügler et  al., 2018; Przybilla 
et al., 2018).

Limitations and Contributions
Our study is subject to limitations. First, we considered teams 
that actively used agile approaches and thus, we might have 
missed mechanisms that reduce interruptions within the pro-
cess. However, we examined four different cases and asked 
interviewees about how agile procedures were applied and 
what the consequences were. Second, our analysis was mainly 
from an internal perspective, reducing external views on how 
gatekeeping was perceived from the outside. We interviewed 
one customer and asked respondents about how their actions 
were perceived by customers. Third, it is inherent to explor-
atory qualitative work that generalizing the results is challeng-
ing. For example, we derived our results from agile teams in 
large and professional organizational contexts; thus, they can-
not be taken for granted for smaller, informal organizations like 
startups or open-source projects. In addition, there might be 
unique characteristics of the IT workforce (Riemenschneider & 
Armstrong, forthcoming; Wiesche et al., 2019) that limit gener-
alization to other knowledge workers.

This study has implications for theory and practice. 
Practitioners may use the list of interruptions to identify and 
manage potential sources of interruptions in agile software 
development and other projects. For designing work environ-
ments, it is important to colocate or establish other mechanisms 
to exchange informal communication (e.g., through digital col-
laboration tools; Dery et  al., 2017); however, managers are 
advised to leave space for quiet time and meetings. We identify 
information retrieving and reduction of dependencies as two 
project goals that require collaboration and thus interruptions. 
The illustrated agile practices help achieve these goals. We sug-
gest that practitioners focus on project team members’ individ-
ual preferences toward interruptions. Scrum masters are 
advised to observe team dynamics and how uninterrupted time 
slots develop. They can further encourage emerging routines 
for handling interruptions and train newcomers and virtual 
team members in these routines. We found that all teams used 
agile approaches to bundle interruptions and, therefore, suggest 
that scrum masters observe routines, analyze their purposes, 
and steer these into bundles of practices that structure 
interruptions.

Our analysis revealed several positive consequences of 
interruptions in agile software development teams that go 



Project Management Journal 00(0)10

beyond individual-level research (Jett & George, 2003). The 
dominance of real-time tools in collaboration within the team 
highlights the importance of fast feedback during software 
development work. We found that this personal help reduces 
slack and duplicate work. Similarly, all cases highlight the 
importance of feedback from software development project 
stakeholders. While such feedback might interrupt a team’s 
daily routines, it also reduces double work by ensuring the 
early recognition of the need for change and action (Bechky & 
Okhuysen, 2011). We further highlight that structured interrup-
tions can solve problems by increasing communication or just 
explicating the problem. Finally, using the example of training 
fellow developers via pair programming, we show that short-
term consequences of interruptions might be negative, but in 
the end will increase overall project performance.

We find that software development teams filter interruptions 
based on the context and the current work situation. While agile 
approaches provide practices that invite interruptions in pro-
cesses, work setups, and decision-making, teams filter and 
channel useful interruptions and cope with hindering interrup-
tions (Stray et al., 2016). These mechanisms confirm the impor-
tance of implementing separate roles in agile software 
development projects and underline the importance of the 
scrum master in protecting the team and removing impedi-
ments (Lee & Xia, 2010; Maruping et al., 2009; Rigby et al., 
2016). While extant research discusses the importance of 
timely and constant customer feedback (Recker et  al., 2017; 
Vidgen & Wang, 2009), we extend this view in suggesting a 
more nuanced perspective on time. Customers can help scrum 
masters protect the team by using prespecified agile practices 

like sprint review meetings or daily standups to provide feed-
back and course corrections.

Finally, our results highlight how different implementations 
of agile, namely Scrum and Kanban, affect agile software devel-
opment projects. We found that interruptions differed between 
team MONITOR, which used Kanban, and the other teams that 
followed Scrum. Tasks in team MONITOR were smaller, reduc-
ing the impact of interruptions for the team. To cope with lengthy 
interruptions, teams CAR, FLEET, and REAL ESTATE used 
sprints as safety zones in iterations to protect the team from addi-
tional interruptions. Finally, our results highlight the importance 
of the role of scrum master in agile software development proj-
ects. When following Kanban, team MONITOR had a strong 
manager who planned the process and imposed the approach on 
the team, as well as external stakeholders.

Future research could extend our theoretical sampling to other 
approaches, such as Scrumban or DevOps, as this might provide 
additional evidence of mechanisms to handle interruptions, as 
well as distributed teams, as their way of collaboration differs 
from colocated teams (Nikitina et al., 2012; Wiedemann et al., 
2019). Our finding that software development teams prioritize 
interruptions based on sender, content, and channel sheds light 
on the mechanisms of agile approaches to cope with and build 
resilience against constant change. Testing the boundaries of our 
model for operations-savvy approaches like DevOps, where 
developers are confronted with other contextual conditions such 
as criticality of maintenance would further help to generalize our 
results. Finally, future research could expand our findings to 
feedback mechanisms or other inhibitors of project productivity, 
such as multiple-team membership or team fluidity.

Appendix

Illustration of Coding Procedure

Summary of episodes of interruption Open coding Selective coding

In team REAL ESTATE, the scrum master explained that team members shared their 
status in daily standup meetings. In these meetings, developers could seek or give 
feedback instead of interrupting colleagues on other tasks. Thus, they postponed 
problems that were not that urgent until the next day’s standup meeting. In addition, 
developers grasped an overview of issues, problems, and solutions that other developers 
experienced, which might become relevant for their work in the future.

All teams experienced situations when the customer changed backlog items during the 
project. The less interrupting point in time for interruptions was when the customer 
changed the backlog during sprint planning or sprint review meetings. However, all 
teams reported that customers regularly changed items during the sprint.

Formal meetings for structured information 
exchange

 �


In
fo

rm
at

io
n 

re
tr

ie
vin

g

In team CAR, developers spend a lot of time clarifying requirements. While they strive to get 
as many details during planning sessions, during the sprint, things pop up or are changed 
by the customer, causing delay or double work. Team CAR invited the customer to daily 
standup sessions and implemented short reporting cycles to cope with these changes in 
requirements.

Adaptive planning

Team FLEET’s scrum master described the positive open-door atmosphere within the team, 
where all team members implicitly agreed on establishing a culture of reciprocal helping 
behavior within the team. Team members actively asked for help or advice and let other 
team members interrupt their work.

Team MONITOR reported on an implemented phone ring, where the team’s phone calls 
were automatically handed over to fellow team members if a call was not answered. 
This ongoing ringing was perceived as interrupting and they approached management to 
deactivate the phone ring.

Encourage helping culture to avoid wait times
(re)structure information exchange

(Continued)



Wiesche 11

Summary of episodes of interruption Open coding Selective coding

Developer 2 from team FLEET described their open office space, which allowed them to 
easily collaborate on joint tasks and interact with others. However, he also described 
that sometimes—often in the afternoon—team members interacted with nearshore 
colleagues via Skype, which created a continuously high level of noise in the office, 
interrupting all coworkers.

In team REAL ESTATE, the product owner was colocated with the team, sitting in the same 
room. Developers valued instant feedback and ongoing discussions, which avoided slack, 
delay, and double work.

Several developers described the work environment as helpful and inspiring, as there were 
occasional interruptions. Rather than solely focusing on a task, they found that discussing 
ideas, which they referred to as “thinking through a task,” is helpful for problem solving. 
There were many situations where developers would struggle with finding a solution on 
their own and benefit from explicating their problem to colleagues and getting feedback 
and ideas.

Inspiration from information exchange

In team FLEET, one developer learned a new development framework, which was a planned 
task during their iteration. Afterward, she spent a couple of days training other team 
members using pair programming rather than working on new tasks by herself more 
efficiently. In this way, the team gained expertise and was more efficient on future 
tasks. As a senior developer, she reflected that her own contribution was in distributing 
knowledge within the team rather than solving backlog items. Similarly, developer 1 from 
team MONITOR explained the importance of training new team members not only in 
the basic understanding of agile approaches, but even more important, in the team’s 
developed routines and ceremonies when using agile approaches in their particular work 
environment.

Avoid rework in later phases of the project
Ensuring high-quality standards

 �


Re
du

ce
 d

ep
en

de
nc

ie
s

Both teams FLEET and CAR implemented internal and external status reports. Internal 
meetings document development status on a regular basis and identify impediments. 
External meetings give customers the chance to provide feedback on increments. Several 
teams used tools like Jira or Trello for providing transparency to internal and external 
stakeholders.

Increase transparency

Acknowledgments

The author would like to thank the editor and the three reviewers for 
their constructive and developmental feedback throughout the review 
process. He would further thank the interviewees for participating 
in this study; both their time and their enthusiasm were greatly 
appreciated.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to 
the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, 
and/or publication of this article.

Note

1.	 Mob programming is an agile practice that follows the idea of pair 
programming. However, instead of only two developers working 
at one work station, the whole development team jointly works at 
one work station.

References

Addas, S., & Pinsonneault, A. (2015). The many faces of information 
technology interruptions: A taxonomy and preliminary investiga-
tion of their performance effects. Information Systems Journal, 
25(3), 231–273.

Balijepally, V., Mahapatra, R., Nerur, S., & Price, K. H. (2009). Are 
two heads better than one for software development? The produc-
tivity paradox of pair programming. MIS Quarterly, 33(1), 
91–118.

Bazigos, M., Smet, A. D., & Gagnon, C. (2015). Why agility pays. 
McKinsey Quarterly (12). https://www.​mckinsey.​com/​business-​
functions/​organization/​our-​insights/​why-​agility-​pays#

Bechky, B. A., & Okhuysen, G. A. (2011). Expecting the unexpected? 
How SWAT officers and film crews handle surprises. Academy of 
Management Journal, 54(2), 239–261.

Cameron, A. -F., & Webster, J. (2013). Multicommunicating: Juggling 
multiple conversations in the workplace. Information Systems 
Research, 24(2), 352–371.

Carton, A. M., & Cummings, J. N. (2012). A theory of subgroups in 
work teams. Academy of Management Review, 37(3), 441–470.

Chua, C. E. H., Lim, W.-K., Soh, C., & Sia, S. K. (2012). Enacting 
clan control in complex it projects: A social capital perspective. 
MIS Quarterly, 36(2), 577–600.

Conboy, K. (2009). Agility from first principles: Reconstructing the 
concept of agility in information systems development. Informa-
tion Systems Research, 20(3), 329–354.

Dery, K., Sebastian, I. M., & van der Meulen, N. (2017). The digital 
workplace is key to digital innovation. MIS Quarterly Executive, 
16(2), 135–152.

Dingsøyr, T., Moe, N. B., & Seim, E. A. (2018). Coordinating knowledge 
work in multiteam programs: Findings from a large-scale agile 
development program. Project Management Journal, 49(6), 64–77.

Drury, M., Conboy, K., & Power, K. (2012). Obstacles to decision 
making in Agile software development teams. Journal of Systems 
and Software, 85(6), 1239–1254.

(Continued)

https://www.mckinsey.com/business-functions/organization/our-insights/why-agility-pays#
https://www.mckinsey.com/business-functions/organization/our-insights/why-agility-pays#


Project Management Journal 00(0)12

Fægri, T. E., Dybå, T., & Dingsøyr, T. (2010). Introducing knowledge 
redundancy practice in software development: Experiences with 
job rotation in support work. Information and Software Technol-
ogy, 52(10), 1118–1132.

Galluch, P., Grover, V., Thatcher, J., & Clemson University. (2015). 
Interrupting the workplace: Examining stressors in an information 
technology context. Journal of the Association for Information 
Systems, 16(1), 1–47.

Ghobadi, S., & Mathiassen, L. (2017). Risks to effective knowledge 
sharing in agile software teams: A model for assessing and miti-
gating risks. Information Systems Journal, 27(6), 699–731.

Glaser, B. G. (1978). Theoretical sensitivity: Advances in the method-
ology of grounded theory. Sociology Press.

Grandhi, S., & Jones, Q. (2010). Technology-mediated interruption 
management. International Journal of Human-Computer Studies, 
68(5), 288–306.

Grandhi, S. A., & Jones, Q. (2015). Knock, knock! Who’s there? Put-
ting the user in control of managing interruptions. International 
Journal of Human-Computer Studies, 79, 35–50.

Hoda, R., Noble, J., & Marshall, S. (2011). The impact of inadequate 
customer collaboration on self-organizing agile teams. Informa-
tion and Software Technology, 53(5), 521–534.

Huck-Fries, V., Prommegger, B., Wiesche, M., & Krcmar, H. (2019). 
The role of work engagement in agile software development: 
Investigating job demands and job resources [Conference ses-
sion]. Proceedings of the 52nd Hawaii International Conference 
on System Sciences, Maui, Hawaii.

Hummel, M., Rosenkranz, C., & Holten, R. (2013). The role of com-
munication in agile systems development. Business & Informa-
tion Systems Engineering, 5(5), 343–355.

Jett, Q. R., & George, J. M. (2003). Work interrupted: A closer look at 
the role of interruptions in organizational life. Academy of Man-
agement Review, 28(3), 494–507.

Kudaravalli, S., Faraj, S., Johnson, S. L., & University of Virginia. 
(2017). A configural approach to coordinating expertise in soft-
ware development teams. MIS Quarterly, 41(1), 43–64.

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining mental 
models: A study of developer work habits [Conference session]. 
Proceedings of the 28th International Conference on Software 
Engineering, Shanghai, China.

Lee, G., & Xia, W. (2010). Toward agile: An integrated analysis of 
quantitative and qualitative field data on software development 
agility. MIS Quarterly, 34(1), 87–114.

Majchrzak, B. A., Beath, C. M., Lim, R. A., & Chin, W. W. (2005). 
Managing client dialogues during information systems design to 
facilitate client learning. MIS Quarterly, 29(4), 653–672.

Maruping, L., & Matook, S. (2020). The multiplex nature of the cus-
tomer representative role in agile information systems develop-
ment. MIS Quarterly, 44(3), 1411–1437.

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A control the-
ory perspective on agile methodology use and changing user 
requirements. Information Systems Research, 20(3), 377–399.

Matook, S., & Maruping, L. M. (2014). A competency model for cus-
tomer representatives in agile software development projects. 
MIS Quarterly Executive, 13(2), 77–95.

Matook, S., & Vidgen, R. (2014). Harmonizing critical success factors in 
agile ISD projects [Conference session]. Proceedings of the 20th 
Americas Conference on Information Systems, Savannah, Georgia.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: 
An expanded sourcebook. SAGE.

Moe, N. B., Aurum, A., & Dybå, T. (2012). Challenges of shared 
decision-making: A multiple case study of agile software develop-
ment. Information and Software Technology, 54(8), 853–865.

Moe, N. B., Dingsøyr, T., & Dybå, T. (2010). A teamwork model for 
understanding an agile team: A case study of a Scrum project. 
Information and Software Technology, 52(5), 480–491.

Nikitina, N., Kajko-Mattsson, M., & Stråle, M. (2012). From scrum to 
scrumban: A case study of a process transition [Conference ses-
sion]. Proceedings of the 2012 International Conference on Soft-
ware and System Process (ICSSP), Zurich, Switzerland.

Pendem, P., Green, P., Staats, B. R., & Gino, F. (2016). The micro-
structure of work: How unexpected breaks let you rest, but not 
lose focus. Harvard Business School Working Paper Series. Har-
vard Business School.

Perlow, L. A. (1999). The time famine: Toward a sociology of work 
time. Administrative Science Quarterly, 44(1), 57–81.

Pflügler, C., Wiesche, M., & Krcmar, H. (2018). Subgroups in agile 
and traditional IT project teams [Conference session]. Proceed-
ings of the 51st Hawaii International Conference on System 
Sciences, Waikoloa Village, HI.

Power, K., & Conboy, K. (2015). A metric-based approach to manag-
ing architecture-related impediments in product development 
flow: An industry case study from Cisco [Workshop]. Proceedings 
of the Second International Workshop on Software Architecture 
and Metrics, Firenze, Italy.

Przybilla, L., Wiesche, M., & Krcmar, H. (2018). The influence of 
agile practices on performance in software engineering teams: A 
subgroup perspective [Conference session]. Proceedings of the 
2018 ACM SIGMIS Conference on Computers and People 
Research, Buffalo-Niagara Falls, NY.

Przybilla, L., Wiesche, M., & Thatcher, J. B. (2020). Conceptualizing 
fluid team membership and its effects in IT Projects: A prelimi-
nary model [Conference session]. Proceedings of the European 
Conference on Information Systems, Virtual Conference.

Recker, J., Holten, R., Hummel, M., & Rosenkranz, C. (2017). How 
agile practices impact customer responsiveness and development 
success: A field study. Project Management Journal, 48(2), 
99–121.

Riemenschneider, C. K., & Armstrong, D. J. (forthcoming). The 
development of the perceived distinctiveness antecedent of infor-
mation systems professional identity. MIS Quarterly.

Rigby, D. K., Sutherland, J., & Takeuchi, H. (2016). Embracing agile. 
Harvard Business Review, 94(5), 40–50.

Slaughter, S. A., Levine, L., Ramesh, B., Pries-Heje, J., & Basker-
ville, R. (2006). Aligning software processes with strategy. MIS 
Quarterly, 30(4), 891–918.

Stjerne, I. S., Söderlund, J., & Minbaeva, D. (2019). Crossing times: 
Temporal boundary-spanning practices in interorganizational pro-
jects. International Journal of Project Management, 37(2), 
347–365.



Wiesche 13

Stray, V., Sjøberg, D. I. K., & Dybå, T. (2016). The daily stand-up 
meeting: A grounded theory study. Journal of Systems and Soft-
ware, 114, 101–124.

Sutherland, J., & Jacobson, I. (Producer). (2020). A better scrum with 
essence [Webinar]. ACM SIGSOFT Webinars.

Tanner, M., & Mackinnon, A. (2015). Sources of interruptions experi-
enced during a scrum sprint. Electronic Journal of Information 
Systems Evaluation, 18(1), 3–18.

Tregubov, A., Boehm, B., Rodchenko, N., & Lane, J. A. (2017). Impact 
of task switching and work interruptions on software development 
processes [Conference session]. Proceedings of the 2017 Interna-
tional Conference on Software and System Process, Paris, France.

Tripp, J., Rienemschneider, C., Thatcher, J., & Clemson University. 
(2016). Job satisfaction in agile development teams: Agile devel-
opment as work redesign. Journal of the Association for Informa-
tion Systems, 17(4), 267–307.

Urquhart, C. (2012). Grounded theory for qualitative research: A 
practical guide. SAGE.

Vidgen, R., & Wang, X. (2009). Coevolving systems and the organiza-
tion of agile software development. Information Systems 
Research, 20(3), 355–376.

Watson-Manheim, M. B., Chudoba, K. M., & Crowston, K. (2012). 
Perceived discontinuities and constructed continuities in virtual 
work. Information Systems Journal, 22(1), 29–52.

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., & Krcmar, H. 
(2019). The DevOps phenomenon. Communications of the ACM, 
62(8), 44–49.

Wiedemann, A., & Wiesche, M. (2018). How to implement clan control 
in DevOps teams [Conference session]. Proceedings of the 24th 
Americas Conference on Information Systems, New Orleans, LA.

Wiedemann, A., Wiesche, M., Gewald, H., & Krcmar, H. (2020). 
Understanding how DevOps aligns development and operations: 
A tripartite model of intra-IT alignment. European Journal of 
Information Systems, 29(5), 458–473.

Wiesche, M. (2018). Toward a model of managing interruptions in 
agile IT projects [Workshop]. Proceedings of the International 

Research Workshop on IT Project Management 2018, San Fran-
cisco, CA.

Wiesche, M., Joseph, D., Thatcher, J., Gu, B., & Krcmar, H. (2019). 
IT workforce. MIS Quarterly Research Curation.

Wiesche, M., Jurisch, M. C., Yetton, P. W., & Krcmar, H. (2017). 
Grounded theory methodology in information systems research. 
MIS Quarterly, 41(3), 685–701.

Wiklund, K., Sundmark, D., Eldh, S., & Lundqvist, K. (2013). Imped-
iments in agile software development: An empirical investigation 
[Conference session]. Proceedings of the International Confer-
ence on Product Focused Software Process Improvement, Paphos, 
Cyprus.

Yin, R. (2009). Case study research: Design and methods (4th ed.). 
SAGE.

Zellmer-Bruhn, M. E. (2003). Interruptive events and team knowledge 
acquisition. Management Science, 49(4), 514–528.

Author Biography

Manuel Wiesche is Full Professor and Chair of Digital 
Transformation at TU Dortmund University, Dortmund, 
Germany. He graduated in Information Systems from 
Westfälische Wilhelms-Universität, Münster, Germany and 
holds a doctoral degree and a habilitation degree from TUM 
School of Management, Technische Universität München, 
Munich, Germany. His current research interests include IT 
workforce, IT project management, digital platform ecosystems, 
and IT service innovation. His research has been published in 
Management Information Systems Quarterly, European Journal 
of Information Systems, Journal of Management Accounting 
Research, Communications of the ACM, Information and 
Management, Electronic Markets, IEEE Transactions on 
Engineering Management and MIS Quarterly Executive. He can 
be contacted at ​manuel.​wiesche@​tu-​dortmund.​de


	Interruptions in Agile Software Development Teams
	Abstract
	Introduction
	Background
	The Concept of Interruptions
	Interruptions in Agile Software Development Teams

	Methods
	Data Analysis
	Results
	Interruptions Caused by Programming-Related Work Impediments
	Interruptions Related to Team Interactions
	Interruptions Imposed by the External Environment

	Discussion
	Causes and Consequences of Interruptions in Agile Software Development Teams
	Understanding How Agile Approaches Help Teams Manage Interruptions: Improved Information Retrieval and Reduction of Dependencies

	Limitations and Contributions
	Appendix
	Illustration of Coding Procedure
	Acknowledgments
	Declaration of Conflicting Interests
	Funding

	Note
	References


